Unsolvability Certificates for Classical Planning

Salomé Eriksson and Gabriele Röger and Malte Helmert
University of Basel, Switzerland
{salome.eriksson,gabriele.roeger,malte.helmert}@unibas.ch

Abstract
The plans that planning systems generate for solvable planning tasks are routinely verified by independent validation tools. For unsolvable planning tasks, no such validation capabilities currently exist. We describe a family of certificates of unsolvability for classical planning tasks that can be efficiently verified and are sufficiently general for a wide range of planning approaches including heuristic search with delete relaxation, critical-path, pattern database and linear merge-and-shrink heuristics, symbolic search with binary decision diagrams, and the Trapper algorithm for detecting dead ends. We also augmented a classical planning system with the ability to emit certificates of unsolvability and implemented a planner-independent certificate validation tool. Experiments show that the overhead for producing such certificates is tolerable and that their validation is practically feasible.

Introduction
The aim of classical planning is to find a plan for a given planning task or to prove that the task is unsolvable. While more emphasis has traditionally been placed on finding plans, the problem of proving unsolvability of planning tasks has recently attracted much interest (e.g., Bäckström, Jonsson, and Ståhlberg 2013; Hoffmann, Kissmann, and Torralba 2014; Lipovetzky, Muise, and Geffner 2016).

The more intelligent problem-solving algorithms become part of our everyday lives, the more important it is that we can trust their computations. When a planning system claims to have found a plan for a planning task or claims that it is unsolvable, this claim can be wrong due to software bugs, hardware faults or even malicious reasons. It is thus prudent to perform an independent verification of such claims. For solvable planning tasks, validation tools such as VAL (Howey and Long 2003) and INVAL\(^1\) are commonly used for this purpose.

For unsolvable planning tasks, no such validation capabilities currently exist. For example, the recently held first International Planning Competition for proving unsolvability (Unsolvability IPC) included a rule to disqualify planning systems from a particular planning domain when it falsely reports a planning task as unsolvable to discourage the participating planning systems from “guessing”.

Verifying the correctness of the output of an algorithm is a need that arises in many areas of computer science. A certifying algorithm (McConnell et al. 2011) produces, along with its regular output, a certificate (or witness) that proves the correctness of the output. The validity of a certificate can be checked by a verifier. To be practically useful, certificates should satisfy four criteria:

- **completeness**: There should be a certificate for every unsolvable planning task.
- **efficient generation**: Transforming a non-certifying algorithm into a certifying one should be possible with reasonable (polynomial, ideally linear) overhead.
- **efficient verification**: Verifying the correctness of a certificate should be possible with reasonable effort (e.g., polynomial in the size of the certificate).
- **generality**: A single class of certificates (and hence verifier) should be useful for a wide range of algorithms.

For example, for the unsatisfiability problem of propositional logic formulas in conjunctive normal form (UNSAT), resolution proofs are a form of certificate that can be reasonably efficiently supported by the majority of state-of-the-art UNSAT algorithms (Beame, Kautz, and Sabharwal 2004) and are one of a small number of certificate types permitted in the Certified UNSAT tracks of recent SAT competitions.\(^2\)

In this paper, we introduce a family of certificates that can be used to prove the unsolvability of classical planning tasks. The central notion underlying these certificates are inductive sets of states that separate the initial state of a planning task from its goal states. Using the established approach of representing sets of states over propositional state variables as logical formulas or circuits, we utilize known tractability results for knowledge representation formalisms in propositional logic (e.g., Dowling and Gallier 1984; Darwiche and Marquis 2002) to define classes of unsolvability certificates that can be efficiently verified. We then show that a number of non-certifying planning approaches in the literature based on heuristic or symbolic search can be augmented to produce certificates with polynomial overhead. Finally, we describe a prototype implementation of a

\(^1\)http://users.cecs.anu.edu.au/~patrik/

\(^2\)http://satcompetition.org/
certifying planning algorithm and of a stand-alone verifier for unsolvability certificates and experimentally show that certificate verification, though computationally expensive, is practically feasible.

Planning Tasks

We consider planning tasks in propositional STRIPS representation (Fikes and Nilsson 1971). We do not consider action costs, which do not matter for unsolvable tasks. Planning tasks in SAS+ representation (Bäckström and Nebel 1995) can easily be converted to STRIPS.

A STRIPS planning task is a tuple $Π = \langle V, A, I, G \rangle$, where V is a finite set of (state) variables or atoms, A is a finite set of actions or operators, $I \subseteq V$ is the initial state and $G \subseteq V$ is the goal. We write $|I|$ for the size of the compact description of I.

A state $s \in V$ of $Π$ is defined by the atoms that are true in this state. A state s is a goal state if $G \subseteq s$. We write $S(I) = 2^V$ for the set of states of $Π$ and $S_G(I)$ for the set of goal states of $Π$.

Each operator $o \in A$ is defined by its preconditions $\text{pre}(o) \subseteq V$, add effects $\text{add}(o) \subseteq V$ and delete effects $\text{del}(o) \subseteq V$. It is applicable in state s if $\text{pre}(o) \subseteq s$, and the resulting successor state is $s[\cdot] = (s \setminus \text{del}(o)) \cup \text{add}(o)$.

An s-plan for a state s is a sequence of operators that are successively applicable in s and result in a goal state. An I-plan is also called a plan for $Π$. A state s is unsolvable if no s-plan exists, and $Π$ is unsolvable if no I-plan exists.

Given a state set $S \subseteq S(Π)$ and operator $o \in A$, we write $S[\cdot] = \{ s[\cdot] | s \in S, o \text{ applicable in } s \}$ for the set of all successors of S via operator o, and for operator sets $O \subseteq A$ we write $S[\cdot] = \bigcup_{o \in O} S[\cdot]$ for all successors of S via any operator in O. The successor set is monotonic in S and O, i.e., $S[\cdot] \subseteq S'[\cdot]$ for all $S \subseteq S'$ and $O \subseteq O'$.

Sets of States as Logical Formulas

A critical aspect of the unsolvability certificates we consider is the compact representation of sets of states. Following ideas used in planning as satisfiability (Kautz and Selman 1992) and planning as symbolic search (Edelkamp and Helmert 2001), we use logical formulas to represent sets of states. Specifically, consider a propositional formula $ϕ$ whose propositional variables correspond to the state variables V of a planning task. We say that a state s satisfies $ϕ$ if the interpretation where exactly the variables in s are true satisfies $ϕ$. The set of all such states is denoted by $\text{states}(ϕ)$.

