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Abstract

Cost partitioning is a general method for adding multiple
heuristic values admissibly. In the setting of optimal classical
planning, saturated cost partitioning has recently been shown
to be the cost partitioning algorithm of choice for pattern
database heuristics found by hill climbing, systematic pat-
tern database heuristics and Cartesian abstraction heuristics.
To evaluate the synergy of the three heuristic types, we com-
pute the saturated cost partitioning over the combined sets of
heuristics and observe that the resulting heuristic is outper-
formed by the heuristic that simply maximizes over the three
saturated cost partitioning heuristics computed separately for
each heuristic type. Our new algorithm for choosing the or-
ders in which saturated cost partitioning considers the heuris-
tics allows us to compute heuristics outperforming not only
the maximizing heuristic but even state-of-the-art planners.

Introduction
A∗-search (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic (Pearl 1984) is one of the most efficient
methods for solving state-space search problems optimally.
Since a single heuristic is often insufficient for challenging
problems, it is usually desirable to combine the estimates of
multiple heuristics admissibly. One way of doing so is to use
their maximum, but this merely selects the best heuristic for
each evaluated state.

Cost partitioning (Katz and Domshlak 2008; Yang et al.
2008) is a general method for actually combining multiple
heuristics. By dividing the original operator costs among the
heuristics, it allows to sum the heuristic estimates admissi-
bly. The resulting cost-partitioned heuristic is often much
stronger than the maximum over the heuristics.

In the setting of optimal classical planning (Ghallab, Nau,
and Traverso 2004), it has been shown that an optimal cost
partitioning can be computed in polynomial time for abstrac-
tion (Katz and Domshlak 2008; 2010) and landmark (Karpas
and Domshlak 2009) heuristics. In practice, however, com-
puting an optimal cost partitioning is often prohibitively
expensive, even for a single state (Pommerening, Röger,
and Helmert 2013). There are many algorithms for comput-
ing non-optimal cost partitionings (e.g., Haslum, Bonet, and
Geffner 2005; Haslum et al. 2007; Katz and Domshlak 2008;
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Pommerening, Röger, and Helmert 2013). A recent addi-
tion is saturated cost partitioning (Seipp and Helmert 2014),
which operates on an ordered sequence of heuristics and it-
eratively assigns the minimum costs that one heuristic needs
for its estimates, before using the remaining costs for subse-
quent heuristics.

Seipp, Keller, and Helmert (2017a) compared multiple
cost partitioning algorithms theoretically and experimen-
tally. They computed cost partitionings for pattern databases
(PDBs) found by hill climbing (Haslum et al. 2007), system-
atic PDBs (Pommerening, Röger, and Helmert 2013), Carte-
sian abstractions (Seipp and Helmert 2013) and landmark
heuristics (Karpas and Domshlak 2009), and showed that
saturated cost partitioning is usually the method of choice
for all tested heuristic types on the IPC benchmark collec-
tion. Their results also show that the different heuristic types
have their strengths in different benchmark domains. This
suggests that computing saturated cost partitioning heuris-
tics for the combined sets of heuristics could yield an even
more accurate heuristic. Testing this hypothesis is our first
contribution.

It turns out that combining the different heuristic types
in a single cost-partitioned heuristic indeed yields a very
strong heuristic. We observe that a simple maximization
over three separately computed saturated cost partitioning
heuristics solves even more tasks, which motivates our sec-
ond contribution: by introducing a new algorithm for choos-
ing the orders in which saturated cost partitioning considers
the heuristics, we are able to compute heuristics that not only
close the gap to the simple maximization heuristic, but also
outperform the previous state of the art in optimal classical
planning.

Background
Since cost partitioning can be applied to any collection of
heuristics for state-space search, our definitions are not spe-
cific to classical planning. A state space is a directed, la-
beled graph T = 〈S,L, c, T, sI, S?〉, where S is a finite set
of states; L is a finite set of labels; c : L 7→ R is a (possibly
negative) cost function; T is a set of labeled and weighted

transitions s
l,c(l)−−−→ s′ for s, s′ ∈ S and l ∈ L; sI ∈ S is

the initial state; and S? ⊆ S is the set of goal states. A state
space is regular if c(l) ≥ 0 for all labels l. We mainly con-



sider regular state spaces, but permit negative costs within
cost partitionings as proposed by Pommerening et al. (2015).

