Overview
Recall from Part 4:

Delete Relaxation

Estimate cost to goal by considering simpler planning task **without negative side effects** of actions.

Landmarks

An action set A is a **landmark** if all plans include an action from A. Compute a set of landmarks and use it to derive a cost estimate (e.g., by counting the number of landmarks).
Now:

- principled way of deriving landmarks for delete relaxation
- principled ways of exploiting landmarks for heuristics

 basis of landmark-cut heuristic (Helmert & Domshlak, ICAPS 2009) and improved LM-Cut (Bonet & Helmert, ECAI 2010)
Relaxed Planning
Delete Relaxation

delete relaxation: ignore “bad effects” of actions

- **What is a bad effect?**
 - easy for STRIPS: it’s always “better for us” if a fact is true!

 \[\Rightarrow \text{bad effect} = \text{delete effect}\]

 \[\Rightarrow \text{delete relaxation} \text{ of a task: drop all delete effects}\]

Use delete relaxation as basis for heuristics:

- in each state, estimate cost to the goal in delete relaxation
It is convenient to use special-purpose notation for relaxed tasks:

Relaxed Planning Task

F: finite set of facts

- **initial facts** *I* ⊆ *F* are given
- **goal facts** *G* ⊆ *F* must be reached
- **operators** of the form *o*[4]: *a*, *b* → *c*, *d*

read: If we already have facts *a* and *b* (preconditions *pre(o)*), we can apply *o*, paying 4 units (cost *cost(o)*), to obtain facts *c* and *d* (effects *eff(o)*)

For simplicity: assume *I* = \{i\}, *G* = \{g\}, all *pre(o) ≠ ∅*
Example: Relaxed Planning Task

Example

- $o_1[3] : i \rightarrow a, b$
- $o_2[4] : i \rightarrow a, c$
- $o_3[5] : i \rightarrow b, c$
- $o_4[0] : a, b, c \rightarrow g$

One way to reach $\{g\}$ from $\{i\}$:
Apply sequence o_1, o_2, o_4 (plan)
Cost: $3 + 4 + 0 = 7$ (optimal)
Example: Relaxed Planning Task

Example

\[o_1[3] : i \rightarrow a, b \]
\[o_2[4] : i \rightarrow a, c \]
\[o_3[5] : i \rightarrow b, c \]
\[o_4[0] : a, b, c \rightarrow g \]

One way to reach \(\{g\} \) from \(\{i\} \):

- apply sequence \(o_1, o_2, o_4 \) (plan)
- cost: \(3 + 4 + 0 = 7 \) (optimal)
Optimal Relaxed Cost

- $h^+(l)$: minimal total cost to reach G from l
- NP-hard to compute (Bylander, AIJ 1994)
 or approximate by constant factor (Betz & Helmert, KI 2009)
 \Rightarrow use polynomial-time admissible heuristics
Landmarks
The most accurate current heuristics are based on landmarks.

Definition (Landmark)

A (disjunctive action) **landmark** is a set of operators L such that each plan must contain some element of L.

The **cost** of a landmark, $cost(L)$, is $\min_{o \in L} cost(o)$.

⇒ the cost of any landmark is a (crude) admissible heuristic.
Example: Landmarks

Example

\[o_1[3] : i \rightarrow a, b \]
\[o_2[4] : i \rightarrow a, c \]
\[o_3[5] : i \rightarrow b, c \]
\[o_4[0] : a, b, c \rightarrow g \]
Example: Landmarks

Some landmarks:

- \(W = \{ o_4 \} \) (cost 0)
- \(X = \{ o_1, o_2 \} \) (cost 3)
- \(Y = \{ o_1, o_3 \} \) (cost 3)
- \(Z = \{ o_2, o_3 \} \) (cost 4)
- but also: \(\{ o_1, o_2, o_3 \} \) (cost 3), \(\{ o_1, o_2, o_4 \} \) (cost 0), ...
Exploiting Landmarks
Exploiting Landmarks

Assume we are given landmark set $\mathcal{L} = \{W, X, Y, Z\}$.
(later: how to find such landmarks)

How do we exploit \mathcal{L} for heuristics?

