
Exhibiting Knowledge in Planning Problems to

Minimize State Encoding Length

Stefan Edelkamp and Malte Helmert

Institut für Informatik
Albert-Ludwigs-Universität, Am Flughafen 17, D-79110 Freiburg, Germany,

e-mail: {edelkamp,helmert}@informatik.uni-freiburg.de

Abstract. In this paper we present a general-purposed algorithm for
transforming a planning problem specified in Strips into a concise state
description for single state or symbolic exploration.
The process of finding a state description consists of four phases. In the
first phase we symbolically analyze the domain specification to determine
constant and one-way predicates, i.e. predicates that remain unchanged
by all operators or toggle in only one direction, respectively.
In the second phase we symbolically merge predicates which leads to
a drastic reduction of state encoding size, while in the third phase we
constrain the domains of the predicates to be considered by enumerating
the operators of the planning problem. The fourth phase combines the
result of the previous phases.

1 Introduction

Single-state space search has a long tradition in AI. We distinguish memory
sensitive search algorithms like A* [12] that store the explored subgraph of the
search space and approaches like IDA* and DFBnB [15] that consume linear
space with respect to the search depth. Especially on current machines memory
sensitive algorithms exhaust main memory within a very short time.

On the other hand linear search algorithms explore the search tree of gener-
ating paths, which might be exponentially larger than the underlying problem
graph. Several techniques such as transposition tables [21], finite state machine
pruning [23], and heuristic pattern databases [3] have been proposed. They re-
spectively store a considerable part of the search space, exhibit the regular struc-
ture of the search problems, and improve the lower bound of the search by re-
trieving solutions to problem relaxations. Last but not least, in the last decade
several memory restricted algorithms have been proposed [4, 22]. All memory
restricted search approaches cache states at the limit of main memory.

Since finite state machine pruning is applicable only to a very restricted
class of symmetric problems, single-state space search algorithms store millions
of fully or partially defined states. Finding a good compression of state space is
crucial. The first step is to efficiently encode each state; if we are facing millions
of states we are better off with a small state description length.

The encoding length is measured in bits. For example one instance to the
well-known Fifteen Puzzle can be compressed to 64 bits, 4 bits for each tile.



Single-state algorithms have been successful in solving “well-informed do-
mains”, i.e. problems with a fairly elaborated lower bound [13, 16], for good
estimates lead to smaller parts of the search tree to be considered. In solving
one specific problem, manually encoding the state space representations can be
devised to the user. In case of AI planning, however, we are dealing with a fam-
ily of very different domains, merely sharing the same, very general specification
language. Therefore planners have to be general-purposed. Domain-dependent
knowledge has either to be omitted or to be inferred by the machine.

Planning domains usually have large branching factors, with the branch-
ing factor being defined as the average number of successors of a state within
planning space. Due to the resulting huge search spaces planning resists almost
all approaches of single-state space search. As indicated above automated finite
state pruning is generally not available although there is some promising research
on symmetry leading to good results in at least some domains [10].

On the other hand, domain-independent heuristic guidance in form of a lower
bound can be devised, e.g. by counting the number of facts missing from the goal
state. However, these heuristics are too weak to regain tractability. Moreover,
new theoretical results in heuristic single-state search prove that while finite
state machine pruning can effectively reduce the branching factor, in the limit
heuristics cannot [5, 17]. The influence of lower bounds on the solution length
can best be thought of as a decrease in search depth. Therefore, even when incor-
porated with lower bound information, the problem of large branching factors
when applying single-state space searching algorithms to planning domains re-
mains unsolved. As a solution we propose a promising symbolic search technique
also favoring a small binary encoding length.

2 Symbolic Exploration

Driven by the success of model checking in exploring search spaces of 1020 states
and beyond, the new trend in search is reachability analysis [19]. Symbolic ex-
ploration bypasses the typical exponential growth of the search tree in many
applications. However, the length of the state description severely influences the
execution time of the relevant algorithms. In symbolic exploration the rule of
thumb for tractability is to choose encodings of not much more than 100 bits.