Representing Logical Formulas

More generally, instead of logical formulas we can use any formalism R for representing sets of truth assignments for a set of propositional logic variables V. Examples of such formalisms include the class of formulas over V in conjunctive normal form (CNF) or the set of reduced ordered binary decision diagrams (ROBDDs, in the following BDDs for short) for a given variable order on V (Bryant 1986).

Because variable orders are important for BDDs, we assume that V is totally ordered and write $≺$ for this variable order.

An R-formula $ϕ$ is a particular instance of formalism R, such as a particular CNF formula or a particular BDD. We use $ϕ$ to refer both to the represented formula and its representation and write $∥ϕ∥$ for its representation size. For example, if $ϕ$ is represented as a BDD, $∥ϕ∥$ is the number of BDD nodes. We write $\text{vars}(ϕ)$ for the propositional variables used in formula $ϕ$. In general, $\text{vars}(ϕ)$ may include variables that do not directly correspond to state variables of the planning task, in which case $\text{states}(ϕ)$ is not defined.

Following Darwiche and Marquis (2002), we can view R-formulas as abstract data structures where different formalisms R differ in the operations they support efficiently. For example, testing satisfiability of an R-formula is efficient for BDDs but NP-complete for general CNF. Rather than committing to a specific representation for certificates, we prove results that hold for any formalism R that efficiently supports certain operations on R-formulas. The following list describes the operations used in this paper, some of which are taken from Darwiche and Marquis (2002):

- **MO (model testing)** Given R-formula $ϕ$ and truth assignment I, test if $I \models ϕ$.

- **CO (consistency)** Given R-formula $ϕ$, test if $ϕ$ is satisfiable.

- **CE (clausal entailment)** Given R-formula $ϕ$ and clause $γ$, test if $ϕ \models γ$.

- **SE (sentential entailment)** Given R-formulas $ϕ$ and $ψ$, test if $ϕ \models ψ$.

- **BC (bounded conjunction)** Given R-formulas $ϕ$ and $ψ$, construct an R-formula representing $ϕ ∧ ψ$.

- **C (general conjunction)** Given R-formulas $ϕ_1, \ldots, ϕ_n$, construct an R-formula representing $ϕ_1 ∧ \cdots ∧ ϕ_n$.

- **−C (negation)** Given R-formula $ϕ$, construct an R-formula representing $¬ϕ$.

- **CL (conjunction of literals)** Given a conjunction $ϕ$ of literals, construct an R-formula representing $ϕ$.

- **RN (renaming)** Given R-formula $ϕ$ and an injective variable renaming $r : \text{vars}(ϕ) \to V$, construct an R-formula representing $ϕ[r]$, i.e., $ϕ$ with each variable X replaced by $r(X)$.

- **RN (renaming consistent with order)** Same as RN, but r must be consistent with the variable order in the sense that if $V, V' \in \text{vars}(ϕ)$ with $V \prec V'$, then $r(V) \prec r(V')$.

- **BI (bimplication pairs)** Given a disjoint set S of pairs of propositional variables, construct an R-formula representing $\bigwedge_{(v, v') \in S} (v \leftrightarrow v')$.

- **BI (bimplication pairs consistent with order)** Same as BI, but S must be consistent with $≺$ in the sense that if $(V, V') \in S$ with $V \prec V'$, then no other pair in S may contain a variable V'' with $V \prec V'' \prec V'$.

We say that a formalism R efficiently supports one of these operations if the operation can be performed in polynomial time in the representation size of the inputs. Our main focus is on three formalisms: Horn formulas (CNF formulas...
with at most one positive literal per clause), 2-CNF formulas (CNF formulas with at most two literals per clause, also called Krom formulas), and BDDs.

BDDs are very common for representing sets of states, e.g., in symbolic search. Horn formulas and 2-CNF formulas are interesting due to their role as maximal tractable classes in Schaefer’s dichotomy (1978) for Boolean constraint satisfaction, and we will later see certificates that can be compactly represented in these formalisms but not as BDDs.

Horn and 2-CNF formulas efficiently support all listed operations except ¬C. BDDs efficiently support all listed operations except ∧C, RN and BL. In particular they do efficiently support ∧BC, RN<> and BL<, the weaker forms of the three unsupported operations.

Inductive Certificates

We are now ready to define unsolvability certificates for planning. The key concept is the notion of inductive sets, i.e., sets of states that are closed under operator application.

Definition 1 (inductive set). A set \(S \subseteq S(\Pi) \) of states of a STRIPS planning task \(\Pi = (V, A, I, G) \) is inductive in \(\Pi \) if \(S[A] \subseteq S \), i.e., all operator applications in a state in \(S \) lead to a state in \(S \).

The key property of inductive sets is that they are impossible to leave: once a state inside \(S \) is reached, all further operator applications stay within \(S \). For this reason, Lipovetzky et al. (2016) call formulas that describe inductive sets traps.

If an inductive set contains no goal state, then there is no inductive certificate for state \(s \), an inductive certificate for a state \(s \) is given by a set \(S \subseteq S(\Pi) \) of states such that

1. \(s \in S \),
2. \(S \cap S_C(\Pi) = \emptyset \), and
3. \(S \) is inductive in \(\Pi \).

An inductive certificate for the initial state \(I \) is also called an inductive certificate for \(\Pi \).

For now, we focus on the mathematical properties of inductive certificates, leaving the question of how to compactly represent and efficiently verify them for the next section. It is easy to see that an inductive certificate for a state exists iff there is no solution from that state.

Proposition 1 (soundness and completeness). Let \(\Pi = (V, A, I, G) \) be a STRIPS planning task. There is an inductive certificate for state \(s \in S(\Pi) \) iff \(s \) is unsolvable. There is an inductive certificate for \(\Pi \) iff \(\Pi \) is unsolvable.

To see that inductive certificates always exist for unsolvable states \(s \), observe that the set of states reachable from \(s \) satisfies properties 1–3 of Definition 2 if \(s \) is unsolvable. To see that no inductive certificate exists if \(s \) is solvable, note that an inductive set \(S \) for \(s \) must include \(s \) (by property 1) and hence all states reachable from \(s \) (by property 3). Hence, if there is an \(s \)-plan, \(S \) must violate property 2.

Before we move on to more complex certificates, we observe a structural property of inductive certificates.

