Temporal Constraint Networks
Search & Optimization

Esteban Lanter

University of Basel

December 04th, 2014
Table of Contents

1 Introduction

2 Qualitative Networks
 - Interval Algebra
 - Point Algebra

3 Quantitative Temporal Networks
 - The General Temporal Constraint Satisfaction Problem
 - The Simple Temporal Problem
 - The General Temporal Constraint Satisfaction Problem
Temporal Constraint Networks: Reasoning about time
- Points in time
- Time Intervals
- Relative locations of points or intervals
Introduction

3 major models:
- Point Algebra
- Interval Algebra
- Quantitative Temporal Networks

Tradeoff: Expressiveness vs. Tractability
Qualitative Networks

Reasoning on qualitative temporal statements

- No quantitative statements about time
- Qualitative statements about the relative location of temporal elements
- Interval Algebra: Temporal objects are intervals
- Point Algebra: Temporal objects are time points

Both approaches are closely related
Qualitative Networks

Example

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

What do we want to reason about?

- Is the temporal statement consistent?
- If yes, what kind of possible scenarios along the time line can we construct?
Interval Algebra

Qualitative statements regarding the relative locations of paired intervals

- 7 atomic relations between intervals (13 including inverses)

<table>
<thead>
<tr>
<th>Relation</th>
<th>Symbol</th>
<th>Inverse</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>X before Y</td>
<td>b</td>
<td>bi</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X equal Y</td>
<td>=</td>
<td>=</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X meets Y</td>
<td>m</td>
<td>mi</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X overlaps Y</td>
<td>o</td>
<td>oi</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X during Y</td>
<td>d</td>
<td>di</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X starts Y</td>
<td>s</td>
<td>si</td>
<td>[] X [] Y</td>
</tr>
<tr>
<td>X finishes Y</td>
<td>f</td>
<td>fi</td>
<td>[] Y [] X</td>
</tr>
</tbody>
</table>

- The relative location of the Intervals I and J can be specified by a relation set $\{r_1, \ldots, r_k\} \rightarrow I\{r_1, \ldots, r_k\}J \rightarrow (Ir_1J) \vee \ldots \vee (Ir_kJ)$
Interval Algebra - Example

Example

John was not in the room when I touched the switch to turn on the light, but John was in the room later when the light went out.

Representing this knowledge within the IA framework:

- \[\text{Switch}\] as time of touching the switch, \[\text{Light}\] as time that light was on, \[\text{Room}\] as time John was in the room
- \[\text{Switch}\] overlaps or meets \[\text{Light}\]: \[\text{Switch}\{o, m\}\text{Light}\]
- \[\text{Switch}\] is either before, meets, met by, or after \[\text{Room}\]: \[\text{Switch}\{b, m, mi, a\}\text{Room}\]
- \[\text{Light}\] overlaps, starts, or is during \[\text{Room}\]: \[\text{Light}\{o, s, d\}\text{Room}\].
Knowledge can be represented as a constraint network:

- Variables representing temporal intervals: \(\{x_1, \ldots, x_n\} \)
- Domain: Ordered pairs of real numbers representing beginning & end point of corresponding interval: \(D_i = (a, b) \)
- Binary constraints between pairs of intervals given as IA relations: \(C_{ij} \subseteq \{b, m, o, s, d, f, bi, mi, oi, si, di, fi, =\} \)
 \(\rightarrow 8191 \) possible constraints
- Solution: Assignment of pair of numbers to each variable so that no constraint is violated

Unique to IA representation of TCP: Constraints are given as enumerated atomic relationships, and not as explicit relations over variable domains.
Graph Representation and one possible solution

- Solution corresponds to feasible relations: \((Switch \ m \ Light)\), \((Light \ s \ Room)\), \((Switch \ m \ Room)\)
- IA reasoning is mainly interested in finding the consistent qualitative arrangement of the intervals
- Deciding consistency and finding solutions requires search and inference algorithms
The Minimal IA Network