Edelkamp and Reffel have shown that and how symbolic exploration leads
to promising results in solving current challenges to single-agent search such as
the Fifteen Puzzle and Sokoban [6]. Recent results show that these methods
contribute substantial improvements to deterministic planning [7].

The idea in symbolically representing a set S is to devise a boolean function
φS with input variables corresponding to bits in the state description that eval-
uates to true if and only if the input a is the encoding of one element s in S.
The drawback of choosing boolean formulae to describe φS is that satisfiability
checking is NP-complete. The unique representation with binary decision dia-
grams (BDDs) can grow exponentially in size, but, fortunately, this characteristic
seldom appears in practice [2].



BDDs allow to efficiently encode sets of states. For example let {0, 1, 2, 3}
be the set of states encoded by their binary value. The characteristic function
of a single state is the minterm of the encoding, e.g. φ{0}(x) = x1 ∧ x2. The
resulting BDD has two inner nodes. The crucial observation is that the BDD

representation of S increases by far slower than |S|. For example the BDD for
φ{0,1} = x1 consists of one internal node and the BDD for φ{0,1,2,3} is given by
the 1-sink only.

An operator can also been seen as an encoding of a set. In contrast to the
previous situation a member of the transition relation corresponds to a pair
of states (s′, s) if s′ is a predecessor of s. Subsequently, the transition relation
T evaluates to 1 if and only if s′ is a predecessor of s. Enumerating the cross
product of the entire state space is by far too expensive. Fortunately, we can set
up T symbolically by defining which variables change due to an operator and
which variables do not.

Let Si be the set of states reachable from the start state in i steps, initialized
by S0 = {s}. The following equation determines φSi

given both φSi−1
and the

transition relation: φSi
(s) = ∃s′ (φSi−1

(s′)∧T (s′, s)). In other words we perform
breadth first search with BDDs. A state s belongs to Si if it has a predecessor in
the set Si−1 and there exists an operator which transforms s′ into s. Note that
on the right hand side of the equation φ depends on s′ compared to s on the
left hand side. Thus, it is necessary to substitute s with s′ in the BDD for φSi

.
Fortunately, this substitution corresponds to a simple renaming of the variables.

Therefore, the key operation in the exploration is the relational product

∃v(f ∧g) of a variable vector v and two boolean functions f and g. Since existen-
tial quantification of one boolean variable xi in the boolean function f is equal to
disjunction f |xi=0 ∨ f |xi=1, the quantification of v results in a sequence of sub-
problem disjunctions. Although computing the relational product is NP-hard
in general, specialized algorithms have been developed leading to an efficient
determination for many practical applications.

In order to terminate the search we test, if a state is contained in the intersec-
tion of the symbolic representation of the set Si and the set of goal states G. This
is achieved by evaluating the relational product goalReached = ∃x (φSi

∧ φG).
Since we enumerated S0, . . . , Si−1 in case goalReached evaluates to 1, i is known
to be the optimal solution length.

3 Parsing

We evaluate our algorithms on the AIPS’98 planning contest problems1, mostly
given in Strips [8]. An operator in Strips consists of pre- and postconditions. The
latter, so-called effects, divide into an add list and a delete list.

Extending Strips leads to ADL with first order specification of conditional ef-
fects [20] and PDDL, a layered planning description domain language. Although
symbolic exploration and the translation process described in this paper are not
restricted to Strips, for the ease of presentation we will keep this focus.

1 http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.



A PDDL-given problem consists of two parts. In the domain specific part,
predicates and actions are defined. A predicate is given by its name and its
parameters, and actions are given by their names, parameters, preconditions,
and effects. One example domain, Logistics, is given as follows2.