The goal distance h∗(s) ∈ R∪{−∞,∞} of a state s ∈ S
is the cost of a cheapest path from s to a goal state in S?. It is
∞ if no such path exists and −∞ if paths of arbitrarily low
negative cost exist, which cannot happen if T is regular.

We write hc′(s) ∈ R ∪ {−∞,∞} for the heuristic esti-
mate of state s under cost function c′. A heuristic is admissi-
ble if it never overestimates the true goal distance of a given
state.

Cost Partitioning
A single heuristic is usually unable to capture enough in-
formation about challenging state-space search problems.
Therefore, it is often beneficial to consider multiple heuris-
tics (Holte et al. 2006). Cost partitioning makes the sum of
their individual estimates admissible.

Definition 1. Cost partitioning.
Let H = 〈h1, . . . , hn〉 be a tuple of admissible heuristics
for a regular state space T = 〈S,L, c, T, sI, S?〉. A cost
partitioning over H is a tuple C = 〈c1, . . . , cn〉 of (general)
cost functions whose sum is bounded by c:

∑n
i=1 ci(l) ≤

c(l) for all l ∈ L. The cost-partitioned heuristic hC is defined
as hC(s) :=

∑n
i=1 h

ci
i (s).

The sum of the cost-partitioned heuristics remains admis-
sible due to the way C distributes the cost of each (operator)
label among the heuristics.

Saturated Cost Partitioning
Even though an optimal cost partitioning for a given
state can be computed in polynomial time for abstraction
(Katz and Domshlak 2008; 2010) and landmark (Karpas
and Domshlak 2009) heuristics, the computation usually
takes prohibitively long (Pommerening, Röger, and Helmert
2013). Seipp and Helmert (2014) introduced saturated cost
partitioning, an algorithm for quickly computing subopti-
mal but very informative cost partitionings. It works on
an ordered sequence of heuristics and iteratively assigns
each heuristic only the costs that this heuristic can actu-
ally exploit, before using the remaining costs for subsequent
heuristics.

Definition 2. Saturated cost partitioning.
Let T be a regular state space and H be a set of admissible
heuristics. Given an order ω = 〈h1, . . . , hn〉, the saturated
cost partitioning C = 〈c1, . . . , cn〉 and the remaining cost
functions 〈c̄0, . . . , c̄n〉 are defined by

c̄0 = c

ci = saturate(hi, c̄i−1)

c̄i = c̄i−1 − ci

The saturated cost function saturate(h, c) is the mini-
mal cost function c′ ≤ c with hc′(s) = hc(s) for all
states s (Seipp and Helmert 2014). For abstraction heuris-
tics h, the saturated cost of operator o is the maximum over
h(s)− h(s′) for all abstract state transitions s→ s′ induced

hSCP
HC hSCP

Sys hSCP
Cart hSCP

HC,Sys,Cart max(hSCP
HC , hSCP

Sys , h
SCP
Cart)

805 852 965 1006 1032

Table 1: Number of solved tasks for different diverse satu-
rated cost partitioning heuristics.

by o. Seipp, Keller, and Helmert (2017b) showed that the or-
der in which saturated cost partitioning considers the heuris-
tics greatly influences the quality of the resulting heuristic.
To find good orders they introduced a hill climbing proce-
dure that optimizes a random initial order for a set of sam-
ples by iteratively switching the positions of two heuristics
until no better order can be reached. However, they obtained
the strongest heuristics by maximizing over multiple satu-
rated cost partitioning heuristics computed for different (ran-
dom) orders. They presented a diversification method that
only adds an order if it yields a heuristic with a higher es-
timate than all previously added orders for any of a set of
samples to ensure that only heuristics for “useful” orders are
stored and evaluated during search.

In a follow-up paper (2017a) the same authors computed
diverse saturated cost partitioning heuristics over pattern
database heuristics found by hill climbing (HC), systematic
pattern database heuristics (Sys) and Cartesian abstraction
heuristics (Cart). They observed that none of the three result-
ing heuristics dominates the other two, but that each heuris-
tic has its strengths in different benchmark domains. This
suggests combining the underlying heuristics.

Combining Heterogeneous Heuristics
We evaluate this idea by running an experiment on 1667
benchmark tasks from all optimal tracks of the Interna-
tional Planning Competition (IPC). Like Seipp, Keller, and
Helmert (2017a), we use PDB heuristics found by hill climb-
ing in at most 60 seconds (note that they used a limit of
15 minutes), systematic PDBs of sizes 1 and 2, and Carte-
sian abstractions of the landmark and goal task decompo-
sitions by Seipp and Helmert (2014). These heuristics will
form the basis of all experiments in this paper. The first four
columns in Table 1 compare the diverse saturated cost parti-
tioning heuristics computed over the three different heuristic
types separately and the heuristic obtained by computing di-
verse saturated cost partitionings over the combination of the
heuristics.