IA networks are binary → Minimal Networks

- Most explicit representation of all feasible relations between all pairs of intervals
- It is tighter but equivalent as it has the same solution set
- Search algorithms still necessary to find solutions - but search space is smaller
- How to generate the minimal network? → Path-Consistency
Path consistency requires inference \(\rightarrow \) in IA: Composition

- The *composition* of 2 basic relations \(r' \) & \(r'' \) can be deduced using a transitivity table
Path-Consistency in IA Networks - Composition

Example

2 basic relations:

- **I** meets **K**: \(r' = I \{m\} K \)
- **K** is during **J**: \(r'' = K \{d\} J \)

- Composition \(r' \otimes r'' = m \otimes d = \{o, d, s\} \)
Path-Consistency in IA Networks - Composition

IA has multiple relations in a constraint \rightarrow composite relations

Composition of 2 composite relations:

$$R' \otimes R'' = \{ r' \otimes r'' | r' \in R', r'' \in R'' \}$$

Example

$$\{b, d, o\} \otimes \{s, o\} = \{b, d, o, m, s\}$$
Path consistency through Relaxation

- For three given variables $x_i, x_j,$ and $x_k,$ the equivalent path-consistent subset can be achieved by applying the relaxation algorithm:

$$C_{ij} \leftarrow C_{ij} \oplus (C_{ik} \otimes C_{kj})$$

- Repeated application of the relaxation algorithm can convert a the whole network into its equivalent path-consistent form.
Apply $C_{SR} \leftarrow C_{SR} \oplus (C_{SL} \otimes C_{LR})$

$C_{SL} \otimes C_{LR} = \{o, m\} \otimes \{o, s, d\} = \{b, o, m, d, s\} = C_{SR}'$

$C_{SR} = \{b, m, mi, a\}$

$C_{SR} \leftarrow C_{SR} \cap C_{SR}' = \{b, m\}$
Path Consistency in IA - Example II

- Apply $C_{LR} \leftarrow C_{LR} \oplus (C_{LS} \otimes C_{SR})$
- $C_{LS} \otimes C_{SR} = \{oi, mi\} \otimes \{b, m\} = \{b, m, o, fi, di, si\} = C_{LR}'$
- $C_{LR} = \{o, s, d\}$
- $C_{LR} \leftarrow C_{LR} \cap C_{LR}' = \{o, s\}$
No changes after further application of relaxation
The resulting Network is now path-consistent
If relaxation results in empty constraint \(\rightarrow \) inconsistency discovered
But IA networks are generally incomplete

- Minimal networks are not guaranteed to be found
- Minimal networks not guaranteed to be globally consistent → backtracking may still be necessary

The relation set \((\text{Switch} \lor \text{Light})\), \((\text{Light} \lor \text{Room})\), \((\text{Switch} \land \text{Room})\) is inconsistent
Point Algebra

Time points and not intervals

- less expressive \rightarrow more tractable
- Transitivity table:

<table>
<thead>
<tr>
<th></th>
<th><</th>
<th>=</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td><</td>
<td>=</td>
<td>?</td>
</tr>
<tr>
<td>=</td>
<td><</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>></td>
<td>?</td>
<td>=</td>
<td>></td>
</tr>
</tbody>
</table>

- In Point Algebra, consistency can be decided in $O(n^2)$
- Path consistency can always generate a minimal network in $O(n^4)$ ($O(n^3)$ for special subsets)
- Point Algebra preferred framework if problem can be stated (translation IA \rightarrow PA sometimes possible)
Quantitative Temporal Networks

QTN vs IA and PA

- IA and PA formulate temporal knowledge in form of qualitative statements on the relative locations of time variables.
- Quantitative temporal networks work with explicit metrical information on time.
Quantitative Temporal Networks

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

What do we want to know?

Is the information in the story consistent?

Is it possible that John took the bus and Fred used the carpool?