(define (domain logistics-strips)
(:predicates (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc) (AIRPLANE ?plane) (CITY ?city)

(AIRPORT ?airport) (at ?obj ?loc) (in ?obj ?obj) (in-city ?obj ?city))
(:action LOAD-TRUCK

:parameters (?obj ?tru ?loc)
:precondition (and (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc) (at ?tru ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?tru)))

(:action UNLOAD-TRUCK
:parameters (?obj ?tru ?loc)
:precondition (and (OBJ ?obj) (TRUCK ?tru) (LOCATION ?loc) (at ?tru ?loc) (in ?obj ?tru))
:effect (and (not (in ?obj ?tru)) (at ?obj ?loc)))

(:action DRIVE-TRUCK
:parameters (?tru ?loc-from ?loc-to ?city)
:precondition (and (TRUCK ?tru) (LOCATION ?loc-from) (LOCATION ?loc-to) (CITY ?city)

(at ?tru ?loc-from) (in-city ?loc-from ?city) (in-city ?loc-to ?city))
:effect (and (not (at ?tru ?loc-from)) (at ?tru ?loc-to))) ... )

The problem specific part defines the objects to be dealt with and describes
initial and goal states, consisting of a list of facts (instantiations to predicates).

(define (problem strips-log-x-1)
(:domain logistics-strips)
(:objects package6 package5 package4 package3 package2 package1

city6 city5 city4 city3 city2 city1
truck6 truck5 truck4 truck3 truck2 truck1 plane2 plane1
city6-1 city5-1 city4-1 city3-1 city2-1 city1-1
city6-2 city5-2 city4-2 city3-2 city2-2 city1-2)

(:init (and (OBJ package1) (OBJ package2) ... (at package6 city3-1) .. ))
(:goal (and (at package6 city1-2) ... )))

Using current software development tools, parsing a PDDL specification is
easy. In our case we applied the Unix programs flex and bison for lexically
analyzing the input and parsing the result into data structures. We used the
standard template library, STL for short, for handling the different structures
conveniently. The information is parsed into vectors of predicates, actions and
objects. All of them can be addressed by their name or a unique numeric identi-
fier, with STL maps allowing conversions from the former ones to the latter ones.
Having set up the data structures, we are ready to start analyzing the problem.

4 Constant and One-Way Predicates

A constant predicate is defined as a predicate whose instantiations are not af-
fected by any operator in the domain. Since Strips does not support types,
constant predicates are often used for labeling different kinds of objects, as is
the case for the TRUCK predicate in the Logistics domain. Another use of constant
predicates is to provide persistent links between objects, e.g. the in-city pred-
icate in the Logistics domain which associates locations with cities. Obviously,
constant predicates can be omitted in any state encoding.

2 Dots (...) are printed if source fragments are omitted.



Instantiations of one-way predicates do change over time, but only in one
direction. There are no one-way predicates in the Logistics domain; for an ex-
ample consider the Grid domain, where doors can be opened with a key and
not be closed again. Thus locked and open are both one-way predicates. Those
predicates need to be encoded only for those objects that are not listed as open
in the initial state. In PDDL neither constant nor one-way predicates are marked
and thus both have to be inferred by an algorithm. We iterate on all actions,
keeping track of all predicates appearing in any effect lists. Constant predicates
are those that appear in none of those lists, one-way predicates are those that
appear either as add effects or as delete effects, but not both.

5 Merging Predicates

Consider the Logistics problem given above, which serves as an example for the
remaining phases. There are 32 objects, six packages, six trucks, two airplanes,
six cities, six airports, and six other locations. A naive state encoding would use
a single bit for each possible fact, leading to a space requirement of 6·32+3·322 =
3264 bits per state, since we have to encode six unary and three binary predicates.
Having detected constant predicates, we only need to encode the at and in

predicates, thus using only 2 · 322 = 2048 bits per state. Although this value is
obviously better, it is far from being satisfying.