Theorem 1. Inductive certificates are closed under union and intersection.

Proof. Let \(S \) and \(S' \) be certificates for state \(s \). From \(s \in S \) and \(s \in S' \) we get \(s \in S \cup S' \) and \(s \in S \cap S' \) (property 1).

As there is no goal state in \(S \) or in \(S' \), there is no goal state in \(S \cup S' \) or \(S \cap S' \) (property 2).

For the inductivity of the union, consider a state \(s' \in S \cup S' \) and assume w.l.o.g. that \(s' \in S \). We conclude from the inductivity of \(S \) that \(S[A] \subseteq S \subseteq S \cup S' \). For the inductivity of the intersection, consider \(s' \in S \cap S' \) and \(o \in A \) such that \(o \) is applicable in \(s' \). Since \(s' \in (S \cap S') \subseteq S \) and \(S \) is inductive, we have \(s'[o] \in S \). With the same argument, we have \(s'[o] \in S' \) and hence \(s'[o] \in S \cap S' \).

Inductive certificates are general in the sense that they can be generated for every unsolvable state. However, actually constructing and verifying an inductive certificate as a single monolithic set can be computationally challenging. We therefore introduce two “factored” representations of inductive certificates, which will be useful for efficient certificate generation and verification.

Definition 3 (disjunctive/conjunctive certificate). A family \(\mathcal{F} \subseteq 2^{S(\Pi)} \) of states of task text is called a disjunctive certificate for state \(s \) of \(\Pi \) if \(\bigcup_{S' \in \mathcal{F}} S' \) is an inductive certificate for \(s \). It is called a conjunctive certificate for \(s \) if \(\bigcap_{S' \in \mathcal{F}} S' \) is an inductive certificate for \(s \).

Disjunctive and conjunctive certificates allow combining different sources of information without having to explicitly compute the union/intersection of the component sets. However, verifying the conditions for inductive certificates in general requires considering the full union/intersection, negating this advantage. For this reason, we now introduce a more restrictive form of disjunctive and conjunctive certificates which allows verifying the certificate properties in a factored way.

These certificates are parameterized by a number \(r \) which determines how many component sets must be considered at the same time. We will later show that with suitable representations, such certificates can be verified in polynomial time for any fixed \(r \).

Definition 4 (r-disjunctive certificate). For \(r \in \mathbb{N}_0 \), a family \(\mathcal{F} \subseteq 2^{S(\Pi)} \) of states of task text is called an \(r \)-disjunctive certificate for state \(s \) if:

1. \(s \in S' \) for some \(S' \in \mathcal{F} \),
2. \(S' \cap S_C(\Pi) = \emptyset \) for all \(S' \in \mathcal{F} \), and
3. for all \(S' \in \mathcal{F} \) and all \(o \in A \), there is a subfamily \(\mathcal{F}' \subseteq \mathcal{F} \) with \(|\mathcal{F}'| \leq r \) such that \(S'[o] \subseteq \bigcup_{S'' \in \mathcal{F}'} S'' \).

We call the third property of the definition disjunctive \(r \)-inductivity. Essentially, it means that to verify the inductivity property for a component set, only \(r \) subsets need to be considered at the same time. We now show that this is a sufficient condition for inductivity.

Theorem 2. All \(r \)-disjunctive certificates for a state \(s \) are disjunctive certificates for \(s \).
Proof. Let \(F \) be an \(r \)-disjunctive certificate for \(s \), and let \(S = \bigcup_{s' \in F} S' \). We show that each of the three properties of Def. 4 (for \(F \)) implies the corresponding property of Def. 2 (for \(S \)). Properties 1 and 2 of the two definitions are equivalent by simple set arithmetic.

For property 3, consider any state \(s' \in S \) and any operator \(o \) applicable in \(s' \). Because \(S = \bigcup_{s' \in F} S' \), there exists a set \(S'' \subseteq F \) with \(s'' \subseteq S'' \). From Def. 4, there must be a subfamily \(F' \subseteq F \) such that \(s'[o] \in S'[o] \subseteq \bigcup_{s'' \in F'} S'' \subseteq \bigcup_{s' \in F} S' = S \), and hence \(S \) is inductive. \(\square \)

We can use the same idea to define \(r \)-conjunctive certificates as a variant of conjunctive certificates that allows factored verification. Here, the bound \(r \) is also applied to restrict the complexity of verifying that the inductive set contains no goal states.

Definition 5 (\(r \)-conjunctive certificate). For \(r \in \mathbb{N}_0 \), a family \(\mathcal{F} \subseteq 2^{S(\Pi)} \) of state sets of task \(\Pi = (V, A, I, G) \) is called an \(r \)-conjunctive certificate for state \(s \) if:

1. \(s \in S' \) for all \(s' \in F \).
2. There is a subfamily \(F' \subseteq F \) with \(|F'| \leq r \) such that \(\bigcap_{s' \in F'} S'[o] \subseteq \bigcap_{s'' \in F} S'' = S \).
3. For all \(s' \in F \) and all \(o \in A \), there is a subfamily \(F' \subseteq F \) with \(|F'| \leq r \) such that \(\bigcap_{s'' \in F'} S'[o] \subseteq S'' \).

We call the third property of this definition conjunctive \(r \)-inductively. As in the disjunctive case, we can show that \(r \)-conjunctive certificates are conjunctive inductive certificates.

Theorem 3. All \(r \)-conjunctive certificates for a state \(s \) are conjunctive certificates for \(s \).

Proof. Let \(F \) be an \(r \)-conjunctive certificate for \(s \), and let \(S = \bigcup_{s' \in F} S' \) implies that each of the three properties of Def. 5 (for \(F \)) implies the corresponding property of Def. 2 (for \(S \)). Properties 1 are equivalent, and it is easy to verify that property 2 of Def. 5 implies property 2 of Def. 2.

For property 3, consider any state \(s' \in S \), any set \(S' \subseteq F \) and any operator \(o \) applicable in \(s' \). Because \(S = \bigcup_{s' \in F} S' \), \(s' \) is contained in all sets of the form \(\bigcap_{s'' \in F'} S'' \) with \(F' \subseteq F \). From Def. 5, there is a subfamily \(F' \subseteq F \) with \(s'[o] \in \bigcap_{s'' \in F'} S''[o] \subseteq S'' \). Therefore, \(s'[o] \) is contained in all sets \(S' \subseteq F \) and hence also in their intersection, \(S \). \(\square \)

Efficient Certificate Verification

An inductive certificate for a state \(s \) is always an over-approximation of all states reachable from \(s \). Since the number of reachable states can be huge, we require compact representations of such certificates. In the following, we identify representations that permit polynomial verification of the certificates. For this purpose, we make the representation formalism \(R \) explicit.

