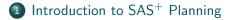
Landmarks Revisited

Silvia Richter¹ Malte Helmert² Matthias Westphal²

¹Griffith University & NICTA, Australia

²Albert-Ludwigs-Universität Freiburg, Germany

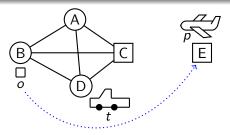
AAAI 2008


Outline

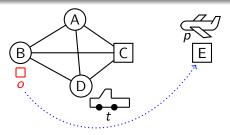
- 2 Landmarks in Previous Work
- 3 Using Landmarks as Pseudo-Heuristic

Outline

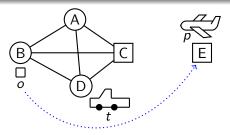
- 2 Landmarks in Previous Work
- Using Landmarks as Pseudo-Heuristic
- 4 Extended Landmark Generation

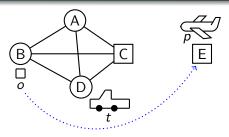

SAS^+ planning task

 SAS^+ planning task: $\Pi = \langle \mathcal{V}, \mathcal{A}, \textbf{s}_0, \textbf{s}_{\star} \rangle$

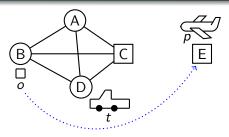

- \mathcal{V} : state variables with finite domain \mathcal{D}_{v} Fact: variable-value pair $v \mapsto d$ ($v \in \mathcal{V}, d \in \mathcal{D}_{v}$) State: variable assignment for all $v \in \mathcal{V}$
- \mathcal{A} : actions $\langle pre, eff \rangle$, with pre, eff fact sets
 - Action $a = \langle \textit{pre}, \textit{eff} \rangle$ applicable in state s if $\textit{pre} \subseteq s$
 - Applying *a* in *s* updates *s*
- s₀: initial state

• s_{\star} : partial variable assignment called the goal Sequence of actions π a plan iff $s_{\star} \subseteq s_0[\pi]$.

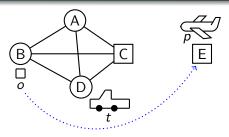

Encoding of example task


Encoding of example task

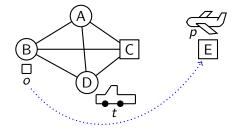
Encoding of example task



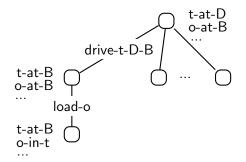
Encoding of example task


 $\mathcal{V} = \{ \mathbf{v}_{o}, \mathbf{v}_{t}, \mathbf{v}_{p} \}$ $\mathcal{D}_{\mathbf{v}_{o}} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{t}, \mathbf{p} \} \quad \mathcal{D}_{\mathbf{v}_{t}} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \}, \quad \mathcal{D}_{\mathbf{v}_{p}} = \{ \mathbf{C}, \mathbf{E} \}$ $\mathcal{A} = \{ \mathsf{drive-t-D-B}, \ \mathsf{load-o-t-B}, \ldots \}$ $s_{0} = \{ \mathbf{v}_{o} \mapsto \mathbf{B}, \ \mathbf{v}_{t} \mapsto \mathbf{D}, \ \mathbf{v}_{p} \mapsto \mathbf{E} \}$ $s_{\star} = \{ \mathbf{v}_{o} \mapsto \mathbf{E} \}$

Encoding of example task


 $\mathcal{V} = \{ \mathbf{v}_{o}, \mathbf{v}_{t}, \mathbf{v}_{p} \}$ $\mathcal{D}_{\mathbf{v}_{o}} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{t}, \mathbf{p} \} \quad \mathcal{D}_{\mathbf{v}_{t}} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \}, \quad \mathcal{D}_{\mathbf{v}_{p}} = \{ \mathbf{C}, \mathbf{E} \}$ $\mathcal{A} = \{ \mathsf{drive-t-D-B}, \ \mathsf{load-o-t-B}, \ldots \}$ $s_{0} = \{ \mathbf{v}_{o} \mapsto \mathbf{B}, \ \mathbf{v}_{t} \mapsto \mathbf{D}, \ \mathbf{v}_{p} \mapsto \mathbf{E} \}$ $s_{\star} = \{ \mathbf{v}_{o} \mapsto \mathbf{E} \}$

