
Pattern Database Heuristics for
Fully Observable Nondeterministic Planning

Robert Mattmüller and Manuela Ortlieb and Malte Helmert
University of Freiburg, Germany, {mattmuel,ortlieb,helmert}@informatik.uni-freiburg.de

Pascal Bercher
University of Ulm, Germany, pascal.bercher@uni-ulm.de

Abstract

When planning in an uncertain environment, one is often in-
terested in finding a contingent plan that prescribes appro-
priate actions for all possible states that may be encountered
during the execution of the plan. We consider the problem of
finding strong cyclic plans for fully observable nondetermin-
istic (FOND) planning problems. The algorithm we choose
is LAO*, an informed explicit state search algorithm. We
investigate the use of pattern database (PDB) heuristics to
guide LAO* towards goal states. To obtain a fully domain-
independent planning system, we use an automatic pattern
selection procedure that performs local search in the space
of pattern collections. The evaluation of our system on the
FOND benchmarks of the Uncertainty Part of the Interna-
tional Planning Competition 2008 shows that our approach
is competitive with symbolic regression search in terms of
problem coverage, speed, and plan quality.

Introduction

For an agent planning in an uncertain environment it is not
always sufficient to simply assume that all its actions will
succeed and to replan upon failure. Rather, it can be advan-
tageous to compute a contingent plan that prescribes actions
for all possible states resulting from nondeterministic ac-
tion outcomes completely ahead of execution. Specifically,
in this work, we are concerned with finding strong cyclic
plans (Cimatti et al. 2003) for fully observable nondeter-
ministic (FOND) planning problems. Whereas strong plans,
i.e., plans guaranteed to lead to a goal state in a finite number
of steps, can be found using AO* search (Martelli and Mon-
tanari 1973), LAO* search (Hansen and Zilberstein 2001) is
better suited to find strong cyclic plans, i.e., plans that may
loop indefinitely as long as they do not contain dead ends
and there is always a chance of making progress towards the
goal.

As shown in earlier work (Hoffmann and Brafman
2005; Bryce, Kambhampati, and Smith 2006; Bercher and
Mattmüller 2008), using AO* (or LAO*) in conjunction
with an informative heuristic can be an efficient way to find
contingent plans of high quality. Most heuristic search plan-
ners for nondeterministic problems use a delete relaxation
heuristic to guide the search. Since it is not straightforward

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to make delete relaxations take the nondeterminism into ac-
count properly, in this work we investigate the use of pattern
database (PDB) heuristics (Culberson and Schaeffer 1998;
Edelkamp 2001). The abstractions underlying the PDBs can
be designed to preserve the original nondeterminism. We
use local search in the space of pattern collections (Haslum
et al. 2007) to obtain suitable PDBs.

The contribution of this paper consists of the application
of PDB heuristics to domain-independent strong cyclic plan-
ning, the definition of a suitable abstraction mapping, defi-
nitions of abstract costs and their computation, as well as
an implementation and empirical evaluation of the resulting
planning algorithm in comparison to Gamer (Kissmann and
Edelkamp 2009), a planner that performs BDD-based plan-
ning as model checking (Cimatti et al. 2003). Minor contri-
butions are the adaptations of a finite-domain representation
of planning problems and of a pattern selection algorithm
from the deterministic to the nondeterministic context.

Preliminaries

FOND SAS+ Planning Tasks

We assume that the planning problem is given in a finite-
domain representation that can be obtained from Proba-
bilistic PDDL (PPDDL) using an adaptation of Helmert’s
PDDL-to-SAS+ translation algorithm (2009).

A fully observable nondeterministic SAS+ (Bäckström
and Nebel 1995) planning task is a tuple Π = 〈V , s0, s⋆,O〉
consisting of the following components: V is a finite set of
state variables v, each with a finite domain Dv and an ex-
tended domain D+

v = Dv ⊎ {⊥}, where ⊥ denotes the un-
defined or don’t-care value. A partial state is a function s
with s(v) ∈ D+

v for all v ∈ V . We say that s is defined for
v ∈ V if s(v) 6= ⊥. A state is a partial state s that is defined
for all v ∈ V . The set of all states s over V is denoted as
S. Depending on the context, a partial state sp can be inter-
preted either as a condition, which is satisfied by a state s
iff s agrees with sp on all variables for which sp is defined,
or as an update on a state s, resulting in a new state s′ that
agrees with sp on all variables for which sp is defined, and
with s on all other variables. The initial state s0 of a prob-
lem is a state, and the goal description s⋆ is a partial state. O
is a finite set of actions of the form a = 〈Pre,Eff 〉, where
the precondition Pre is a partial state, and the effect Eff

is a finite set of partial states eff , the nondeterministic out-
comes of a. The application of a nondeterministic outcome
eff to a state s is the state app(eff , s) that results from up-
dating s with eff . The application of an effect Eff to s is
the set of states app(Eff , s) = {app(eff , s) | eff ∈ Eff }
that might be reached by applying a nondeterministic out-
come from Eff to s. An action is applicable in s iff its
precondition is satisfied in s. The application of a to s is
app(a, s) = app(Eff , s) if a is applicable in s, and unde-
fined otherwise. All actions have unit cost.