Definition 6 (inductive \(R \)-certificate). Let \(\Pi = (V, A, I, G) \) be a STRIPS planning task. An inductive \(R \)-certificate for state \(s \in S(\Pi) \) is an \(R \)-formula \(\varphi \) with \(\text{vars}(\varphi) \subseteq V \) such that \(\text{states}(\varphi) \) is an inductive certificate for \(s \).

For the composite certificates, the \(R \)-representation represents each component as an \(R \)-formula.

Definition 7 (composite \(R \)-certificates). Let \(\Pi = (V, A, I, G) \) be a STRIPS planning task. A disjunctive-conjunctive/r-disjunctive/r-conjunctive \(R \)-certificate for state \(s \in S(\Pi) \) is a set \(\Phi \) of \(R \)-formulas with \(\text{vars}(\varphi) \subseteq V \) for all \(\varphi \in \Phi \) such that \(\{\text{states}(\varphi) \mid \varphi \in \Phi\} \) is a disjunctive/conjunctive/r-disjunctive/r-conjunctive certificate for \(s \).

The following theorems establish a set of requirements on the representation formalism that allow \(R \)-certificates to be verified efficiently.

Theorem 4. Inductive \(R \)-certificates \(\varphi \) for state \(s \) of task \(\Pi \) can be verified in polynomial time in \(\|\varphi\| \) and \(\|\Pi\| \) if \(R \) efficiently supports \(MO, CE, SE, \land BC, CL, \lor BC, \land \lor BC, \lor CL, \land RO, \land BL, \land \lor BL \).

Proof. To verify that \(\varphi \) is an inductive \(R \)-certificate for state \(s \) of task \(\Pi = (V, A, I, G) \), we must verify that it satisfies the three requirements of Def. 2, where \(S = \text{states}(\varphi) \).

Requirement 1 (\(s \in \text{states}(\varphi) \)) can be verified using \(MO \) by testing \(I \models \varphi \) with the truth assignment \(I \) defined as \(I(v) = T \) for \(v \in s \) and \(I(v) = F \) otherwise.

Requirement 2 (\(\text{states}(\varphi) \cap S_G(\Pi) = \emptyset \)) can be verified as \(\varphi \models \bigvee_{v \in G} v \) using \(CE \).

For requirement 3 (\(\text{states}(\varphi) \) is inductive in \(\Pi \)), we can verify for each operator \(o \in A \) individually that \(\text{states}(\varphi)[o] \subseteq \text{states}(\varphi) \). For this purpose we need a fresh auxiliary propositional variable \(v' \in V \) for every state variable \(v \in V \). We write \(V' \) for these new (“primed”) variables. The original (“unprimed”) variables \(V \) are used to describe a state in which \(o \) is applied, and the primed variables \(V' \) describe the successor state. We ensure that each primed variable is adjacent to its unprimed variable in the variable order: if \(v_1 < \cdots < v_n \) is the order on \(V \), then \(v_1 \prec v'_1 < \cdots < v'_n < v_n \) is the order on \(V \cup V' \).

We then proceed as follows:

1. Build the transition \(R \)-formula \(\tau_o \) over \(V \cup V' \) that represents \(\bigwedge_{v \in \text{pre}(o)} v \land \bigwedge_{v \in \text{add}(o)} v' \land \bigwedge_{v \in \text{del}(o)} v' \land \bigwedge_{v \in \text{del}(o)} (v \iff v') \). This can be done in polynomial time using \(CL, BL \) and \(\land \lor BC \). This \(R \)-formula represents all state pairs \((s, s') \) with \(s' = s[o] \).

2. Build the \(R \)-formula \(\varphi \land \tau_o \). This can be done in polynomial time using \(\land \lor BC \). This \(R \)-formula represents all pairs \((s, s') \) with \(s' = s[o] \) and \(s \in \text{states}(\varphi) \).

3. Test if \(\varphi \land \tau_o = \models [V \iff V'] \), where \(\varphi[V \iff V'] \) is \(\varphi \) with each unprimed variable renamed to the corresponding primed variable. This can be done in polynomial time using \(\land \lor RO \) and \(SE \). The test succeeds iff \(s' \in \text{states}(\varphi) \) for all states \(s' \) with \(s' = s[o] \) and \(s \in \text{states}(\varphi) \). In other words, it succeeds iff \(\varphi \) satisfies the inductivity property for operator \(o \).

In summary, all tests can be performed in polynomial time and succeed iff \(\varphi \) is an inductive \(R \)-certificate. \(\square \)

We remark that BDDs, Horn formulas and 2-CNF formulas satisfy all requirements of the theorem and are hence all suitable representations for inductive \(R \)-certificates.
An analogous result using the same requirements on R can be proved for r-conjunctive R-certificates. The representation size of a composite certificate Φ is defined as $||\Phi|| = \sum_{\varphi \in \Phi} ||\varphi||$.

Theorem 5. For fixed r, r-conjunctive R-certificates Φ for state s of task Π can be verified in polynomial time in $||\Phi||$ and $||\Pi||$ if R efficiently supports MO, CL, SE, $\wedge BC$, $\wedge \neg C$, $\neg C$, $\neg B\neg C$, and $\neg BI$.

Proof. Let Φ be an r-conjunctive R-certificate for state s of task $\Pi = \langle V, A, I, G \rangle$. We must verify the three requirements of Definition 5.

For requirement 1 (initial state), we must verify that $s \in states(\varphi')$ for all $\varphi' \in \Phi$. This can be done in polynomial time using MO, iterating over all $\varphi' \in \Phi$.

For requirement 2 (non-inclusion of goal states), we must test if there exists some $\Phi' \subseteq \Phi$ with $||\Phi'|| \leq r$ such that $\bigwedge_{\varphi' \in \Phi'} \varphi' \models \forall v \in \mathcal{G} \neg \varphi$. While building $\bigwedge_{\varphi' \in \Phi'} \varphi'$ can be exponential in r, for fixed r the runtime is polynomial using $\wedge BC$ and SE. The number of candidate subsets Φ' is $O(||\Phi||)$.

