Theory of Computer Science A2. Mathematical Foundations

Malte Helmert

University of Basel

February 22, 2016

Sets

set: unordered collection of distinguishable objects;
 each object contained at most once

- set: unordered collection of distinguishable objects;
 each object contained at most once
- notations:
 - explicit, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e.g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

-unctions

- set: unordered collection of distinguishable objects;
 each object contained at most once
- notations:
 - explicit, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $e \notin M$: e is not in set M

- set: unordered collection of distinguishable objects;
 each object contained at most once
- notations:
 - explicit, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e.g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset = \{\}$

- set: unordered collection of distinguishable objects;
 each object contained at most once
- notations:
 - explicit, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e.g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset = \{\}$
- cardinality |M| of a finite set M: number of elements in M

Sets. Tuples. Relations

- set: unordered collection of distinguishable objects;
 each object contained at most once
- notations:
 - explicit, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset = \{\}$
- cardinality |M| of a finite set M: number of elements in M

German: Menge, Element, leere Menge, Mächtigkeit/Kardinalität

- A ⊆ B: A is a subset of B,
 i. e., every element of A is an element of B
- $A \subset B$: A is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.

- A ⊆ B: A is a subset of B,
 i. e., every element of A is an element of B
- A ⊂ B: A is a strict subset of B,
 i. e., A ⊆ B and A ≠ B.
- power set $\mathcal{P}(M)$: set of all subsets of M e. g., $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

Sets

- A ⊆ B: A is a subset of B,
 i. e., every element of A is an element of B
- A ⊂ B: A is a strict subset of B,
 i. e., A ⊆ B and A ≠ B.
- power set $\mathcal{P}(M)$: set of all subsets of M e. g., $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

German: Teilmenge, echte Teilmenge, Potenzmenge

• intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Sets, Tuples, Relations

• intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

• intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

• complement $\overline{A} = B \setminus A$, where $A \subseteq B$ and B is the set of all considered objects (in a given context)

• intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

• complement $\overline{A} = B \setminus A$, where $A \subseteq B$ and B is the set of all considered objects (in a given context)

German: Schnitt, Vereinigung, Differenz, Komplement

Tuples

- *k*-tuple: ordered sequence of *k* objects
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k \rangle$
- objects may occur multiple times in a tuple

Tuples

- *k*-tuple: ordered sequence of *k* objects
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k \rangle$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k = 2: (ordered) pair
 - k = 3: triple
 - more rarely: quadruple, quintuple, sextuple, septuple, ...
- if k is clear from context (or does not matter),
 often just called tuple

Tuples

- *k*-tuple: ordered sequence of *k* objects
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k \rangle$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k = 2: (ordered) pair
 - k = 3: triple
 - more rarely: quadruple, quintuple, sextuple, septuple, . . .
- if k is clear from context (or does not matter), often just called tuple

German: k-Tupel, Komponente, Paar, Tripel

Cartesian Product

- for sets M_1, M_2, \ldots, M_n , the Cartesian product $M_1 \times \cdots \times M_n$ is the set $M_1 \times \cdots \times M_n = \{\langle o_1, \ldots, o_n \rangle \mid o_1 \in M_1, \ldots, o_n \in M_n\}.$
- Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$

Cartesian Product

- for sets M_1, M_2, \ldots, M_n , the Cartesian product $M_1 \times \cdots \times M_n$ is the set $M_1 \times \cdots \times M_n = \{\langle o_1, \ldots, o_n \rangle \mid o_1 \in M_1, \ldots, o_n \in M_n\}.$
- Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$
- special case: $M^k = M \times \cdots \times M$ (k times)
- example with $M = \{1, 2\}$: $M^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

Cartesian Product

- for sets M_1, M_2, \ldots, M_n , the Cartesian product $M_1 \times \cdots \times M_n$ is the set $M_1 \times \cdots \times M_n = \{\langle o_1, \ldots, o_n \rangle \mid o_1 \in M_1, \ldots, o_n \in M_n\}.$
- Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$
- special case: $M^k = M \times \cdots \times M$ (k times)
- example with $M = \{1, 2\}$: $M^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

German: kartesisches Produkt

Relations

- an *n*-ary relation *R* over the sets M_1, \ldots, M_n is a subset of their Cartesian product: $R \subseteq M_1 \times \cdots \times M_n$.
- example with $M = \{1, 2\}$: $R \le M^2$ as $R \le \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$

German: (*n*-stellige) Relation

Definition (total function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

German: (totale) Funktion, Definitionsbereich, Wertebereich

Definition (total function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

German: (totale) Funktion, Definitionsbereich, Wertebereich

Example

• square : $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2

Functions

Definition (total function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

German: (totale) Funktion, Definitionsbereich, Wertebereich

Example

- square : $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2
- $add: \mathbb{N}_0^2 \to \mathbb{N}_0$ with add(x, y) = x + y

Functions

Definition (total function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

German: (totale) Funktion, Definitionsbereich, Wertebereich

Example

- square : $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2
- $add: \mathbb{N}_0^2 \to \mathbb{N}_0$ with add(x,y) = x + y
- $add_{\mathbb{R}}: \mathbb{R}^2 \to \mathbb{R}$ with $add_{\mathbb{R}}(x, y) = x + y$

Functions: Example

Example

Let $Z = \{z_0, z_1, z_2, z_e\}$ and $\Gamma = \{0, 1, \square\}$.

Define $\delta: Z \setminus \{z_e\} \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$ by

$$\begin{array}{c|cccc} \delta & 0 & 1 & \square \\ \hline z_0 & \langle z_0, 0, \mathsf{R} \rangle & \langle z_0, 1, \mathsf{R} \rangle & \langle z_1, \square, \mathsf{L} \rangle \\ z_1 & \langle z_2, 1, \mathsf{L} \rangle & \langle z_1, 0, \mathsf{L} \rangle & \langle z_e, 1, \mathsf{N} \rangle \\ z_2 & \langle z_2, 0, \mathsf{L} \rangle & \langle z_2, 1, \mathsf{L} \rangle & \langle z_e, \square, \mathsf{R} \rangle \end{array}$$

Then, e.g., $\delta(z_0,1) = \langle z_0,1,R \rangle$

Partial Functions

Definition (partial function)

A partial function $f: X \rightarrow_p Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

German: partielle Funktion

Partial Functions

Definition (partial function)

A partial function $f: X \rightarrow_p Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

German: partielle Funktion

Example

 $f: \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow_{\mathsf{p}} \mathbb{N}_0$ with

$$f(x,y) = \begin{cases} x - y & \text{if } y \le x \\ \text{undefined} & \text{otherwise} \end{cases}$$

Summary

Summary

- sets: unordered, contain every element at most once
- tuples: ordered, can contain the same object multiple times

Summary

- Cartesian product: $M_1 \times \cdots \times M_n$ set of all *n*-tuples where the *i*-th component is in M_i
- function f: X → Y maps every value in X to exactly one value in Y
- partial function $g: X \rightarrow_p Y$ may be undefined for some values in X