A human reader will certainly notice that it is not necessary to consider
all instantiations of the at predicate independently. If a given package p is at
location a, it cannot be at another location b at the same time. Thus it is sufficient
to encode where p is located, i.e. we only need to store an object number which
takes only ⌈log 32⌉ = 5 bits per package. How can such information be deduced
from the domain specification? To tell the truth, this is not possible, since the
information does not only depend on the operators themselves but also on the
initial state of the problem. If the initial state included the facts (at p a) as well
as (at p b), then p could be at multiple locations at the same time.

However, we can try to prove that the number of locations a given object is
at cannot increase over time. For a given state, we define #at2(p) as the number
of objects q for which the fact (at p q) is true. If there is no operator that can
increase this value, then #at2(p) is limited by its initial value, i.e. by the number
of corresponding facts in the initial state. In this case we say that at is balanced

in the second parameter. Note that this definition can be generalized for n-ary
predicates, defining #predi(p1, . . . , pi−1, pi+1, . . . , pn) as the number of objects
pi for which the fact (pred p1 . . . pn) is true. If we knew that at was balanced
in the second parameter, we would be facing one of the following situations:

– #at2(p) = 0: We have to store no information about the location of p.
– #at2(p) = 1: The location of p can be encoded by using an object index,

i.e. we need ⌈log o⌉ bits, where o denotes the number of objects p can be
assigned to in our problem.

– #at2(p) > 1: In this case, we stick to naive encoding.



So can we prove that the balance requirement for at is fulfilled? Unfortu-
nately we cannot, since there are some operators that increase #at2, namely
the UNLOAD-TRUCK operator. However, we note that whenever #at2(p) increases,
#in2(p) decreases, and vice versa. If we were to merge at and in into a new pred-
icate at+in, this predicate would be balanced, since #(at + in)2 = #at2 +#in2

remains invariant no matter what operator is applied.

We now want to outline the algorithm for checking the balance of #predi

for a given predicate pred and parameter i: For each action a and each of its
add effects e, we check if e is referring to predicate pred. If so, we look for a
corresponding delete effect, i.e. a delete effect with predicate pred and the same
argument list as e, except for the i-th argument which is allowed to be (and
normally will be) different. If we find such a delete effect, it balances the add
effect, and there is no need to worry.

If there is no corresponding delete effect, we search the delete effect list for any
effect with a matching argument list (again, we ignore parameter i), no matter
what predicate it is referring to. If we do not find such an effect, our balance
check fails. If we do find one, referring to predicate other, then we recursively
call our algorithm with the merged predicate pred+other. Note that “matching
argument list” does not necessarily mean that other takes its arguments in the
same order as pred, which makes the actual implementation somewhat more
complicated.

It is even possible to match other if that predicate takes one parameter less
than pred, since parameter i does not need to be matched. This is a special
case in which #otheri(p1, . . . , pi−1, pi+1, . . . , pn) can either be 1 or 0, depending
on whether the corresponding fact is true or not, since there is no parameter
pi here. Examples of this situation can be found in the Gripper domain, where
carry ?ball ?gripper can be merged with free ?gripper.

If there are several candidates for other, all of them are checked, maybe
proving balance of different sets of merged predicates. In this case, all of them are
returned by the algorithm. It is of course possible that more than two predicates
are merged in order to satisfy a balance requirement since there can be multiple
levels of recursion. This algorithm checks the i-th parameter of predicate pred.
Executing it for all predicates in our domain and all possible values of i and
collecting the results yields an exhaustive list of balanced merged predicates.

In the case of the Logistics domain, our algorithm exhibits that merging at

and in gives us the predicate at+in which is balanced in the second parameter.
Looking at the initial facts stated in the problem specification, we see that we
can store the locations of trucks, airplanes and packages by using six bits each,
since #(at + in)2 evaluates to one for those objects, and that we do not need to
encode anything else, since the other objects start off with a count of zero.

Note that ⌈log 32⌉ = 5 bits are not sufficient for encoding locations at our
current level of information, since we not only have to store the index of the
object we are referring to, but also which of the two predicates at or in is
actually meant. Thus our encoding size can be reduced to (6 + 6 + 2) · 6 = 84
bits, which is already a reasonable result and sufficient for many purposes.