- sum of costs $0 + 3 + 3 + 4 = 10 \implies \text{inadmissible!}$
- maximum of costs: $\max\{0, 3, 3, 4\} = 4 \implies \text{weak}$
- best previous approach: optimal cost partitioning
Landmark Heuristics with Optimal Cost Partitioning

Optimal Cost Partitioning (Karpas & Domshlak, IJCAI 2009)

Idea: Derive a linear program (LP) from \mathcal{L}.
- one variable per landmark
- one constraint per operator

h^L value: objective value of the LP
Example: Optimal Cost Partitioning

Example

cost(o_1) = 3, cost(o_2) = 4, cost(o_3) = 5, cost(o_4) = 0

\[\mathcal{L} = \{W, X, Y, Z\} \]

with \(W = \{o_4\} \), \(X = \{o_1, o_2\} \), \(Y = \{o_1, o_3\} \), \(Z = \{o_2, o_3\} \)

LP: maximize \(w + x + y + z \) subject to \(w, x, y, z \geq 0 \) and

\[
\begin{align*}
x + y & \leq 3 \\
x + z & \leq 4 \\
y + z & \leq 5 \\
w & \leq 0
\end{align*}
\]
Example: Optimal Cost Partitioning

Example

\[\begin{align*}
 \text{cost}(o_1) &= 3, \quad \text{cost}(o_2) = 4, \quad \text{cost}(o_3) = 5, \quad \text{cost}(o_4) = 0 \\
 \mathcal{L} &= \{W, X, Y, Z\} \\
 \text{with } W &= \{o_4\}, \quad X = \{o_1, o_2\}, \quad Y = \{o_1, o_3\}, \quad Z = \{o_2, o_3\}
\end{align*} \]

LP: maximize \(w + x + y + z \) subject to \(w, x, y, z \geq 0 \) and

\[
\begin{align*}
 x + y & \leq 3 \quad o_1 \\
 x + z & \leq 4 \quad o_2 \\
 y + z & \leq 5 \quad o_3 \\
 w & \leq 0 \quad o_4 \\
 W & \quad X & \quad Y & \quad Z
\end{align*}
\]
Example: Optimal Cost Partitioning

Example

\[\text{cost}(o_1) = 3, \quad \text{cost}(o_2) = 4, \quad \text{cost}(o_3) = 5, \quad \text{cost}(o_4) = 0 \]

\[\mathcal{L} = \{W, X, Y, Z\} \]

with \(W = \{o_4\}, \quad X = \{o_1, o_2\}, \quad Y = \{o_1, o_3\}, \quad Z = \{o_2, o_3\} \)

LP: maximize \(w + x + y + z \) subject to \(w, x, y, z \geq 0 \) and

\[
\begin{align*}
 x + y & \leq 3 & o_1 \\
 x + z & \leq 4 & o_2 \\
 y + z & \leq 5 & o_3 \\
 w & \leq 0 & o_4 \\
\end{align*}
\]

\[W \quad X \quad Y \quad Z \]

solution: \(w = 0, \quad x = 1, \quad y = 2, \quad z = 3 \quad \Rightarrow \quad h^L(I) = 6 \)
Beyond Optimal Cost Partitioning

- $h^{-1}(I) = 6$ is a good estimate, but $h^+(I) = 7$!
- Can we do better with the same information?
Definition (Hitting Set)

Given: finite set A, subset family $\mathcal{F} \subseteq 2^A$, costs $c : A \rightarrow \mathbb{R}_0^+$

Hitting set:
- subset $H \subseteq A$ that “hits” all subsets in \mathcal{F}: $H \cap S \neq \emptyset$ for all $S \in \mathcal{F}$
- cost of H: $\sum_{a \in H} c(a)$

Minimum hitting set (MHS):
- minimizes cost
- classical NP-complete problem (Karp, 1972)
Example: Hitting Sets

Example

\[A = \{o_1, o_2, o_3, o_4\} \]
\[\mathcal{F} = \{W, X, Y, Z\} \]
with \[W = \{o_4\}, \ X = \{o_1, o_2\}, \ Y = \{o_1, o_3\}, \ Z = \{o_2, o_3\} \]
\[c(o_1) = 3, \ c(o_2) = 4, \ c(o_3) = 5, \ c(o_4) = 0 \]

Minimum hitting set:
Example: Hitting Sets

Example

\[A = \{o_1, o_2, o_3, o_4\} \]
\[\mathcal{F} = \{W, X, Y, Z\} \]
with \(W = \{o_4\}, \ X = \{o_1, o_2\}, \ Y = \{o_1, o_3\}, \ Z = \{o_2, o_3\} \)
\[c(o_1) = 3, \ c(o_2) = 4, \ c(o_3) = 5, \ c(o_4) = 0 \]

Minimum hitting set: \(\{o_1, o_2, o_4\} \) with cost \(3 + 4 + 0 = 7 \)
Hitting Sets for Landmarks

- can view **landmark sets** (with operator costs) as instances of **minimum hitting set** problem
- here, we got an admissible estimate that dominated h^L
- coincidence?
Hitting Set Heuristics

Let \mathcal{L} be a set of landmarks.

Theorem (Hitting Set Heuristics are Admissible)

Let $h^{\text{MHS}}(I)$ be the minimum hitting set cost for $\langle O, \mathcal{L}, \text{cost} \rangle$. Then:

1. $h^{\text{MHS}}(I) \leq h^+(I)$ (hitting set heuristics are admissible)
2. $h^{\text{MHS}}(I) \geq h^L(I)$ (hitting sets dominate cost partitioning)
Let \mathcal{L} be a set of landmarks.