What are the possible times at which Fred left home?
The Temporal Constraint Satisfaction Problem

Defining the TCSP

- A set of variables \(\{x_1, \ldots, x_n\} \) with continuous domains
 - Each variable represents a time point. A time point is the beginning or ending of an event or a neutral point in time

- A set of constraints \(\{l_1, \ldots, l_k\} = \{[a_1, b_1], \ldots, [a_k, b_k]\} \)
 - each constraint is represented by a set of intervals
 - each interval is defined by a pair of time points
 - Unary constraint: \((a_1 \leq x_i \leq b_1) \lor \ldots \lor (a_k \leq x_i \leq b_k) \)
 - Binary constraint: \((a_1 \leq x_j - x_i \leq b_1) \lor \ldots \lor (a_k \leq x_j - x_i \leq b_k) \)
Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

Identify intervals!

- John is traveling to work
 - John leaves home x_1 and John arrives at work x_2
 - Interval $[x_1, x_2]$
- Fred is traveling to work
 - Fred leaves home x_3 and Fred arrives at work x_4
 - Interval $[x_3, x_4]$
Building the TCSP network

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

The directed constraint graph

- x_0 is the beginning of the world
- All time quantities are relative to x_0
- Assign $x_0 = 7:00$ A.M.
- $10 \leq x_1 - x_0 \leq 20$
- $20 \leq x_4 - x_3 \leq 30$ or $40 \leq x_4 - x_3 \leq 50$
The TCSP is a binary network → usual rules apply!

- Value \(v \) is feasible for variable \(x_i \) if there exists a solution in which \(x_i = v \)
- Set of all feasible values for a domain is *minimal domain*
- Set of all feasible values for \(x_i - x_j \) is a *minimal constraint*
- A network is minimal iff its domains and constraints are minimal
- If every consistent assignment of values to variables can be extended to a solution → *binary decomposable*
Inference techniques:
- Union
- Intersection
- Composition

Using these, we can find out:
- Is the Network consistent?
- If the network is consistent, what are possible legal scenarios? When can x_i occur? What are legal relations between x_i and x_j?

These are all NP-hard to solve! But there is a special class of temporal Problems that can be processed in polynomial time
The STP is a TCSP in which all constraints specify a single interval:

- Each edge $i \rightarrow j$ is labeled by a single interval $[a_{ij}, b_{ij}]$ that represents the constraint $a_{ij} \leq x_j - x_i \leq b_{ij}$
- Expressed as a pair of inequalities: $x_j - x_i \leq b_{ij}$ and $x_i - x_j \leq -a_{ij}$

Convenient representation: Distance Graph

- Not the same as directed constraint graph
- Each edge $i \rightarrow j$ labeled by weight a_{ij} representing $x_i - x_j \leq -a_{ij}$

This network can be solved by a shortest-path algorithm!
Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

- Only singular intervals → we (must) assume that John used a car and Fred used a carpool.
- The other possibilities (John uses bus and Fred uses car) are disregarded (for now)
 - $T_{12} = \{(30, 40)\}$
 - $T_{34} = \{(40, 50)\}$
STP - Example

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

- Only singular intervals → we (must) assume that John used a car and Fred used a carpool.
- The other possibilities (John uses bus and Fred uses car) are disregarded (for now)
- $T_{12} = \{(30, 40)\}$
- $T_{34} = \{(40, 50)\}$
Each path from point \(i \) to point \(j \) induces a constraint on the distance \(x_j - x_i \):

\[
x_j - x_i \leq \sum_{j=1}^{k} a_{i_{j-1}, i_j}
\]

There can be multiple paths from \(i \) to \(j \) which induce multiple constraints:

- \(x_4 - x_1 = a_{01} + a_{12} + a_{23} + a_{34} = 20 + 40 - 10 + 50 = 100 \)
- \(x_4 - x_1 = a_{10} + a_{04} = -10 + 70 = 60 \)