Strong and Strong Cyclic Planning

The semantics of a planning task Π = 〈V , s0, s⋆,O〉 can be
defined via AND/OR graphs over the states S. An AND/OR
graph G = 〈N, C〉 consists of a set of nodes N and a set of
connectors C, where a connector is a pair 〈n, M〉, connect-
ing the parent node n ∈ N to a nonempty set of children
M ⊆ N . A (directed) path in G is a sequence of nodes suc-
cessively linked by connectors. Often, an AND/OR graph
contains a distinguished initial node n0 ∈ N and a set of
goal nodes N⋆ ⊆ N .

The strong preimage of a set of nodes X ⊆ N is the set of
connectors that are guaranteed to lead to a node in X , and
the weak preimage of X is the set of connectors that may
lead to a node in X . Formally,

spre(X) = {〈n, M〉 ∈ C |M ⊆ X} and

wpre(X) = {〈n, M〉 ∈ C |M ∩X 6= ∅}.

We write N(C ′) = {n ∈ N | ∃M ⊆ N : 〈n, M〉 ∈ C ′}
to denote the set of nodes with an outgoing connector in
C ′ ⊆ C.

A subgraph of an AND/OR graph G is an AND/OR graph
G′ = 〈N ′, C ′〉 such that N ′ ⊆ N and C ′ only contains con-
nectors from C whose involved nodes (parent and children)
are contained in N ′. We usually require that the initial node
n0 of G is contained in N ′ as the initial node n′

0 of G′, and
that the set of goal nodes is N ′

⋆ = N⋆ ∩ N ′. The following
properties of a subgraph G′ of G are of interest:

Acyclicity: G′ contains no path from n to n for any n ∈ N ′.

Closedness: For all nongoal nodes n ∈ N ′ \ N ′
⋆, there is

exactly one outgoing connector c = 〈n, M〉 in C ′.

Properness: For all nongoal nodes n ∈ N ′ \N ′
⋆, there is a

finite path in G′ starting at n and ending in a goal node
n⋆ ∈ N ′

⋆.

The AND/OR graph induced by Π is the graph G =
〈N, C〉, where N is the set of states S of the planning task,
and where there is one connector 〈s, app(a, s)〉 ∈ C for
each state s and action a applicable in s leading from s to
the states that might result from different nondeterministic
outcomes of a. The initial node is n0 = s0, and a node n
is a goal node in N⋆ iff it satisfies the goal description s⋆.
A subgraph of the AND/OR graph induced by Π is called
a strong cyclic plan if it is closed and proper, and a strong
cyclic plan is called a strong plan if it is acyclic. A subgraph
is a weak plan if it contains a path from n0 to a goal node.
Strong cyclic plans (“trial-and-error strategies”) are a com-
promise between the overly optimistic view of weak plans

and the strict requirement of strong plans that an action that
is supposed to be part of a plan may never completely fail
or even repulse the agent away from the goal. Strong cyclic
plans allow such actions, as long as there is some chance to
move closer to the goal and no danger of ending up in a dead
end.

During the construction of a plan, an explicit graph G′ =
〈N ′, C ′〉 is maintained that is a connected subgraph of G
with the property that for all nongoal nodes n, either all
outgoing connectors from n in G are contained in C ′ (n is
expanded) or none of them is contained in C ′ (n is unex-
panded). A partial strong cyclic plan (partial strong plan)
is a subgraph of the explicit graph that satisfies the properties
of a strong cyclic plan (strong plan), with the exception that
closedness is relaxed such that outgoing connectors are only
required for expanded nongoal nodes and that properness is
not required.

AO* and LAO* Search

The problems of finding a strong plan or a strong cyclic plan,
given a planning task Π, can be solved by AO* and LAO*
graph search, respectively. AO* search (Martelli and Mon-
tanari 1973) is an algorithm that gradually builds an explicit
graph until a strong solution has been found or the graph
has been completely generated. Starting from n0, in each
step, it first extracts a partial solution by tracing down the
most promising connectors, expands one or more of the un-
expanded nongoal nodes encountered, and updates the infor-
mation about which outgoing connectors are deemed most
promising given the information obtained from the last ex-
pansion. The quality f of unexpanded nongoal nodes is es-
timated using a heuristic h, and in interior nodes, it is an
aggregate of the qualities of the successor nodes.

Whereas AO* is sufficient to find strong plans, strong
cyclic plans can be found using an extension to AO* called
LAO* (Hansen and Zilberstein 2001). Unlike AO*, which
uses backward induction, LAO* uses a dynamic program-
ming algorithm like policy iteration or value iteration to
update node estimates, thus allowing it to find solutions
with loops as well, while still following a heuristic guid-
ance. Pseudocode of (a variant of) LAO* is given in Al-
gorithm 1. In the pseudocode, in which we assume that
a solution exists, G is the implicit graph, G′ the explicit
graph, and TRACE(G′) traces down marked connectors in G′

and returns the corresponding subgraph, which is considered
incomplete if it still contains unexpanded nongoal nodes.
These nodes are returned by UNEXPANDEDNONGOAL and
then expanded simultaneously (EXPANDALL), i.e., their
successor nodes and corresponding connectors are incorpo-
rated into G′. After initializing the cost estimates f of all
new nodes, the subgraph Z of nodes to be updated is chosen
as the portion of G′ weakly BACKWARDREACHable from
the freshly expanded nodes. While VALUEITERATION is
performed on Z , the algorithm maintains the invariant that
for each expanded nongoal node, exactly one outgoing con-
nector minimizing f is marked.