6 Exploring Predicate Space

However, we can do better. In most cases it is not necessary to allow the full
range of objects for the balanced predicates we have detected, since e.g. a package
can only be at a location or in a vehicle (truck or airplane), but never at another
package, in a location, and so on.

If a fact is present in the initial state or can be instantiated by any valid
sequence of operators, we call it reachable, otherwise it is called unreachable.

Many facts can be proven to be unreachable directly from the operators
themselves, since actions like LOAD-TRUCK require the object the package is put
into to be a truck. However, there are some kinds of unreachable facts we do not
want to miss that cannot be spotted that way.

For example, DRIVE-TRUCK can only move a truck between locations in the
same city, since for a truck to move from a to b, there must be a city c, so
that (in-city a c) and (in-city b c) are true. Belonging to the same city is no
concept that is modeled directly in our Strips definition.

For those reasons, we do not restrict our analysis to the domain specification
and instead take the entire problem specification into account. What we want to
do is an exploration of predicate space, i.e. we try to enumerate all instantiations
of predicates that are reachable by beginning with the initial set of facts and
extending it in a kind of breadth-first search.

Note that we are exploring predicate space, not search space. We do not store
any kind of state information, and only keep track of which facts we consider
reachable. Thus, our algorithm can do one-side errors, i.e. consider a fact reach-
able although it is not, because we do not pay attention to mutual exclusion of
preconditions. If a fact f can be reached by an operator with preconditions g

and h, and we already consider g and h reachable, then f is considered reach-
able, although it might be the case that g and h can never be instantiated at
the same time. This is a price we have to pay and are willing to pay for reasons
of efficiency. Anyway, if we were able to decide reliably if a given combination
of facts could be instantiated at the same time, there would hardly remain any
planning problem to be solved. We tested two different algorithms for exploring
predicate space, Action-Based Exploration and Fact-Based Exploration.

6.1 Action-Based Exploration

In the action-centered approach, the set of reachable facts is initialized with
the facts denoted by the initial state. We then instantiate all operators whose
preconditions can be satisfied by only using facts that we have marked as reach-
able, marking new facts as reachable according to the add effect lists of the
instantiated operators. We then again instantiate all operators according to the
extended set of reachable facts. This process is iterated until no further facts are
marked, at which time we know that there are no more reachable facts.

Our implementation of the algorithm is somewhat more tricky than it might
seem, since we do not want to enumerate all possible argument lists for the



operators we are instantiating, which might take far too long for difficult prob-
lems (there are e.g. 847 ≈ 3 · 1013 different possible instantiations for the drink

operator in problem Mprime-14 from the AIPS’98 competition).

To overcome this problem, we apply a backtracking technique, extending
the list of arguments one at a time and immediately checking if there is an
unsatisfied precondition, in which case we do not try to add another argument.
E.g., considering the LOAD-TRUCK operator, it is no use to go on searching for
valid instantiations if the ?obj parameter has been assigned an object o for
which (OBJ o) has not been marked as reachable.

There is a second important optimization to be applied here: Due to the
knowledge we already have accumulated, we know that OBJ is a constant pred-
icate and thus there is no need to dynamically check if a given object satisfies
this predicate. This can be calculated beforehand, as well as other preconditions
referring to constant predicates.

So what we do is to statically constrain the domains of the operator pa-
rameters by using our knowledge about constant and one-way predicates. For
each parameter, we pre-compute which objects possibly could make the corre-
sponding preconditions true. When instantiating operators later, we only pick
parameters from those sets. Note that due to this pre-computation we do not
have to check preconditions concerning constant unary predicates at all during
the actual instantiation phase.

For one-way predicates, we are also able to constrain the domains of the
corresponding parameters, although we cannot be as restrictive as in the case of
constant predicates. E.g., in the Grid example mentioned above, there is no use
in trying to open doors that are already open in the initial state. However, we
cannot make any assumption about doors that are closed initially.

