Understanding the Search Behaviour of Greedy Best-First Search

Manuel Heusner Thomas Keller Malte Helmert
University of Basel

June 16th, 2017
Introduction
Open Questions

- Which states is GBFS *guaranteed* to expand?
- Which states is GBFS guaranteed *not* to expand?
- Which states may GBFS *potentially* expand?

Note: Partly answered for A* (based on f-value) and for GBFS (based on high-water mark).
State Space Topology

- **state space**: generative model with initial state, goal states and successor function
- **heuristic**: assigns non-negative values to states
- **state space topology**: state space + heuristic
State Space Topology

Example

- $h = 6$: X
- $h = 5$: B, A
- $h = 4$: E, D
- $h = 3$: G, F, C
- $h = 2$: H
- $h = 1$: M, L, U, N, S, Q
- $h = 0$: Z, T, R, P, J, K, Y
Greedy Best-First Search

- expansion: generates successors of a state
- greedy best-first search: iteratively expands states with lowest heuristic value
- tie-breaking: selects a state among states with equal heuristic values
Greedy Best-First Search

Example

\[h = 6 \]

\[h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Greedy Best-First Search

Example

\[
\begin{align*}
 & h = 6 \quad \times \\
 & h = 5 \\
 & h = 4 \\
 & h = 3 \\
 & h = 2 \\
 & h = 1 \\
 & h = 0
\end{align*}
\]
Greedy Best-First Search

Example

\[
\begin{align*}
 h &= 6 & X \\
 h &= 5 \\
 h &= 4 \\
 h &= 3 \\
 h &= 2 \\
 h &= 1 \\
 h &= 0
\end{align*}
\]
Greedy Best-First Search

Example

$h = 6$ \(X\)

$h = 5$

$h = 4$

$h = 3$

$h = 2$

$h = 1$

$h = 0$
Greedy Best-First Search

Example

\[h = 6 \quad \text{X} \]

\[h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Greedy Best-First Search

Example

- $h = 6$: X
- $h = 5$: B
- $h = 4$: C
- $h = 3$: K, J
- $h = 2$: P
- $h = 1$:
- $h = 0$:

Understandig the Search Behaviour of Greedy Best-First Search
Greedy Best-First Search

Example

\[
\begin{align*}
 h &= 6 \quad X \\
 h &= 5 \\
 h &= 4 \\
 h &= 3 \quad K, J, I \\
 h &= 2 \\
 h &= 1 \\
 h &= 0
\end{align*}
\]
Greedy Best-First Search

Example

\[h = 6 \quad \text{X} \]

\[h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Greedy Best-First Search

Example

- $h = 6$: X
- $h = 5$: B, A
- $h = 4$: G, F, C
- $h = 3$: K, J, I
- $h = 2$: U
- $h = 1$: P, N
- $h = 0$: T
High-Water Marks
High-Water Marks

Definition (high-water mark)

The high-water mark is the largest heuristic value of a state that GBFS starting from a state (or a set of states) must expand before reaching a goal state.
Example

high-water mark of state P: 4
High-Water Mark of State Set

Example

High-water mark of state set \{J, P\}: 3
Theorem (Wilt & Ruml, SoCS 2014)

GBFS is guaranteed to not expand a state whose heuristic value is larger than high-water mark of initial state.
Earlier Result

Example

never expanded states: \{X\}
Benches
Bench Exit States

Definition (bench exit state)

Bench exit state is a state which has a successor that has lower high-water mark or that is a goal state.
Bench Exit States

Example

\[
h = 6 \quad X
\]

\[
h = 5
\]

\[
h = 4
\]

\[
h = 3
\]

\[
h = 2
\]

\[
h = 1
\]

\[
h = 0
\]

M. Heusner, T. Keller, M. Helmert (Basel) Understandig the Search Behaviour of Greedy Best-First Search 16/34
Bench Exit States

Example

- **$h = 6$**: Node X
- **$h = 5$**: Node A
- **$h = 4$**: Nodes B, C, D
- **$h = 3$**: Nodes E, F, G, H
- **$h = 2$**: Nodes J, K, L, M
- **$h = 1$**: Nodes N, P, Q
- **$h = 0$**: Nodes R, S, T, U, V, W, X, Y, Z
Bench Exit Property

Theorem (bench exit property)

Whenever GBFS expands a bench exit state, all previously generated states will never be expanded for the rest of the algorithm run.