For requirement 3 (conjunctive r-inductivity), we must verify for all $\varphi' \in \Phi$ and all A that there exists some $\Phi' \subseteq \Phi$ with $||\Phi'|| \leq r$ s.t. $\bigwedge_{\varphi' \in \Phi'} \varphi' \models \forall \sigma \in \mathcal{G} [states(\varphi'') \cap A \subseteq states(\varphi')]$. We test this separately for each φ', o, and Φ', amounting to a polynomial number of tests.

Each test can be performed on R-formulas as $(\bigwedge_{\varphi' \in \Phi'} \varphi'') \wedge \tau_o \models \varphi'[V \rightarrow V']$, where the transition R-formula τ_o is computed in polynomial time using CL, $\neg BI$, and $\wedge BC$ as in Theorem 4, and the conjunctions, renaming and entailment test can be performed in polynomial time using $\wedge BC$, $\neg B\neg C$, and SE. □

The same proof idea can be used for conjunctive certificates (without the parameter r) if R efficiently supports unbounded conjunction ($\wedge C$). However, in this case conjunctive certificates are not actually necessary because they can be efficiently converted to (monolithic) inductive R-certificates. We remark that Horn and 2-CNF formulas efficiently support unbounded conjunction, but BDDs do not.

To complete our results on efficient certificate verification, we now consider (r-) disjunctive certificates. In this case, the requirements on R are slightly different, requiring $\neg C$ and CO instead of SE.

Theorem 6. For fixed r, r-disjunctive R-certificates Φ for state s of task Π can be verified in polynomial time in $||\Phi||$ and $||\Pi||$ if R efficiently supports MO, CO, CL, $\wedge BC$, $\neg C$, $\neg B\neg C$, and $\neg BI$.

Proof. Let Φ be an r-disjunctive R-certificate for state s of task $\Pi = \langle V, A, I, G \rangle$. We must verify the three requirements of Definition 4.

For requirement 1 (initial state), we must verify that $s \in states(\varphi')$ for some $\varphi' \in \Phi$. This can be done in polynomial time using MO, iterating over all $\varphi' \in \Phi$.

For requirement 2 (non-inclusion of goal states), we must verify that $states(\varphi') \cap S_C(\Pi) = \emptyset$ for all $\varphi' \in \Phi$. Each test can be performed in polynomial time using CE, as in Theorem 4.

For requirement 3 (disjunctive r-inductivity), we test $\text{states}(\varphi'[o] \subseteq \bigcup_{\varphi'' \in \Phi} \text{states}(\varphi''))$ for all $\varphi' \in \Phi$, $o \in A$ and $\varphi' \subseteq \Phi$ with $||\varphi'|| \leq r$ and combine the results appropriately. This is a polynomial number of tests.

Each test can be performed following the same ideas as in Theorem 4. We first construct τ_o (using CL, $\neg BI$, and $\wedge BC$) and then test $\varphi' \wedge \tau_o \models (\bigvee_{\varphi'' \in \Phi} \varphi'')[V \rightarrow V']$. This is equivalent to testing if $\varphi' \wedge \tau_o \wedge (\bigwedge_{\varphi'' \in \Phi} \neg \varphi'')[V \rightarrow V']$ is unsatisfiable, which can be done in polynomial time using $\wedge BC$, $\neg C$, RN, and CO. □

Similar to the conjunctive case, the result can be generalized to general disjunctive certificates (with no bound on r) by requiring $\wedge C$ instead of $\wedge BC$, but this is somewhat pointless because in this case $\wedge C$ and $\neg C$ can be used to efficiently perform unbounded disjunction (using De Morgan’s laws) and hence convert the disjunctive certificate into a monolithic inductive certificate.

While BDDs satisfy all requirements of Theorem 6, Horn formulas and 2-CNF formulas do not, as they lack support for $\neg C$. However, for the special case of $r = 1$, which the following section shows to be relevant for heuristic search and the Trapper algorithm, we can use SE instead of $\neg C$.

Theorem 7. 1-disjunctive R-certificates Φ for state s of task Π can be verified in polynomial time in $||\Phi||$ and $||\Pi||$ if R efficiently supports MO, CO, CL, SE, $\wedge BC$, $\neg C$, $\neg B\neg C$, and $\neg BI$.

Proof. The proof is identical to the one for Theorem 6 except that the test $\varphi' \wedge \tau_o \models (\bigvee_{\varphi'' \in \Phi} \varphi'')[V \rightarrow V']$ is handled differently. For 1-disjunctive certificates we have $||\varphi'|| \leq 1$, and hence the disjunction is either empty or a singleton. If $\Phi' = \emptyset$, we can use CO to test whether $\varphi' \wedge \tau_o$ is unsatisfiable (\models entails the empty disjunction, and if $\Phi' = \{\varphi''\}$, we can use SE to test whether $\varphi' \wedge \tau_o = \varphi''[V \rightarrow V']$. □

We conclude this section by summarizing the results for the three main representation formalisms we consider:

- Inductive certificates can be verified efficiently when represented as BDDs, Horn formulas or 2-CNF formulas.
- r-conjunctive certificates can be verified efficiently when represented as BDDs, Horn formulas or 2-CNF formulas. Horn formulas and 2-CNF formulas also support efficient verification of unrestricted conjunctive certificates.
- r-disjunctive certificates can be verified efficiently when represented as BDDs, and in the case $r = 1$ also when represented as Horn formulas or 2-CNF formulas.

Certifying Planning Algorithms

To demonstrate the practical utility of the family of unsolvability certificates we introduced, we now show how a range of common planning algorithms can be converted into certifying algorithms. Unless noted otherwise, the overhead for producing a certificate is bounded by a multiplicative constant and hence does not change the big-O complexity of the algorithm.
Blind Search (Explicit and Symbolic)

Arguably the simplest planning algorithm is blind forward search. To prove a task unsolvable, an explicit-state search must explore all states \(S_{\text{each}} \) reachable from the initial state and show that they include no goal state. The set \(S_{\text{each}} \) can be efficiently converted into a BDD,\(^3\) yielding an inductive BDD certificate.

Symbolic blind search algorithms are among the strongest current planning algorithms (e.g., Torralba 2015). A symbolic progression search proving unsolvability produces a BDD for the closed set that, upon termination, contains all reachable states and is an inductive BDD certificate.

Similarly, a symbolic regression search proving unsolvability computes a BDD representing all states from which a goal state can be reached and shows that it does not include the initial state. The BDD for the complement set, which can be efficiently computed, is an inductive BDD certificate.