Often, the search is equipped with a solve-labeling pro-
cedure that can be used to decide when a solution has been
found and as a means of pruning the search space, since out-

Algorithm 1 LAO*(G)

G′ ← 〈n0, ∅〉
while n0 unsolved do

E ← UNEXPANDEDNONGOAL(TRACE(G′))
if E = ∅ then E ← UNEXPANDEDNONGOAL(G′)
Nnew ← EXPANDALL(E)

f(n′)←

{

0 if n′ ∈ N⋆

h(n′) otherwise
for all n′ ∈ Nnew

Z ← BACKWARDREACH(E)
SOLVELABELING(G′)
VALUEITERATION(Z)

return TRACE(G′)

going connectors from solved nodes do not need to be traced
down any more. In strong cyclic planning, a node can be
marked as solved if it is a goal node or if there is an applica-
ble action that has a chance of leading to a solved node and
that is guaranteed not to lead to potential dead-end nodes.
Technically, the solve-labeling procedure for strong cyclic
planning is a nested fixed point computation, outlined in Al-
gorithm 2. Note that the outer loop computes a greatest fixed
point, whereas within that loop, first the least fixed point of
the set of all connectors weakly backward-reachable from
the goal nodes along solved connectors in Cs is computed,
followed by the computation of the greatest fixed point of
the set of all connectors in C ′

s guaranteed not to lead outside
of C ′

s .

Algorithm 2 SOLVELABELING(G)

Cs ← C
while Cs has not reached a fixed point do

C ′
s ← {〈n, M〉 ∈ C |M ∩N⋆ 6= ∅}

while C ′
s has not reached a fixed point do

C ′
s ← C ′

s ∪ (wpre(N(C ′
s)) ∩ Cs)

while C ′
s has not reached a fixed point do

C ′
s ← C ′

s ∩ spre(N(C ′
s) ∪N⋆)

Cs ← C ′
s

return N(Cs)

Given an informative heuristic, more promising parts of
the graph are likely to be expanded before the less promis-
ing ones by AO* and LAO*, and irrelevant portions of the
search space may never be explored before a solution is
found.

Heuristic Function

The performance of AO* and LAO* heavily depends on
an appropriate heuristic estimator for unexpanded nongoal
nodes. Our primary aim is to find some plan fast rather than
to find an optimal plan, and hence the heuristic estimator we
use does not necessarily have to accurately reflect remain-
ing plan costs, but it should reflect the expected remaining
search effort.

If we assume tree search for a strong plan, a constant
branching factor b of the connectors, and a constant goal

depth d below the current node, then the size of any non-
degenerate solution tree rooted at the current node and even
more the search effort, will be exponential in d. Therefore,
minimizing d helps minimizing the search effort. If the dis-
tance from the current node to the necessary goal nodes is
not constant, then because of the tree shape, for complete
nondegenerate trees it is the maximal goal distance that mat-
ters. Thus, for strong planning, a reasonable measure for
the remaining search effort below a node n is the depth of a
depth-minimizing solution for the subproblem correspond-
ing to n. We cannot compute this depth directly without
solving the whole subproblem, but using an estimator that
returns the depth of a depth-minimizing plan for a simpli-
fied problem can be expected to provide useful guidance.
However, there are still two questions to be answered:

• What kind of simplification should be used?

• How can this estimate be adapted from strong to strong
cyclic plans?

To answer the first question, note that in classical plan-
ning, the most important classes of simplifications are delete
relaxations and projections. In nondeterministic planning,
we additionally have the choice of whether or not to relax
the nondeterminism and allow the agent not only to choose
the action, but also its outcome among the possible nonde-
terministic outcomes.

It is easy to come up with examples showing that relaxing
nondeterminism can lead to heuristic estimates that guide
the search in the wrong direction, whereas with the nonde-
terminism represented in the heuristic, the search is guided
in the right direction. Therefore, we would like to retain non-
determinism in the relaxation. Since, unlike in combination
with delete relaxation, this is straightforward with projec-
tions, for the rest of this work we answer the question what
kind of simplification to be used with projection to a subset
of the state variables.

To answer the second question, first notice that in strong
cyclic planning, the depth of a depth-minimizing plan is no
longer well-defined, since there may be infinitely long paths
in a plan. We can, however, make the simplifying assump-
tion that all nondeterministic outcomes of the actions are
equally likely, and replace the depth of a plan (the maximal
number of steps to a goal) by the expected number of steps
to a goal in order to obtain a well-defined heuristic.

We can express both variants of the heuristic (with max-
imum and expected value) in a Bellman formulation (Bell-
man 1957) as

h(n) =

{

0 if n is a goal,

1 + min
〈n,M〉∈C

max
n′∈M

h(n′) otherwise, (1)

in the case of maximization, and as

h(n) =

{

0 if n is a goal,

1 + min
〈n,M〉∈C

1
|M |

∑

n′∈M

h(n′) otherwise,

(2)
for the expected value.