Note: GBFS makes progress when bench exit state is expanded.
Bench Exit Property

Example

\[h = 6 \]
\[h = 5 \]
\[h = 4 \]
\[h = 3 \]
\[h = 2 \]
\[h = 1 \]
\[h = 0 \]
Bench Exit Property

Example

\[h = 6 \quad \text{X} \quad h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Bench Exit Property

Example

<table>
<thead>
<tr>
<th>h</th>
<th>X</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>C</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bench Exit Property

Example

\[h = 6 \quad X \]
\[h = 5 \]
\[h = 4 \]
\[h = 3 \]
\[h = 2 \]
\[h = 1 \]
\[h = 0 \]
Bench Exit Property

Example

- $h = 6$
- $h = 5$
- $h = 4$
- $h = 3$
- $h = 2$
- $h = 1$
- $h = 0$
Bench Exit Property

Example

\[h = 6 \quad X \]

\[h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Bench Exit Property

Example

\begin{itemize}
 \item $h = 6$
 \item $h = 5$
 \item $h = 4$
 \item $h = 3$
 \item $h = 2$
 \item $h = 1$
 \item $h = 0$
\end{itemize}
Bench Exit Property

Example

\[h = 6 \]
\[h = 5 \]
\[h = 4 \]
\[h = 3 \]
\[h = 2 \]
\[h = 1 \]
\[h = 0 \]
Bench Exit Property

Example

\[h = 6 \]
\[h = 5 \]
\[h = 4 \]
\[h = 3 \]
\[h = 2 \]
\[h = 1 \]
\[h = 0 \]
Bench Exit Property

Example

\[h = 6 \]

\[h = 5 \]

\[h = 4 \]

\[h = 3 \]

\[h = 2 \]

\[h = 1 \]

\[h = 0 \]
Bench Exit Property

Example

$h = 6$

$h = 5$

$h = 4$

$h = 3$

$h = 2$

$h = 1$

$h = 0$
Bench Exit Property

Example

\[
\begin{align*}
h &= 6 \\
h &= 5 \\
h &= 4 \\
h &= 3 \\
h &= 2 \\
h &= 1 \\
h &= 0
\end{align*}
\]
Bench Exit Property

Example

\[
\begin{align*}
 h &= 6 \\
 h &= 5 \\
 h &= 4 \\
 h &= 3 \\
 h &= 2 \quad &\text{U} \\
 h &= 1 \\
 h &= 0 \quad &\text{T} \\
\end{align*}
\]
Example

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$h = 6$</td>
</tr>
<tr>
<td>5</td>
<td>$h = 5$</td>
</tr>
<tr>
<td>4</td>
<td>$h = 4$</td>
</tr>
<tr>
<td>3</td>
<td>$h = 3$</td>
</tr>
<tr>
<td>2</td>
<td>$h = 2$</td>
</tr>
<tr>
<td>1</td>
<td>$h = 1$</td>
</tr>
<tr>
<td>0</td>
<td>$h = 0$</td>
</tr>
</tbody>
</table>
Benches

Definition (bench)

A bench contains all states that GBFS starting with a given set of states can expand until expansion of a bench exit state. It is empty if the given set of states contains a goal state. It is associated with high-water mark of the given set of states.
Example

states on bench defined by \(\{ J, P \} : \{ I, J, P, K \} \)
Bench Transition Systems

Definition (bench transition system)

A bench transition system contains all benches which are reachable from the bench that starts with the initial state.

A successor bench is defined by the successor states of a bench exit state.
Bench Transition Systems

Example

$h = 5$

$h = 4$

$h = 3$

$h = 2$

$h = 1$

$h = 0
Results

Theorem

GBFS potentially expands a state if it is on at least one bench from bench transition system.

Theorem

GBFS is guaranteed to not expand a state that is not on a bench of the bench transition system.
Results

Example

never expanded states: \(\{B, E, H, T, U, X, Y, Z\} \)
Craters
Surfaces

Definition (surface)

A state is on the *surface* of a *bench* if its *heuristic* value is the *high-water mark* of the *bench*.

Note: Is often called *heuristic plateau* or *uninformed heuristic region*.
Surfaces

Example

$h = 5$

$h = 4$

$h = 3$

$h = 2$

$h = 1$

$h = 0$
Crater Entry States

Definition (crater entry state)

A crater entry state is a state that is on the surface of a bench and that has a successor which is on a bench but not on a surface.
Crater Entry States

Example

\[h = 5\]

\[h = 4\]

\[h = 3\]

\[h = 2\]

\[h = 1\]

\[h = 0\]
Craters

Definition (crater)

A crater contains all states that GBFS starting with a given crater entry state expands until expansion of a state from the surface.

Note: Is often called local minimum or uninformed heuristic region.
Craters

Example

$h = 5$

$h = 4$

$h = 3$

$h = 2$

$h = 1$

$h = 0$
Theorem

Whenever GBFS expands a crater entry state s, then GBFS is guaranteed to expand all states in the crater defined by s.
Conclusion
Conclusion

- exact characterization of potentially expanded and never expanded states
- characterization of surely expanded states given some conditions
- better understanding of search behaviour and search progress