The intersection of all these constraints is given by the shortest path \(d_{ij} \) between \(i \) and \(j \):

- \(x_j - x_i \leq d_{ij} \)
- \(\min(x_4 - x_1) = 60 \rightarrow d_{14} = 60 \)
The STP is consistent iff there are no negative cycles

- Cycle: $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_0$
- Sum of inequalities:

 \[a_{01} + a_{12} + a_{23} + a_{34} + a_{40} \equiv x_0 - x_0 \leq -20 \rightarrow \text{inconsistent}! \]
If the STP is consistent

- $d_{0j} \leq d_{0i} + a_{ij}$ will always be satisfied

 $\rightarrow d_{0j} - d_{0i} \leq a_{ij}$

- $d_{01}, d_{02}, \ldots, d_{0n}$ will always satisfy all inequality constraints a_{ij} on the STP edges

- Hence, one of the solution sets of an STP has the form:

 $$(x_1 = d_{01}, x_2 = d_{02} \ldots x_n = d_{0n})$$

- Together with its negative reverse we have 2 solution sets:

 $$S_1 = (d_{01}, \ldots, d_{0n}), S_2 = (-d_{10}, \ldots, -d_{n0})$$

- Upper/lower bounds in the sense that these assign the latest or earliest possible times
The D-Graph

Distances can be specified by a complete and directed d-graph

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>-10</td>
<td>0</td>
<td>40</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>-40</td>
<td>-30</td>
<td>0</td>
<td>-10</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>-20</td>
<td>-10</td>
<td>20</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>-60</td>
<td>-50</td>
<td>-20</td>
<td>-40</td>
<td>0</td>
</tr>
</tbody>
</table>

• This is a more explicit representation of the STP
• Any consistent STP is backtrack-free (decomposable) relative to the constraints in its d-graph.
The Minimal STP Network

Domains and constraints characterized by the D-Graph can easily be converted into a minimal representation

- Minimal network $M_{ij} = \{[-d_{ji}, d_{ij}]\}$
- Feasible values for variable $X_i = [d_{i0}, d_{0i}]$

The minimal network gives us bounds for all feasible values for any potential temporal relationship between the variables.
Constructing the D-Graph

The Floyd-Warshall Algorithm

Applying the Floyd-Warshall algorithm is equivalent to imposing Path-Consistency on an STP

Inconsistency is detected by examining sign of the diagonal elements of the D-Graph

Runtime $O(n^3)$
Assembling the solution

- Start with $x_0 = 0$
- Assign to each variable any value that satisfies the D-Graph constraints relative to its previous assignments
- Due to no backtracking computational burden remains mainly on constructing the D-Graph ($O(n^3)$)
The general TCSP

As opposed to the STP, the general TCSP has multiple intervals per edge

- General approach: Decompose TCSP into multiple STP’s - Permute through selections with only 1 Interval per constraint
- 1 particular selection of Intervals: labeling
- Minimal TCSP network: Union over all individual minimal networks of all possible labelings T
The general TCSP-Example

Example

John travels to work either by car (30-40 minutes) or by bus (at least 60 minutes). Fred travels to work either by car (20-30 minutes) or in a carpool (40-50 minutes). Today John left home between 7:10 and 7:20 A.M., and Fred arrived at work between 8:00 and 8:10 A.M. We also know that John arrived at work 10-20 minutes after Fred left home.

4 labelings - 4 Individual STP's

- John: car, Fred: car
- John: car, Fred, carpool
- John: bus, Fred: car
- John: bus, Fred: carpool
Solving the general TCSP

Straightforward:
- Brute Force enumeration through all labelings - $O(n^3k^e)$

Sophisticated:
- Meta-CSP - Variables are TCSP edges, Domains are possible intervals
- Backtracking algorithm assigns intervals to edges
- Backtrack if negative cycle is encountered on current STP

Preprocessing TCSP’s:
- Enforce path consistency or directional path consistency on TCSP