It is easy to see that with maximization, h is guaranteed
to give finite values for a node n iff there is a strong plan

starting in n. With expected values, h is guaranteed to have
finite values for a node n iff there is a strong cyclic plan
starting in n (i.e., if n can be marked as solved by the solve-
labeling procedure for strong cyclic planning). The reason
is that h(n) is the expected number of steps to a goal node
using a strong cyclic plan minimizing that expected number,
which must be finite, since a random walk of sufficient finite
length in the current strongly connected component (SCC)
of the abstract state space always has a nonzero chance of
making irreversible progress towards an SCC strictly closer
to the goal, and there are only finitely many SCCs.

The following examples show how the heuristic trades off
plan lengths against chances of success and how states ad-
mitting “less cyclic” plans are preferred to states only admit-
ting “more cyclic” plans. In both examples, n0 is the current
(abstract) node, we use Eq. 2 to compute h-values, and we
want to know which (abstract) action applicable in n0 is the
most promising. Initial nodes are depicted with an incom-
ing edge without source node, goal nodes with circles, and
edges belonging to the same connector with a joining arc.

• Strong vs. strong cyclic plans:

n1 n0 n2
a b

Here, h(n1) = 1 and h(n2) = 1 + 1
2 (0 + h(n2)), i.e.,

h(n2) = 2. Therefore, the action a leading to a state ad-
mitting a strong subplan is preferred to the action b lead-
ing to a state only admitting a strong cyclic subplan.

• Cyclicity of strong cyclic plans:

n1 n0 n2
a b

Here, h(n1) = 1+ 1
3 (0+2 ·h(n1)) and h(n2) = 1+ 1

3 (2 ·

0 + h(n2)), i.e., h(n1) = 3 and h(n2) = 3
2 , so the “less

cyclic” subplan is preferred. Note that this example is
simplified for presentation, since the outgoing connector
from n1 collapses to a connector 〈n1, M〉 with |M | = 2
because of the set representation of successors.

Abstractions

Syntactic Projections

Pattern database heuristics are based on computing cost or
search effort estimates in an abstract version of the original
planning problem. In this section, we discuss syntactic pro-
jections for fully observable nondeterministic SAS+ plan-
ning tasks.

A pattern is a subset P ⊆ V of the variables, and a pat-
tern collection P ⊆ 2V is a set of patterns. The projection
of a planning task Π to P is the task that results from Π
if all variables outside of P are ignored, states are merged
into one abstract state if they agree on all variables in P ,
and conditions and effects are restricted to P . Formally, the
abstract task only contains the variables V↓P = V ∩ P ,

the projection s↓P of a (partial) state s is s restricted to
P , i.e., s↓P (v) = s(v) for all v ∈ P , and projections of
effects, actions, action sets and tasks are defined element-
wise and component-wise: Eff ↓P = {eff ↓P | eff ∈ Eff },
〈Pre,Eff 〉↓P = 〈Pre↓P ,Eff ↓P 〉, O↓P = {a↓P | a ∈ O},
and 〈V , s0, s⋆,O〉↓P = 〈V↓P , s0↓P , s⋆↓P ,O↓P 〉. We refer
to states, connectors etc. from the state space of the origi-
nal problem as concrete states, connectors etc., and to those
from the projection as abstract states, connectors etc.

By definition, the projection of a planning task is again a
planning task. Its induced AND/OR graph is in general at
most as large as the induced AND/OR graph of the origi-
nal planning task. The syntactic projection has the property
that it preserves action applicability, effect applications, and
solvedness of states. More precisely, let s ∈ S be a concrete
state, a = 〈Pre, {eff 1, . . . , eff n}〉 a concrete action, solved
the set of concrete states admitting a strong cyclic plan, and
solvedP the set of abstract states admitting a strong cyclic
plan. Then (1) if a is applicable in s, then a↓P is appli-
cable in s↓P , (2) app(eff , s)↓P = app(eff ↓P , s↓P) and
app(Eff , s)↓P = app(Eff ↓P , s↓P), and (3) s ∈ solved
implies s↓P ∈ solvedP . Claims (1) and (2) immediately
follow from the definition of projections. For (3), consider
the solve-labeling procedure described in Algorithm 2. We
call nodes in N(Cs) solved, nodes in N(C ′

s) after the first
and before the second inner loop connected, and nodes in
N(C ′

s) after the second inner loop safe. Initially, all con-
crete and abstract nodes are solved, so the induction base
holds. In the i-th iteration of the outer loop, a concrete node
n is marked as connected (in the first inner loop) iff there is
a finite path along nodes marked as solved in the previous
iteration starting at n and ending in a goal node. Since, by
(1) and (2), actions remain applicable in the abstraction and
concrete successors are represented by abstract successors,
and since, by induction hypothesis, solved concrete nodes
are projected to solved abstract nodes, this sequence has an
abstract counterpart showing that n↓P is connected as well.
In the safe-labeling of the current iteration (the second inner
loop), initially, all connected nodes are marked as safe, and a
node is only removed from the safe nodes if all its outgoing
connectors may potentially lead to an unsafe nongoal node.
An abstract node n↓P is only removed from the abstract safe
nodes if there is no abstract connector that guarantees stay-
ing in the abstract safe nodes. But then all corresponding
concrete nodes n would be removed from the concrete safe
nodes as well, for if there were a corresponding concrete
node n and an outgoing connector c of n only leading to safe
nodes, the projection of c to P would only lead to safe ab-
stract nodes by induction hypothesis of the inner loop. Since
the solved nodes in the next iteration are the remaining safe
nodes, the induction step holds as well.