There are two drawbacks of the action-based algorithm. Firstly, the same
instantiations of actions tend to be checked multiple times. If an operator is
being instantiated with a given parameter list, it will be instantiated again in all
further iterations. Secondly, after a few iterations, changes to the set of reachable
facts tend to become smaller and less frequent, but even if only a single fact is
added to the set during an iteration, we have to evaluate all actions again, which
is bad. Small changes should have less drastic consequences.

6.2 Fact-Based Exploration

Therefore we shift the focus of the exploration phase from actions to facts. Our
second algorithm makes use of a queue in which all facts that are scheduled to
be inserted into the set of reachable facts are stored. Initially, this queue consists
of the facts in the initial state, while the set of reachable facts is empty. We then
repeatedly remove the first fact f from the queue, add it to the set of reachable
facts and instantiate all operators whose preconditions are a subset of our set
of reachable facts and include f . Add effects of these operators that are not yet
stored in either the set of reachable facts or the fact queue are added to the
back of the fact queue. This process is iterated until the fact queue is empty.



(5 bits) package6
at city6-1 city5-1 city4-1 city3-1 city2-1 city1-1

city6-2 city5-2 city4-2 city3-2 city2-2 city1-2
in truck6 truck5 truck4 truck3 truck2 truck1 plane2 plane1

...
(5 bits) package1
at city6-1 city5-1 city4-1 city3-1 city2-1 city1-1

city6-2 city5-2 city4-2 city3-2 city2-2 city1-2
in truck6 truck5 truck4 truck3 truck2 truck1 plane2 plane1

(1 bit) truck6
at city6-1 city6-2

...
(1 bit) truck1
at city1-1 city1-2

(3 bits) plane2
at city6-2 city5-2 city4-2 city3-2 city2-2 city1-2

(3 bits) plane2
at city6-2 city5-2 city4-2 city3-2 city2-2 city1-2

Table 1. Encoding the Logistics problem 1-01 with 42 bits.

Although it does not look as if much was gained at first glance, this algorithm
is a big improvement to the first one.

The key difference is that when instantiating actions, only those instantia-
tions need to be checked for which f is one of the preconditions, which means
that we can bind all parameters appearing in that precondition to the corre-
sponding values of f , thus reducing the number of degrees of freedom of the
argument lists. Of course, the backtracking and constraining techniques men-
tioned above apply here as well. The problem of multiple operator instantiations
does not arise. We never instantiate an operator that has been instantiated with
the same parameter list before, since we require f to be one of the preconditions,
and in previous iterations of the loop, f was not regarded a reachable fact.

Returning to our Logistics problem, we now know that a package can only
be at a location, in a truck or in an airplane. An airplane can only be at an
airport, and a truck can only be at a location which must be in the same city as
the location the truck started at.

7 Combining Balancing and Predicate Space Exploration

All we need to do in order to receive the encoding we are aiming at is to combine
the results of the previous two phases. Note that these results are very different:
While predicate space exploration yields information about the facts themselves,
balanced predicates state information about the relationship between different
facts. Both phases are independent of each other, and to minimize our state
encoding, we need to combine the results.

In our example, this is simple. We have but one predicate to encode, the at+in
predicate created in the merge phase. This leads to an encoding of 42 bits (cf.
Table 1), which is the output of our algorithm. However, there are cases in which
it is not obvious how the problem should be encoded. In the Gripper domain
(constant predicates omitted) the merge step returns the balanced predicates



at-robby, carry+free, and at+carry; at-robby is an original operator, while
carry+free and at+carry have been merged.

We do not need to encode each of the merged predicates, since this would
mean encoding carry twice. If we had already encoded carry+free and now
wanted to encode the at+carry predicate for a given object x, with n facts of
the type (at x y) and m facts of the type (carry x y), we would only need
⌈log(n + 1)⌉ bits for storing the information, since we only have to know which
of the at-facts is true, or if there is no such fact. In the latter case, we know that
some fact of the type (carry x y) is involved and can look up which one it is in
the encoding of carry+free. However, encoding at+carry first, thus reducing
the space needed by carry+free is another possibility for encoding states, and is
in fact the better alternative in this case. Since we cannot know which encoding
yields the best results, we try them out systematically.