A symbolic bidirectional search proving unsolvability terminates either when it has proved that the goal is unreachable in the forward direction or that the initial state is unreachable in the backward direction. In the first case, it can use the same certificate as a forward search, and in the second case the same certificate as a backward search.

Infinite Heuristic Estimates

Distance heuristics \(h \) are useful for proving a task unsolvable if \(h(s) = \infty \), i.e., if they can show that there is no solution from a given state \(s \). We only consider heuristics that are safe, i.e., that only assign infinite values to unsolvable states.

In the following, we show how to compute certificates for states \(s \) with \(h(s) = \infty \) for a range of common heuristics for classical planning.

Merge-and-Shrink and PDB Heuristics

For every consistent heuristic, the set of states with \(h(s) = \infty \) is an inductive set, and for every admissible heuristic, this set contains no goal state. The cascading tables representation of a merge-and-shrink (M&S) heuristic (Helmert, Haslum, and Hoffmann 2007; Helmert et al. 2014) with a linear merge strategy can be transformed into an algebraic decision diagram (Bahar et al. 1993) representing the same function in linear time (Torralba 2015). From this decision diagram, a BDD for all states with infinite heuristic estimate can be extracted in linear time. For “pure” M&S heuristics as described in the literature, this results in an inductive BDD certificate for all states pruned by the heuristic.\(^4\)

\(^3\)We can construct a binary decision tree for the set of states in polynomial time as follows: convert the set into a trie by treating each state as a string. Then mark the labels of the trie with 1 and add a leaf labeled with 0 to each unary node as the second child. Applying the standard Shannon and isomorphism reductions to this decision diagram yields a BDD.

\(^4\)Practical implementations of M&S heuristics often deviate from theory by assigning \(h(s) = \infty \) to states that are known to be unreachable from the initial state, even though the goal might be reachable from \(s \). Such M&S heuristics are inadmissible, but still usable for optimal search. They require more advanced techniques for generating certificates.

While the limitation to linear merge strategies is a restriction in general, the existing work on tailoring M&S to proving unsolvability (Hoffmann, Kissmann, and Torralba 2014) only uses linear merge strategies.

The M&S result directly carries over to pattern database heuristics (Edelkamp 2001), which are a special case of M&S with linear merge strategies.

Delete Relaxation

Delete relaxation heuristics like \(h^+ \), \(h_{\text{max}} \), \(h_{\text{add}} \), \(h_{\text{FF}} \) and \(h_{\text{LM-Cut}} \) (e.g., Bonet and Geffner 2001; Hoffmann and Nebel 2001) all assign an infinite heuristic value to the same set of states, so it suffices to discuss one of them. Helmert and Domshlak (2009) describe a compilation from \(h_{\text{max}} \) to linear M&S heuristics which implies that the result for M&S carries over to \(h_{\text{max}} \): if \(h_{\text{max}}(s) = \infty \), there exists an inductive BDD certificate for \(s \). However, as the compilation is state-dependent, different states may require different certificates.

By following their construction, we can see that the full expressive power of BDDs is not needed for delete relaxation heuristics. For a given state \(s \), let \(R^+_{\text{unreach}}(s) \) denote the set of atoms that are not reachable from \(s \) in the delete relaxation. \(R^+_{\text{unreach}}(s) \) can be computed in \(O(\|\Pi\|) \). It is easy to see that \(h_{\text{max}}(s) = \infty \) iff \(R^+_{\text{unreach}}(s) \) contains a goal atom and that the formula \(\bigwedge_{v \in R^+_{\text{unreach}}(s)} \neg v \) describes an inductive certificate for \(s \) in this case. This formula can be compactly represented as a BDD with an arbitrary variable order, as a Horn formula, or as a 2-CNF formula.

Critical Path Heuristics

For critical path heuristics, we show how to efficiently compute unsolvability certificates for the \(h_m \) heuristic family (Haslum and Geffner 2000). We conjecture that similar results can be shown for generalizations of \(h_m \) based on the \(\Pi^m \) compilation (Keyder, Hoffmann, and Haslum 2014).

We base the treatment of \(h_m \) on the \(\Pi^m \) compilation (Haslum 2009). For a given task \(\Pi \) and natural number \(m > 0 \), \(\Pi^m \) is a delete-free planning task with \(h_{\Pi^m}(s) = h_{\text{max}}(s) \) for all states \(s \), where \(s^m \) is a state in \(\Pi^m \) that corresponds to state \(s \) in \(\Pi \). (Subscripts denote in which task a heuristic is evaluated.) In particular, the correspondence between \(h_{\Pi^m} \) and \(h_{\text{max}} \) implies that \(h^m(s) = \infty \) iff \(s^m \) is unsolvable in the delete-free task \(\Pi^m \).

The key idea of the \(\Pi^m \) compilation is to explicitly represent conjunctions \(c = \{v_1, \ldots, v_k\} \subseteq V \) of up to \(m \) atoms by new atoms \(\pi_c \) such that whenever \(\pi_c \) is unreachable in \(\Pi^m \), the conjunction \(v_1 \land \cdots \land v_k \) is unreachable in \(\Pi \). Let \(\Pi^m_{\text{unreach}} \) denote the set of unreachable atoms in \(\Pi^m \). (Computing this set is a side effect of computing \(h_m \).) Using the result for delete relaxation above, it follows that the formula \(\phi = \bigwedge_{\{v_1, \ldots, v_k\} \subseteq V} \neg (v_1 \lor \cdots \lor \neg v_k) \) describes an inductive certificate for \(s \) when \(h^m(s) = \infty \).

We can write \(\phi \) in clause form as \(\bigwedge_{\{v_1, \ldots, v_k\} \subseteq V} \neg (v_1 \lor \cdots \lor \neg v_k) \), which shows that inductive Horn formula certificates for states with \(h^m(s) = \infty \) can be efficiently generated. In the common case \(m \leq 2 \), \(\phi \) is also a 2-CNF formula.

However, even in the limited case of \(m = 2 \), \(\phi \) is in general not compactly representable as a BDD (cf. Edelkamp
so this result does not directly result in efficiently computable inductive BDD certificates for \(h^m \).