Pattern Database Heuristics

The abstractions and abstract costs or search effort esti-
mates are precomputed before the actual search is per-
formed. During the search, no costly calculations are nec-
essary. The heuristic values are merely retrieved from the
pattern database, in which the values of the abstract states
have been stored during the preprocessing stage. Each ab-

straction is a projection of the original planning problem to
a pattern P and defines a heuristic function hP .

Since the size of the abstract state space grows exponen-
tially in the size of the pattern P , reasonable patterns should
not be too large. So, typically, one pattern will include only a
small fraction of V , and hence the corresponding abstraction
will completely ignore the contribution of many variables to
the hardness of solving the problem that could be captured if
the variables were included in P . Instead of using arbitrar-
ily large patterns, one usually resorts to using several smaller
patterns and aggregating the abstract costs of a state in the
abstractions corresponding to the patterns.

Given a finite collection P of patterns, one could define
the heuristic function hP(n) = maxP∈P hP (n). Since we
want to maintain heuristic values as informative as possible,
however, maximization is often not sufficient and replacing
maximization by summation could produce more informa-
tive heuristic values. On the other hand, adding h-values
does not provide an additional advantage if the added heuris-
tics reflect the contribution of the same or at least similar
sets of actions, whereas other actions are still disregarded.
Therefore, similarly to classical planning (Edelkamp 2001),
we say that patterns P1, . . . , Pk are additive if there is no
action a = 〈Pre,Eff 〉 ∈ O that affects variables from
more than one of the patterns, i.e., no action for which
effvars(Eff)∩Pi 6= ∅ for more than one i = 1, . . . , k, where
effvars(Eff) = {v ∈ V | ∃eff ∈ Eff : eff (v) 6= ⊥}. If the
patterns in P are additive, we can define hP as hP(n) =
∑

P∈P hP (n) instead of via maximization. Finally, given
a set M of additive pattern collections, we can define
the heuristic function hM(n) = maxP∈M

∑

P∈P hP (n),

which in general dominates all of the heuristics hP .

Note that, unlike in optimal classical planning, where ad-
ditivity is required to ensure admissibility of the resulting
heuristic, we do not necessarily require additivity here, but
rather use it as a means of getting an informative, not an
admissible, heuristic, since additive pattern collections tend
to cover action costs more accurately than collections of de-
pendent or even overlapping patterns.

Pattern Selection as Local Search

To determine the pattern collections P to be used, we use
the local search algorithm by Haslum et al. (2007). Even
though the evaluation function for pattern collections in their
algorithm is based on the expected number of node expan-
sions during IDA* search, not AO* or LAO* search, with
the pattern collection under consideration, we believe that
the patterns that are obtained that way are still useful in non-
deterministic planning. The reasoning behind this is that the
question whether variables are related closely enough to be
grouped into one pattern is largely orthogonal to the question
whether the actions in the planning task are deterministic.

Let P be a pattern collection. Then the canon-
ical heuristic function of P is the function hP

C =
maxP′∈M

∑

P∈P′ hP , where M is the set of all maximal
additive subsets of P . The pattern selection algorithm con-
siders a pattern collection P to be better than a pattern col-
lection P ′ if the expected number of node expansions of an

IDA* search with hP
C is lower than the expected number of

node expansions of an IDA* search with hP′

C .

Algorithm 3 PATTERNSELECTION(Π, bound)

P ← INITIALCOLLECTION(Π)
while ‖P‖ < bound do

S ← CHOOSESAMPLES(Π)
N ← NEIGHBORHOOD(P, Π)
for all P ′ ∈ N do

δ(P ′)← IMPROVEMENT(P ′,P,S, Π)
if δ(P ′) = 0 for all P ′ ∈ N then break
P ← argmaxP′∈N δ(P ′)

return P

The pattern selection presented as pseudocode in Al-
gorithm 3 performs a hill-climbing search in the space
of pattern collections, starting with the initial collection
INITIALCOLLECTION(Π) that contains one singleton pat-
tern for each variable occurring in the goal. The search con-
tinues until either there is no more improvement or the cu-
mulative sizes of the pattern databases contained in the cur-
rent pattern collection P exceed a given bound . The size
of the pattern collection is ‖P‖ =

∑

P∈P

∏

v∈P |Dv|. The

NEIGHBORHOOD(P, Π) of the pattern collection P with re-
spect to planning task Π contains a pattern collection P ′ if
there is a P ∈ P and a variable v /∈ P that is causally rel-
evant to P , such that P ′ = P ⊎ {P ′} for P ′ = P ∪ {v}.
The IMPROVEMENT(P ′,P,S, Π) of P ′ over P with re-

spect to the sample states in S is the estimated number of

states s ∈ S for which hP′

C returns a higher value than hP
C .

This is precisely the number of states s ∈ S for which

hP ′

(s) > hP(s) −
∑

P∈S\{P ′} hP (s) for some additive

subset S ⊆ P ′ that includes P ′. The algorithm terminates
eventually, since P only increases in size and there are only
finitely many different patterns.