Although there is no need for using heuristics here since the number of con-
flicting possibilities is generally very small, we want to mention that as a rule
of thumb it is generally a good idea to encode predicates that cover the largest
number of facts first.

Predicates that are neither constant nor appear in any of the balanced merge
predicates are encoded naively, using one bit for each possible fact. Those pred-
icates are rare. In fact, in the considered benchmark set we only encountered
them in the Grid domain, and there only for encoding the locked state of doors
which obviously cannot further be compressed.

8 Experimental Results

In this section we provide data on the achieved compression to the state de-
scriptions of the AIPS’98 planning competition problems. The problem suite
consists of six different Strips domains, namely Movie, Gripper, Logistics, Mys-

tery, Mprime, and Grid. In Table 1 we have exemplarily given the full state
description for the first problem in the Logistics suite. The exhibited knowledge
in the encoding can be easily extracted in form of state invariants, e.g. a package
is either a location in a truck or in an airplane, each truck is restricted to exactly
one city, and airplanes operate on airports only.

Table 2 depicts the state description length of all problems in the competition.
Manually encoding some of the domains and comparing the results we often failed
to devise a smaller state description length by hand.

Almost all of the execution time is spent on exploring predicate space. All
the other phases added together never took more than a second of execution
time. The time spent on exploring predicate space is not necessarily lost. When
symbolically exploring planning space using BDDs, the operators need to be
instantiated anyway for building the transition function, and if we keep track of
all operator instantiations in the exploration phase this process can be sped up
greatly.



Movie Gripper Logistics Mystery Mprime Grid
problem bits sec bits sec bits sec bits sec bits sec bits sec

1-01 6 <1 11 <1 42 <1 28 <1 32 <1
1-02 6 <1 15 <1 56 <1 117 <1 121 <1
1-03 6 <1 19 <1 98 <1 77 <1 89 <1
1-04 6 <1 23 <1 115 <1 50 <1 63 <1
1-05 6 <1 27 <1 35 <1 86 <1 96 <1
1-06 6 <1 31 <1 174 <1 148 <1 179 <1
1-07 6 <1 35 <1 95 <1 82 <1 126 1
1-08 6 <1 39 <1 254 1 90 <1 142 <1
1-09 6 <1 43 <1 184 <1 83 <1 93 <1
1-10 6 <1 47 <1 162 <1 291 <1 315 <1
1-11 6 <1 51 <1 104 1 52 1 61 1
1-12 6 <1 55 <1 195 <1 42 <1 56 <1
1-13 6 <1 59 <1 287 1 291 <1 323 1
1-14 6 <1 63 <1 282 1 320 1 346 1
1-15 6 <1 67 <1 144 <1 184 <1 210 1
1-16 6 <1 71 <1 205 <1 90 <1 120 <1
1-17 6 <1 75 <1 190 <1 188 <1 202 <1
1-18 6 <1 79 <1 270 1 112 1 160 1
1-19 6 <1 83 <1 256 <1 129 <1 163 <1
1-20 6 <1 87 <1 264 2 144 <1 169 2
1-21 6 <1 300 1 205 <1 230 <1
1-22 6 <1 530 3 234 1 283 1
1-23 6 <1 166 <1 157 <1 186 <1
1-24 6 <1 336 <1 229 <1 263 1
1-25 6 <1 343 5 23 <1 26 <1
1-26 6 <1 382 3 67 <1 86 <1
1-27 6 <1 604 4 63 <1 67 <1
1-28 6 <1 818 <1 38 <1 41 <1
1-29 6 <1 566 1 74 <1 86 <1
1-30 6 <1 470 8 109 <1 117 1
2-01 26 <1 120 <1 67 <1
2-02 28 <1 84 <1 83 <1
2-03 39 <1 269 <1 93 <1
2-04 64 <1 129 <1 107 <1
2-05 63 <1 46 <1 139 1

Table 2. Length of state encodings and elapsed time of the AIPS’98 benchmark set.
The data was generated on a Sun Ultra Sparc Station.