However, if we consider each clause of \(\varphi \) as a separate formula, every individual clause can be efficiently converted into a BDD, and hence this collection of BDDs forms a conjunctive BDD certificate for \(s \). Moreover, it can be shown that this certificate is actually 1-conjunctive and hence can be efficiently verified.\(^5\)

\textbf{Landmarks} \hspace{1em} The landmark heuristics described in the literature can all be understood as landmarks of the delete relaxation or of the \(\Pi^m \) compilation (e.g., Keyder, Richter, and Helmert 2010; Bonet and Helmert 2010; Bonet and Castillo 2011), and hence states with infinite landmark heuristic estimates are covered by the previous results.

\textbf{Heuristic Forward State-Space Search}

Many classical planning systems employ heuristic search algorithms such as \(A^* \), IDA* or greedy best-first search searching forward in the state space of the planning task. In the context of proving unsolvability, heuristics are useful for proving individual states unsolvable.

An unsolvability certificate for a heuristic search algorithm must establish that none of the states expanded by such a search algorithm are goal states and that all their successors have been expanded or proven unsolvable by a heuristic.

In this case, a 1-disjunctive certificate for the overall algorithm can be efficiently computed if we can compute inductive certificates for each state shown unsolvable by a heuristic.

\textbf{Theorem 8.} Let \(\Pi = (V,A,I,G) \) be a STRIPS planning task, let \(S_{\infty} \subseteq S(\Pi) \) be a set of unsolvable states, and let \(F_\infty \) be a family of inductive certificates such that \(S_{\infty} \subseteq \bigcup_{s \in F_\infty} S_s \). (In other words, each state in \(S_{\infty} \) is included in some inductive certificate in \(F_\infty \).)

Moreover, let \(S_{\exp} \subseteq S(\Pi) \) be a set of states such that \(I \in S_{\exp} \cup S_{\infty} \), \(S_{\exp} \) contains no goal state, and \(S_{\exp}[A] \subseteq S_{\exp} \cup S_{\infty} \). Then \(F = \{ \{ s \} | s \in S_{\exp} \} \cup F_\infty \) is a 1-disjunctive certificate for \(\Pi \).

\textbf{Proof.} We check the three requirements for 1-disjunctive certificates in Def. 4. Property 1 (inclusion of the initial state) is trivial. Property 2 (non-inclusion of goal states) holds because \(S_{\exp} \) contains no goal states and all \(S' \in F_\infty \) are inductive certificates and therefore do not contain any goal states either. It remains to check property 3 (disjoint 1-inductivity) for all component certificates \(S' \in F \) and all operators \(o \in A \).

\textbf{Case 1:} \(S' = \{ s \} \) for some \(s \in S_{\exp} \). Then \(S'[o] \) is either empty (if \(o \) is inapplicable in \(s \)) and the condition holds

\textbf{Case 2:} \(S' \in F_\infty \). Then we can set \(F' = \{ S' \} \) in Def. 4 because \(S' \) is an inductive certificate. \hfill \Box

To generate a 1-disjunctive \(R \)-certificate for a heuristic forward search algorithm, we apply the theorem with \(S_{\exp} \) as the set of expanded states and \(S_{\infty} \) as the set of states pruned due to infinite heuristic estimates. We need inductive \(R \)-certificates for the states in \(S_{\infty} \) as components. To generate the component certificates for singleton state sets, it suffices that \(R \) efficiently support \(CL \), which all representation formalisms we consider do.

\textbf{Trapper}

The \textit{Trapper} algorithm (Lipovetzky, Muise, and Geffner 2016) computes a formula \(\varphi_{\text{trap}} \) such that all states satisfying \(\varphi_{\text{trap}} \) only have states satisfying \(\varphi_{\text{trap}} \) as successors and all goal states satisfying \(\varphi_{\text{trap}} \) violate a mutex, where mutexes are computed with the \(h^2 \) algorithm. Lipovetzky et al. (2016) show that all states satisfying \(\varphi_{\text{trap}} \) that can be reached by a forward search algorithm are unsolvable.

By itself, \(\text{states}(\varphi_{\text{trap}}) \) is an inductive set but not an inductive certificate because it may include goal states. Hence, it is not possible to use \(\text{states}(\varphi_{\text{trap}}) \) as an unsolvability certificate on its own. This makes sense because the soundness of the algorithm relies on the soundness of the mutexes used, and hence a certifying algorithm must certify the soundness of the mutexes as well.

For a planning task \(\Pi = (V,A,I,G) \), let \(M \subseteq 2^V \) be the set of unordered pairs determined as mutually exclusive by the \(h^2 \) algorithm, i.e., \(\{ v_1, v_2 \} \in M \) iff \(h^2(\{ v_1, v_2 \}) = \infty \). Then the \textit{consistent} states of \(\Pi \) given \(M \) (the states not violating a mutex in \(M \)) can be described by the formula \(\varphi_{\text{cons}} = \bigwedge_{\{ v_1,v_2 \} \in M} (\neg v_1 \lor \neg v_2) \). It is easy to see that \(\varphi_{\text{cons}} \) describes an inductive set, i.e., all successors of consistent states are consistent.

Let \(\varphi_{\text{prune}} = \varphi_{\text{trap}} \land \varphi_{\text{cons}} \). Then \(\text{states}(\varphi_{\text{prune}}) \) contains all states pruned by the Trapper algorithm and is an inductive certificate for all its states. \(S \) is closed under operator application because \(\varphi_{\text{trap}} \) and \(\varphi_{\text{cons}} \) are individually closed under operator application, and \(S \) does not contain a goal state because all goal states satisfying \(\varphi_{\text{trap}} \) must violate a mutex and hence do not satisfy \(\varphi_{\text{cons}} \).

It remains to show that \(S \) can be compactly described using a tractable representation formalism \(R \). The trap formula \(\varphi_{\text{trap}} \) is a disjunction of conjunctions of atoms, i.e., \(\varphi_{\text{trap}} = \bigvee_{1 \leq i \leq n} \bigwedge_{v \in e_i} v \) for certain variable subsets (conjunctions) \(e_1, \ldots, e_n \subseteq V \). Hence \(\varphi_{\text{prune}} = \varphi_{\text{trap}} \land \varphi_{\text{cons}} = (\bigvee_{1 \leq i \leq n} \bigwedge_{v \in e_i} v) \land \varphi_{\text{cons}} \) is equivalent to \(\bigvee_{1 \leq i \leq n} (\bigwedge_{v \in e_i} v) \land \varphi_{\text{cons}} \), which we can write as \(\bigvee_{1 \leq i \leq n} \psi_i \) with \(\psi_i = (\bigwedge_{v \in e_i} v) \land \varphi_{\text{cons}} \). Each \(\psi_i \) is a CNF formula consisting of unit clauses from \(e_i \) and negative binary clauses from \(\varphi_{\text{cons}} \) and hence \(\psi_i \) is a Horn formula and a 2-CNF formula. Therefore, \(\Phi = \{ \psi_1, \ldots, \psi_n \} \) is a disjunctive Horn certificate and a disjunctive 2-CNF certificate.
Arbitrary disjunctive Horn or 2-CNF certificates are not efficiently verifiable (unless P = NP), but it turns out that Φ is actually 1-disjunctive. To see this, we must verify that for every component certificate $\psi_i \in \Phi$ and every operator $o \in A$, there exists a component certificate $\psi_j \in \Phi$ such that applying operator o in a state satisfying ψ_i is guaranteed to lead to a state satisfying ψ_j.