In each iteration, a call to CHOOSESAMPLES(Π) is used
to draw n sample states (non-uniformly) from the state space
that are used to compute an estimate of how much guidance
hP

C will provide. A sample is the last state on a random walk
through the state space, where successor states are selected
uniformly at random among all possible successors. The
length of the random walk is chosen uniformly between 0
and a fixed upper bound d = 2 · hP

C(s0).

Implementation Details

Abstract Cost Computation

Let P ⊆ V be a pattern and G = 〈N, C〉 the AND/OR
graph induced by the projection of the given planning task
to P . Then the abstract costs are defined as the result of
value iteration on the relevant part of G (Algorithm 4).

Here, FORWARDREACH(G) builds the portion of G that
is forward reachable from n0, SOLVELABELING(G) labels
solved nodes in G, and RESTRICTTOSOLVED(G, solved) re-
stricts G to solved nodes. We have already shown that all
forward reachable solved concrete states are represented by
an abstract state that will be marked as solved . Therefore,

Algorithm 4 ABSTRACTCOSTCOMPUTATION(G)

G ← FORWARDREACH(G)
solved ← SOLVELABELING(G)
G ← RESTRICTTOSOLVED(G, solved)
h′(n)←∞ for all n ∈ N \ solved
h′(n)← 0 for all n ∈ solved
repeat

h← h′

for all n ∈ solved \N⋆ do
h′(n)← 1 + min

〈n,M〉∈C

1
|M |

∑

n′∈M

h(n′)

until maxn∈N |h′(n)− h(n)| < ε
return h′

if we assign the heuristic value∞ to all abstract states out-
side solved and prune the concrete search as soon as we en-
counter a concrete state s that maps to an abstract state s↓P
with h(s↓P) =∞, the search remains complete.

On the remaining solved abstract nodes, the algorithm
performs value iteration until the error falls below ε, and
eventually returns the cost function (including the mapping
of unsolved abstract states to∞).

The value iteration is guaranteed to converge, since re-
stricting the set of nodes on which value iteration is per-
formed to those that are marked as solved guarantees that
all cost values are bounded. Together with the fact that,
starting with h ≡ 0, the Bellman update is a monotonically
increasing function, this is sufficient to ensure convergence
and hence termination.

Experiments

Setting and Benchmarks

We evaluated our planner on the benchmark problems of the
IPC 2008 FOND track. The instances belong to the domains
blocksworld, faults, first-responders, and forest.

We ran our planner with PDB heuristic, a variant of the FF
heuristic (combining nondeterminism relaxation with delete
relaxation) and the heuristic assigning 0 to goal nodes and
1 to all other nodes. We compared it to the winner of the
FOND track 2008, Gamer (Kissmann and Edelkamp 2009),
based on the criteria coverage (number of problems for
which a strong cyclic plan was found), speed (time needed
for each problem), plan size (number of state-action table
entries), plan quality (expected number of steps to the goal
under random selection of action outcomes), and guidance
(number of nodes created by LAO*). The guidance criterion
was only used in comparisons between different configura-
tions of our planner, not when comparing against Gamer,
which performs a symbolic search for which the guidance
criterion is not meaningful.

Since all problems solved by either planner only admit
strong cyclic plans and no strong plans, we only report
times needed to find strong cyclic plans. In a setting where
strong plans are the preferred solutions and a strong cyclic
plan is only acceptable if no strong plan exists, our plan-
ner, like Gamer, could be configured to search for a strong
plan first, using the same search framework as described for

Domain (probs) PDB DR 0/1 Gamer

blocksworld (30) 10 10 10 10
faults (55) 55 54 33 34
first-responders (100) 23 24 19 19
forest (90) 6 6 3 6

overall (275) 94 94 65 69

Table 1: Coverage of LAO* with PDB, delete relaxation,
and 0/1 heuristic, compared to Gamer.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

C
o

v
e

ra
g

e
Time (sec)

PDB
DR
0/1

Gamer

Figure 1: Coverage over time.

strong cyclic planning (with LAO* replaced by AO* and
simpler solve-labeling and abstract cost computation proce-
dures) and only turn to strong cyclic planning after deter-
mining that no strong plan exists.

The experiments were conducted on a 2 GHz Intel Pen-
tium E2180 CPU with 1 GB memory limit. In order to ob-
tain comparable search times and coverage values for the
different configurations of our planner, two time limits were
set independently for preprocessing including PDB compu-
tation (5 minutes) and search (15 minutes minus preprocess-
ing time). Gamer was run with an overall time limit of 15
minutes.

Results

We report the results obtained by our planner using 1000
samples in the pattern selection and convergence threshold
ε = 10−4 in the value iteration (both in the evaluation of ab-
stract states and in the value iteration subroutine of LAO*).

Table 1 shows problem coverage per domain and overall
after 15 minutes. Problems detected to be unsolvable by
either planner are treated as if they were unsolved. Figure 1
shows the development of the coverage over time, with the
PDB approach only gaining more covered instances after a
longer preprocessing time and eventually catching up with
the delete-relaxation approach.