Encoding of example task

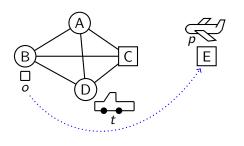


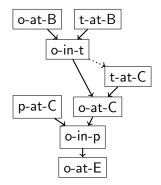
 $\begin{aligned} \mathcal{V} &= \{ \mathbf{v}_{o}, \mathbf{v}_{t}, \mathbf{v}_{p} \} \\ \mathcal{D}_{\mathbf{v}_{o}} &= \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{t}, \mathbf{p} \} \quad \mathcal{D}_{\mathbf{v}_{t}} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \}, \quad \mathcal{D}_{\mathbf{v}_{p}} = \{ \mathbf{C}, \mathbf{E} \} \\ \mathcal{A} &= \{ \mathsf{drive-t-D-B}, \ \mathsf{load-o-t-B}, \ldots \} \\ s_{0} &= \{ \mathbf{v}_{o} \mapsto \mathbf{B}, \ \mathbf{v}_{t} \mapsto \mathbf{D}, \ \mathbf{v}_{p} \mapsto \mathbf{E} \} \\ s_{\star} &= \{ \mathbf{v}_{o} \mapsto \mathbf{E} \} \quad \mathsf{o-at-E} \end{aligned}$

Encoding of example task cont'd

Preferred Operators

- Improvement of heuristic search approaches (Helmert 2006)
- Idea: prefer actions that are likely to improve heuristic value
- E.g. those which are part of plan for simplified problem

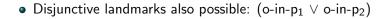

Outline

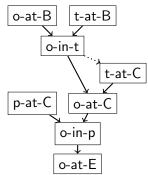


- 2 Landmarks in Previous Work
- 3 Using Landmarks as Pseudo-Heuristic
- 4 Extended Landmark Generation

Landmarks in Previous Work

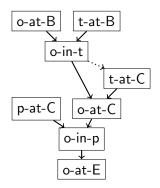
- Facts that must be true in every plan (Porteous et al. 2001 & 2002; Hoffmann et al. 2004)
- Intuitively helpful to direct seach
- Automatically found, incl. orderings





Landmarks in Previous Work cont'd

Find landmarks by backchaining


- Every goal is a landmark
- If B is landmark and all actions that first achieve B have A as precondition, then A is a landmark
- Approximation with RPGs: consider all achievers "possibly before" B (Porteous et al. 2002)

Landmarks in Previous Work cont'd

- Use as subgoals, then simply concatenate plans of subtasks ("LM-local")
- Greatly speeds up search in many domains
- But: bad-quality plans, incomplete (dead ends)
- Any base planner possible for subtasks

Outline

2 Landmarks in Previous Work

3 Using Landmarks as Pseudo-Heuristic

Landmark Heuristic + Preferred Operators

Novel usage of landmarks

- $\bullet~\mbox{Pseudo-Heuristic}=\#\mbox{landmarks}$ that still need to be achieved
- Take orderings into account (see paper for details)
- Preferred operators = landmark-achieving operators or operators in relaxed plan to nearest landmark
- Combination with other heuristics through multi-heuristic BFS (Helmert 2006)

Experiments with several heuristics (FF, CG, blind) on all tasks from past planning competitions

Results: %Tasks solved (Average)

	Algorithm		
Base Heuristic	base	LM-local	LM-heur
FF heuristic	87	82	88
CG heuristic	74	66	87
blind heuristic	25	52	84

Note: updated results for LM-local

- With all 3 heuristics, LM-heur dominates other approaches
- LM-local worse than base with CG and blind heuristic (dead ends in 8 domains)
- FF-heuristic: base and LM-local are close...

Results: %Tasks solved (Average)

	Algorithm		
Base Heuristic	base	LM-local	LM-heur
FF heuristic	87	82	88
CG heuristic	74	66	87
blind heuristic	25	52	84

- With all 3 heuristics, LM-heur dominates other approaches
- LM-local worse than base with CG and blind heuristic (dead ends in 8 domains)
- FF-heuristic: base and LM-local are close...