Theorem (Hitting Set Heuristics are Admissible)

Let $h^{\text{MHS}}(I)$ be the minimum hitting set cost for $\langle O, \mathcal{L}, \text{cost} \rangle$. Then:

1. $h^{\text{MHS}}(I) \leq h^+(I)$ (hitting set heuristics are admissible)
2. $h^{\text{MHS}}(I) \geq h^L(I)$ (hitting sets dominate cost partitioning)

Proof sketch:

1. plans are hitting sets (by definition of landmarks)
2. cost partitioning LP is dual of LP relaxation of hitting set integer program
<table>
<thead>
<tr>
<th>Overview</th>
<th>Relaxed Planning</th>
<th>Landmarks</th>
<th>Exploiting Landmarks</th>
<th>Generating Landmarks</th>
<th>Summary</th>
</tr>
</thead>
</table>

Generating Landmarks
How do we generate landmarks in the first place?
Definition (Precondition Choice Function)

A precondition choice function (pcf) $D : O \rightarrow F$ maps each operator to one of its preconditions.

Definition (Justification Graph)

The justification graph for pcf D is an arc-labeled digraph with

- **vertices:** the facts F
- **arcs:** arc $D(o) \rightarrow e$ for each operator o and effect $e \in eff(o)$
Example: Justification Graph

pcf D: $D(o_1) = D(o_2) = D(o_3) = i$, $D(o_4) = b$

$o_1[3]: i \rightarrow a, b$

$o_2[4]: i \rightarrow a, c$

$o_3[5]: i \rightarrow b, c$

$o_4[0]: a, b, c \rightarrow g$
Cuts

Definition (Cut)

A cut of a justification graph is a subset of its arcs C such that all paths from i to g use some arc in C.
Cuts

Definition (Cut)
A cut of a justification graph is a subset of its arcs C such that all paths from i to g use some arc in C.

Theorem (Cuts are Landmarks)
Let C be any cut of the justification graph for any pcf. Then the labels of C form a landmark.
Example: Cuts of a Justification Graph

Landmark $W = \{ o_4 \}$ (cost 0)

Example

- $o_1[3] : i \rightarrow a, b$
- $o_2[4] : i \rightarrow a, c$
- $o_3[5] : i \rightarrow b, c$
- $o_4[0] : a, b, c \rightarrow g$
Example: Cuts of a Justification Graph

Example

Landmark $X = \{o_1, o_2\}$ (cost 3)

- $o_1[3] : i \rightarrow a, b$
- $o_2[4] : i \rightarrow a, c$
- $o_3[5] : i \rightarrow b, c$
- $o_4[0] : a, b, c \rightarrow g$
Example: Cuts of a Justification Graph

Example

Landmark \(Y = \{ o_1, o_3 \} \) (cost 3)

\[o_1[3] : i \rightarrow a, b \]
\[o_2[4] : i \rightarrow a, c \]
\[o_3[5] : i \rightarrow b, c \]
\[o_4[0] : a, b, c \rightarrow g \]
Example: Cuts of a Justification Graph

Landmark $Z = \{o_2, o_3\}$ (cost 4)

- $o_1[3] : i \rightarrow a, b$
- $o_2[4] : i \rightarrow a, c$
- $o_3[5] : i \rightarrow b, c$
- $o_4[0] : a, b, c \rightarrow g$
Which landmarks can be generated with the cut method?
Power of Justification Graph Cuts

- Which landmarks can be generated with the cut method?
- **All interesting ones!**

Theorem (Perfect Hitting Set Heuristic)

Let \mathcal{L} be the set of all “cut landmarks”. Then $h_{\text{MHS}}^+(I) = h^+(I)$.

\implies hitting set heuristic over \mathcal{L} is **perfect**
Power of Justification Graph Cuts

- Which landmarks can be generated with the cut method?
- All interesting ones!

Theorem (Perfect Hitting Set Heuristic)

Let \mathcal{L} be the set of all “cut landmarks”. Then $h^{\text{MHS}}(I) = h^+(I)$.

\Rightarrow hitting set heuristic over \mathcal{L} is perfect

Proof sketch:
- We show that every hitting set H for \mathcal{L} induces a plan.
- Assume that some hitting set H does not induce a plan.
- We construct a pcf and cut s.t. H does not hit the landmark.
- Contradiction!
Summary
Summary

- **Landmarks** of delete-relaxed tasks are a good source of heuristic information.
- **Optimal cost partitioning** is an admissible method for combining information from multiple landmarks.
- **Hitting sets** for landmarks are more informative than optimal cost partitioning (but NP-hard to compute).
- **Cuts in justification graphs** offer a principled way of generating landmarks.
- **Hitting sets over all cut landmarks** are perfect heuristics for delete relaxations.