A closer investigation of the Trapper algorithm shows that this is indeed the case. Trapper is based on marking certain conjunctions of variables, and the conjunctions c_1, \ldots, c_n defining ψ_{trap} are the ones that remain unmarked after executing the algorithm. Unmarked conjunctions c_i have the property that each operator $o \in A$ is either inapplicable in all states satisfying ψ_i (in which case disjunctive 1-inductivity holds trivially), or there exists an unmarked o-child c_j of c_i, i.e., a conjunction satisfying $c_j \subseteq ((c_i \cup \text{pre}(o)) \setminus \text{del}(o)) \cup \text{add}(o)$. In this case, every o-successor of a state satisfying c_i satisfies c_j, and hence every o-successor of a state satisfying ψ_i satisfies ψ_j.

Proof-of-Concept Implementation

To experimentally test inductive unsolvability certificates, we augmented the implementations of A^*, h^{max} and $h^{\text{M&S}}$ (linear merge strategies, no pruning of unreachable abstract states) in Fast Downward (Helmert 2006) to produce BDD-based unsolvability certificates. We refer to the original Fast Downward as FD and the certifying version as FD$^\text{cert}$.

We also implemented a certificate verification algorithm supporting regular, \(r\)-conjunctive and \(r\)-disjunctive BDD certificates. The verifier is a stand-alone implementation (in C++) not related to an existing planning system. Both FD$^\text{cert}$ and the verifier use the CUDD library\(^6\) to implement BDD operations and are publicly available.\(^8\)

We tested FD$^\text{cert}$ and the verifier with these two heuristics (using default settings for $h^{\text{M&S}}$) on the unsolvable tasks from the Unsolvability IPC 2016, on the unsolvable resource-constrained benchmarks used by Steinmetz and Hoffmann (2016) and on the unsolvable benchmarks by Hoffmann, Kissmann, and Torralba (2014).\(^9\) We set limits of 30 minutes and 2 GiB for FD and FD$^\text{cert}$ and a more generous limit of 4 hours and 2 GiB for the verifier. A data set with detailed results is publicly available.\(^10\)

Table 1 shows how many tasks in each domain could be solved with and without certificate generation and how many of the generated certificates could be verified within the resource bounds. For A^* with h^{max}, certificates could be produced for 64% of the successful runs, and in 90% of the

<table>
<thead>
<tr>
<th>Domain</th>
<th>h^{max}</th>
<th>$h^{\text{M&S}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>FD$^\text{cert}$</td>
<td>Ver.</td>
</tr>
<tr>
<td>3unsat (30)</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>bag-bartman (20)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>bag-gripper (25)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bag-transport (29)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>bottleneck (25)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>cave-diving (25)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>chessboard-pebbling (23)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>diagnosis (18)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>document-transfer (20)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>mystery (9)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>nomystery (150+24)</td>
<td>54</td>
<td>20</td>
</tr>
<tr>
<td>over-rovers (150+20)</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>over-tpp (25+30)</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>pegsol (24)</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>pegsol-row5 (15)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>sliding-tiles (20)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>tetris (20)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>total (702)</td>
<td>212</td>
<td>136</td>
</tr>
</tbody>
</table>

Table 1: Completed tasks by domain (FD, FD$^\text{cert}$, verifier).

\(^6\)Unless the previous constructions, constructing this certificate takes quadratic rather than linear time because the mutex information is replicated in each component formula ψ_i. A linear representation is possible if formulas are represented as circuits, i.e., if common subformulas may be reused.

\(^8\)http://vlsi.colorado.edu/~fabio/

\(^9\)http://doi.org/10.5281/zenodo.376651

\(^7\)For the latter two benchmark collections, see https://fai.cs.uni-saarland.de/software.html.

\(^8\)http://doi.org/10.5281/zenodo.376652
cases where a certificate could be generated, it could be verified within the given resource bounds. For A^* with $h_{M&S}$, the corresponding numbers are 86% and 81%. We consider these numbers encouraging since they suggest that the methods are not far from giving the best bounds. However, it is not known whether these bounds are the best possible.

For $h_{M&S}^+$, 30.5% of the cases where certificate verification failed were due to the memory limit and 69.5% of the cases were due to the time limit. For h_{max}, all certificate verification failures were due to the time limit. However, as discussed in Section 3, this is not surprising since the use of h_{max} suggests that the time limit was clearly underestimated.

Figures 1 and 2 provide a more detailed look at this data. Figure 1 shows that in most cases, but not always, the overhead of FD^{eq} compared to FD is benign. Figure 2 shows the time needed to verify a certificate as a function of its size (which is itself at most linear in the run-time of FD^{eq}). Apart from very small certificates, where verification time is dominated by processing the task representation, the scaling behavior appears to be not much worse than linear.

Conclusion

We described unsolvability certificates for classical planning based on inductive sets. By using suitable representations together with disjunctive and conjunctive factoring, these certificates are sufficiently general to cover many planning algorithms from the literature. A proof-of-concept implementation shows that the approach is practically feasible.

In future work, we would like to extend the approach to further planning techniques. For example, pruning techniques based on partial-order reduction are good candidates for certification because several flawed algorithms have been proposed in the literature (cf. Wehrle and Helmert 2012).

Acknowledgments

This work was supported by the European Research Council as part of the project “State Space Exploration: Principles, Algorithms and Applications”.

References

Haslum, P. 2009. $h^m(P) = h^1(P^m)$: Alternative characterisations of the generalisation from h_{max} to h^m. In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., *Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009)*, 354–357. AAAI Press.