Results: #Tasks solved exclusively (FF heuristic)

	FF heuristic	
Domain	base	LM-heur
Airport (50)	6	2
Depot (22)	0	2
Freecell (80)	1	3
Logistics-1998 (35)	0	2
Miconic-FullADL (150)	2	0
MPrime (35)	0	3
Mystery (30)	0	1
Pathways (30)	1	2
Philosophers (48)	0	2
Pipesworld-NoTankage (50)	0	2
Pipesworld-Tankage (50)	1	5
Schedule (150)	0	1
Storage (30)	1	0
Total	12	25

LM-heur solves twice as many tasks exclusively as base

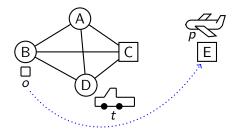
Outline

2 Landmarks in Previous Work

3 Using Landmarks as Pseudo-Heuristic

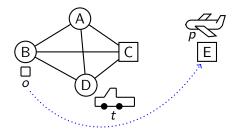
Extended Landmark Generation

- \bullet Adapted previous procedures to ${\rm SAS}^+$ planning
- Admit disjunctive landmarks
- Find additional landmarks through DTGs


Domain Transition Graphs (DTGs)

The domain transition graph of $v \in \mathcal{V}$ (DTG_v) represents how the value of v can change

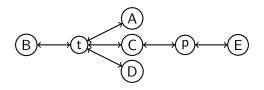
Given: a SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_* \rangle$ DTG_v is a directed graph with nodes \mathcal{D}_v that has arc $\langle d, d' \rangle$ iff


- $d \neq d'$, and
- \exists action with $v \mapsto d'$ as effect, and either
 - $v \mapsto d$ as precondition, or
 - ${\scriptstyle \bullet }$ no precondition on v

DTG Example

DTG for v_o : $B \leftarrow t \leftarrow C \leftarrow P \leftarrow E$ D

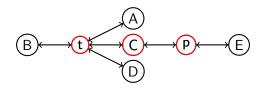
DTG Example


DTG for v_o : $B \leftarrow t \leftarrow C \leftarrow P \leftarrow E$ D

DTG Example

DTG for v_o : $B \leftarrow t \leftarrow C \leftarrow P \leftarrow E$ load-o-t-B D

Extended Landmark Generation

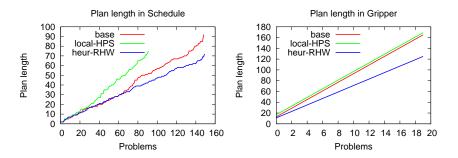


- Find additional landmarks through DTGs: if
 - $s_0(v) = d_0$,
 - $v \mapsto d$ landmark, and
 - every path from d_0 to d passes through d',

then $v \mapsto d'$ landmark

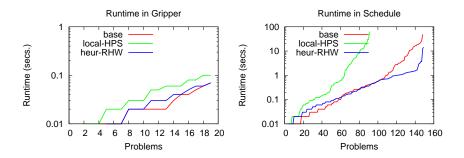
• No further improvement in % solved, but shorter plans

Extended Landmark Generation


- Find additional landmarks through DTGs: if
 - $s_0(v) = d_0$,
 - $v \mapsto d$ landmark, and
 - every path from d_0 to d passes through d',

then $v \mapsto d'$ landmark

• No further improvement in % solved, but shorter plans


Extended landmark generation – Plan length

- Local: plans 6% longer than with base
- Heur: plans 1% shorter
- Heur with extended LMs: plans 3% shorter

Remarks on Runtime

- LM generation usually < 1 sec. (max. 2 min.)
- During search: slight overhead through landmarks (\leq 18 %)
- Overhead typically outweighed by benefit in larger problems

Summary

- Landmark heuristic significantly improves existing heuristics
- More tasks solved
- Better quality of solutions (plan lengths)
- Complete, unlike previous local search approach
- First approach that handles disjunctive landmarks

Summary

- Landmark heuristic significantly improves existing heuristics
- More tasks solved
- Better quality of solutions (plan lengths)
- Complete, unlike previous local search approach
- First approach that handles disjunctive landmarks

Thank you!