Table 2 shows times in seconds (t), LAO* node creations
(n), and plan sizes (s), of our planner with PDB heuristic,
our planner with delete relaxation heuristic, and with the 0/1
heuristic, as well as the times and plan sizes of Gamer, on

PDBs Delete relaxation 0/1 heuristic Gamer

Problem t (tp, ts) s n t s n t s n t (tp, ts) s

bw-1 25.10 (25.05, 0.05) 11 43 0.20 10 50 0.16 13 296 220.73 (172.17, 48.56) 10

bw-2 3.91 (3.83, 0.08) 9 293 0.28 9 293 0.07 9 92 211.27 (170.28, 40.99) 16

bw-3 4.23 (4.09, 0.14) 17 931 0.48 17 931 0.85 19 2335 206.07 (164.33, 41.74) 21

bw-4 4.90 (3.80, 1.10) 17 8515 4.84 32 23154 6.39 18 24406 203.46 (156.60, 46.86) 26

bw-5 4.88 (4.27, 0.61) 16 4899 1.39 16 5968 0.92 22 3476 202.66 (160.05, 42.61) 13

bw-6 4.39 (3.98, 0.41) 11 2960 0.87 11 2960 0.72 11 2710 196.37 (158.49, 37.88) 19

bw-7 5.43 (3.93, 1.50) 25 10277 1.95 25 8549 1.28 24 5373 198.17 (156.15, 42.02) 28

bw-8 5.90 (4.15, 1.75) 14 14515 1.84 16 8718 3.22 14 15754 197.07 (155.70, 41.37) 19

bw-9 4.42 (4.41, 0.01) 8 34 0.35 8 626 0.29 8 534 203.51 (158.31, 45.20) 10

bw-10 4.66 (4.25, 0.41) 13 1988 0.95 13 3080 0.89 13 3904 205.38 (161.01, 44.37) 13

faults-5-5 26.14 (26.09, 0.05) 65 329 0.73 65 509 43.75 39 6138 168.35 (51.92, 116.43) 65

faults-6-4 19.26 (18.42, 0.84) 124 5987 1.75 135 7072 35.03 29 13157 88.39 (29.52, 58.87) 138

faults-7-4 51.92 (42.01, 9.91) 280 46964 3.00 256 15152 157.93 32 39895 25.34 (13.75, 11.59) 31

faults-8-3 23.54 (19.55, 3.99) 275 26311 4.76 276 26304 58.39 29 32351 107.69 (38.45, 69.24) 262

faults-9-2 48.17 (20.66, 27.51) 135 19533 0.78 33 4049 14.24 88 10996 24.48 (10.31, 14.17) 135

faults-9-3 42.62 (39.61, 3.01) 429 23836 9.03 407 49068 240.82 49 82410 285.15 (111.77, 173.38) 371

faults-10-2 27.54 (27.19, 0.35) 167 882 2.13 122 15012 48.02 119 20358 84.25 (28.48, 55.77) 165

fr-1-6 2.83 (0.34, 2.49) 8 9776 2.27 8 9776 119.56 8 7414 1.23 (0.75, 0.48) 8

fr-2-4 1.74 (1.15, 0.59) 8 1191 2.17 8 7780 8.13 8 6400 38.31 (35.61, 2.70) 11

fr-4-3 2.61 (1.02, 1.59) 10 8060 2.19 10 8060 24.66 10 20928 631.95 (527.59, 104.36) —

fr-4-6 50.15 (1.15, 49.00) 13 139964 55.59 13 153742 43.28 14 48384 249.51 (215.16, 34.35) —

forest-2-5 21.31 (16.14, 5.17) 59 6378 13.43 56 4138 229.22 59 6841 2.03 (1.52, 0.51) 56

forest-2-8 26.71 (21.55, 5.16) 59 6378 13.09 56 4138 230.13 59 6843 1.90 (1.41, 0.49) 56

Table 2: Times, plan sizes, and nodes created for LAO* with PDB, delete relaxation, and 0/1 heuristic, compared to Gamer.
Dashes in the s column for Gamer indicate plan files too large to process.

a subset of the benchmark problems solved by all four ap-
proaches, more specifically, the hard problems for which at
least one algorithm needed more than 30 seconds to solve.
In the case of PDB heuristics, the times for preprocessing
(translation from PPDDL to FOND SAS+ and PDB com-
putation, tp) and search (ts) are reported separately, with
their sum shown in the overall times column (t). Transla-
tion times were always below 0.2 seconds. For Gamer, the
times for preprocessing including reachability analysis (tp)
and search (ts), excluding plan output time, are reported.
The plan sizes reported for Gamer are not the numbers of
policy entries in the plans Gamer produces, but rather the
number of entries that remain after restricting the policy to
the states reachable following the policy. This postprocess-
ing decreases policy sizes by several orders of magnitude
(e.g., for blocksworld instance #1 the number of policy en-
tries drops from 428527 to 10).

In the blocksworld domain, problems 1 to 10 are suffi-
ciently simple to be solved by all planners, whereas the re-
maining 20 problems are too hard for all of them. On the
solved problems, our planner outperforms Gamer in terms
of search time, whereas plan sizes are similar. In the faults
domain, the pure search time of our planner is mostly lower
than that of Gamer. On the harder instances, even over-
all times of our planner, including PDB computation, are
lower than the times needed by Gamer, and our coverage
is noticeably higher. Again, plan sizes are similar. In the
first-responders domain, coverages and plan sizes are simi-
lar, and running times are very mixed. In the forest domain,
all approaches except LAO*+0/1 solve the same six prob-
lems with similar plan sizes, with Gamer needing less time.