9 Related Work and Conclusion

There is some work in the literature dealing with reformulation of planning
problems. However, research mainly concentrates on inferring state invariants
instead of minimizing the state description length.

Fox and Long, for example, have contributed several suggestions that have
been implemented in the planner Stan (for STate ANalysis) [18]. The project
is based on Graphplan [1] and uses a variety of techniques to exhibit domain-
dependent information. In this context the automatic inference of state invariants
is important. The pre-processor Tim (Type Inference Module) explores planning
domains in order to find typings of untyped parameters [9]. The information is
found by an algorithm starting with a projection of actions to their parameters
establishing so-called properties, i.e. predicates together with the argument po-
sition filled by the objects. Given the properties and operators, transition rules
are inferred (e.g. on1 → on1 in Logistics) which constitute a finite state ma-
chine corresponding to the property exchanges. Types are found by exploration
of membership patterns starting with the initial set.



Given the inferred type specification, in an additional analysis step three
major state invariants can be found: identity invariants, membership invariants

and unique state invariants. E.g in Blocks World we have ∀x, y, z on(y, x) ∧
on(z, x) → y = z, ∀x ∃y on(y, x) ∨ clear(x), and ∀x ¬(∃y on(y, x) ∧ clear(x))
Furthermore, Tim has been extended to infer cardinality constraints such as
|{x|at-robot(x)}| = 1 in Gripper. Tim is sound but not complete, i.e., it will
find correct invariants but not all of them. Very recent unpublished work by Fox
and Long focuses Mobile Analysis, which constructs maps of locations that can
be navigated by a mobile through an operator schema that gives the mobility.

The problem of finding state invariants is also addressed by Gerevini and
Schubert [11]. Their planner Discoplan discovers two kinds of invariance rules,
single-valued and implicative constraints. For example we have on(x, y) ∧ y 6=
z ⇒ ¬on(x, z) and on(x, y) ∧ y 6= table ⇒ ¬clear(y) in Blocks World. While
Tim improves explorations in Graphplan, in the case of Discoplan the invariants
improve satisfiability planning such as in Satplan [14]. Satplan itself is closely re-
lated to our approach of symbolically exploring planning space with BDDs, since
both algorithms rely on a specification of the problem with boolean formulae.

The information gathered by Tim and Discoplan can be compared to our
approach of balanced predicates and constraining the domains of predicates,
since the presented algorithms exhibit domain-dependent knowledge leading to
problem invariants as shown in the given example. As highlighted above the
encoding in Logistics apparently gives identity invariants, membership invari-

ants and unique state invariants as well as some single-valued and implicative

constraints. Even cardinality constraints can be extracted from the encodings.

We conjecture that it is possible to extract the same invariants as in Tim
and Discoplan from our encodings and that the knowledge inferred by our algo-
rithm is more detailed, but there is an extraction process required to obtain the
invariants from the encodings and to prove the assertion. On the other hand we
think that the binary encoding length is probably the best performance measure
to compare the inferred knowledge of different precompilers.

Literature reveals that an information gathering phase prior to search takes
time. Through the efficiency of our approaches the time spent on these efforts
is by far shorter than the time needed for constructing the transition function
and the symbolic search phase itself. Automatically inferring problem-dependent
knowledge in planning problems is challenging but an inevitable necessity for
current state space search engines. The paper contributes efficient new algo-
rithms based on symbolical manipulation and search. The promising results of
BDD-based exploration according to the achieved encodings are given in [7]. We
conclude that our approach to automatically infer compressed state descriptions
mainly tailored to symbolic exploration reflects current research and could have
a strong impact on current planning systems.
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