Problem PDB DR 0/1 Gamer

bw-1 20.00 15.00 56.00 14.00
bw-2 14.00 14.00 14.00 13.50
bw-3 31.50 31.50 21.25 17.50
bw-4 29.00 33.75 32.00 26.00
bw-5 21.50 21.50 21.50 22.00
bw-6 21.50 21.50 21.50 21.50
bw-7 44.00 44.00 46.00 22.00
bw-8 24.00 28.00 24.00 24.00
bw-9 12.50 12.50 12.50 14.00
bw-10 18.00 18.00 18.00 18.00

faults-5-5 6.12 6.12 8.00 6.12
faults-6-4 9.44 8.94 13.00 8.87
faults-7-4 11.97 11.75 16.00 16.00
faults-8-3 17.69 17.70 21.00 17.16
faults-9-2 24.01 25.00 26.12 24.01
faults-9-3 20.90 21.92 22.50 20.09
faults-10-2 27.01 30.97 30.97 27.00

fr-1-6 12.00 12.00 12.00 14.00
fr-2-4 14.00 14.00 14.00 14.00
fr-4-3 15.00 15.00 15.00 —
fr-4-6 20.00 20.00 20.00 —

forest-2-5 22.83 24.00 22.83 22.00
forest-2-8 22.83 24.00 22.83 22.00

Table 3: Plan qualities (expected numbers of steps to the
goal under random selection of action outcomes) for LAO*
with PDB, delete relaxation, and 0/1 heuristic, compared to
Gamer. Note that this definition of plan quality differs from
the IPC definition for strong acyclic solutions, i.e., worst-
case number of steps to the goal. Dashes in the column for
Gamer indicate plan files too large to process.

10
2

10
3

10
4

10
5

10
6

 0 5 10

N
o

d
e

s
 g

e
n

e
ra

te
d

 b
y
 L

A
O

*

Hill-climbing steps

faults-9-5
faults-8-7
faults-6-6

Figure 2: Guidance dependent on number of local search
steps in pattern selection procedure.

Table 3 shows the expected numbers of steps to the goal
under random selection of action outcomes of the plans
found by the different approaches for the instances from Ta-
ble 2. The results do not allow us to conclude that one of the
approaches leads to significantly better plans with respect to
this quality measure.

PDB heuristic and delete relaxation heuristic provide sim-
ilar guidance to the search in all domains, and typically bet-
ter guidance than the trivial 0/1 heuristic (Table 2 is biased
towards problems for which LAO* with 0/1 heuristic acci-
dentally appears well-guided, whereas considering all prob-
lems, the 0/1 heuristic provides a clearly worse guidance
than PDBs and delete relaxation). In order to determine how
different pattern collections guide the search, we interrupted
the hill-climbing search in the space of pattern collections
after k steps for increasing k and measured the guidance
provided to LAO* by the current pattern collection after k
steps. Figure 2 shows how the guidance improves with k
for selected instances from the faults domain. Missing data
points for small k indicate that LAO* timed out.

Conclusion

We presented and evaluated a domain-independent planner
for fully observable nondeterministic planning problems us-
ing LAO* search guided by a PDB heuristic.

Our empirical evaluation suggests that heuristically
guided progression search can be competitive with or even
outperform uninformed symbolic regression search in terms
of speed and coverage if an informative heuristic is used.
The plans are of similar size and the expected numbers of
steps to the goal when executing them, assuming uniform
selection of action outcomes, are comparable as well. The
comparison between delete relaxation heuristic and PDB
heuristic shows that both heuristics guide the search simi-
larly well, with PDB guidance significantly improving with
more time spent on the pattern selection. Also, the sizes and
qualities of the plans found are comparable, whereas regard-
ing speed, LAO* search with delete relaxation heuristic is

often faster than LAO* search with PDB heuristic, if search
and preprocessing time are added. However, because of the
simple table look-up during search, pure search times are
often lower with a PDB heuristic and the larger the prob-
lems become, the more this can compensate for the higher
preprocessing times.

Acknowledgments

We thank Peter Kissmann for his assistance with Gamer and
the anonymous reviewers for their helpful suggestions.

This work was partly supported by the German Re-
search Foundation (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, see
www.avacs.org for more information), and as part of the
Transregional Collaborative Research Center SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems”.

References

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comput. Intell. 11(4):625–655.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Bercher, P., and Mattmüller, R. 2008. A planning graph
heuristic for forward-chaining adversarial planning. In
ECAI’08, 921–922.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. JAIR 26:35–
99.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artif. Intell. 147(1–2):35–84.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Comput. Intell. 14(3):318–334.

Edelkamp, S. 2001. Planning with pattern databases. In
ECP’01, 13–24.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuris-
tic search algorithm that finds solutions with loops. Artif.
Intell. 129(1–2):35–62.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI’07,
1007–1012.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell. 173(5–6):503–535.

Hoffmann, J., and Brafman, R. I. 2005. Contingent plan-
ning via heuristic forward search with implicit belief states.
In ICAPS’05, 71–80.

Kissmann, P., and Edelkamp, S. 2009. Solving fully-
observable non-deterministic planning problems via trans-
lation into a general game. In KI’09, volume 5803 of
LNCS, 1–8. Springer.

Martelli, A., and Montanari, U. 1973. Additive AND/OR
graphs. In IJCAI’73, 1–11.