Combining the different heuristics in hSCP
HC,Sys,Cart, solving

1006 tasks, increases the total number of solved tasks by
201, 154 and 41 tasks, compared to hSCP

HC , hSCP
Sys and hSCP

Cart , re-
spectively. Each of these increases is a significant improve-
ment in the optimal planning setting where problem diffi-
culty tends to scale exponentially. However, the heuristic
that simply maximizes over the first three separately com-
puted heuristics, max(hSCP

HC , hSCP
Sys , h

SCP
Cart), solves even more

tasks (1032).
Appending a heuristic to the tuple of heuristics considered

by saturated cost partitioning can only make the resulting es-
timates more accurate. Therefore, for each heuristic order in



max(hSCP
HC , hSCP

Sys , h
SCP
Cart) using only a single type of heuristic

we could easily construct a combined order that “dominates”
the former. E.g., for an order ωHC using only pattern database
heuristics found by hill climbing, we can construct an order
ωHC ⊕ ωSys ⊕ ωCart by starting with the original order and
appending the other heuristics in any order.

We assume that the overhead incurred by evaluating the
underlying heuristics is roughly the same for hSCP

HC,Sys,Cart and
max(hSCP

HC , hSCP
Sys , h

SCP
Cart). Therefore, the difference in cover-

age between the two heuristics must stem from hSCP
HC,Sys,Cart

using worse or fewer orders, suggesting that the procedure
for finding orders can be improved.

Finding an Order for a Single State
We hypothesize that the main weakness of the diversifica-
tion procedure by Seipp, Keller, and Helmert (2017b) is that
it only considers random orders. As long as the number of
heuristics is low enough, as it may have been the case in
their experiments, a strong heuristic can often be found by
diversifying random orders. Once the number of heuristics
and therefore the space of orders grows too large however,
we need better ways for generating orders and cannot hope
to “stumble” over good ones by chance.

We believe that their procedure for optimizing a single
order with a hill climbing search was a step in the right di-
rection, but we argue that it can be improved in at least two
aspects. First, the procedure tries to find a good heuristic
order for a set of sample states, while the authors already
proved that it can be impossible to find a single good order
even for only two states. Second, their hill climbing proce-
dure lacked an important ingredient for local optimization:
a decent initial solution. To address both of these shortcom-
ings, we propose an algorithm that greedily constructs an
initial order for a single given state.

Greedy Order
Given a set of heuristics H and a state s, our goal is to find
an order resulting in a heuristic with an accurate estimate
for s. Since all cost-partitioned heuristics are admissible and
therefore underestimate the true goal distance, the ones with
higher estimates are more accurate. Roughly speaking, we
should therefore try to move heuristics with high estimates
for s to the front of an order. However, we also have to
keep in mind that only the first heuristic is allowed to use
all the costs it can exploit. Subsequent heuristics operate on
the costs that have not been consumed by previous heuris-
tics. To preserve costs for as many heuristics as possible, we
should therefore also “prefer” orders that begin with heuris-
tics using few costs.

To measure how well a heuristic balances the objectives of
having a high heuristic value and using few costs, we define
the value-per-cost ratio r for a heuristic h, a cost function c
and a state s as

r(h, c, s) =
hc(s)

1 +
∑

o∈Omax(0, ĉh(o))
,

where ĉh is the saturated cost function saturate(h, c) and
O is the set of operators of the task at hand. The denominator

Algorithm 1 Given a set of heuristics H, an operator cost
function c and a state s, compute a dynamic greedy order by
iteratively appending the heuristic with the highest value-
per-cost ratio.

1: function DYNAMICGREEDYORDER(H, c, s)
2: ω← 〈〉
3: while H 6= ∅ do
4: h← arg maxh′∈H r(h′, c, s)
5: append h to ω
6: H←H \ {h}
7: c← c− saturate(h, c)

8: return ω

sums the positive costs that h uses. We add 1 to guarantee
that the division is always defined. We ignore negative costs
since preliminary experiments showed that accounting for
them yields worse orders.

Algorithm 1 uses the value-per-cost ratio to greedily com-
pute a heuristic order. Given a set of heuristics H, a cost
function c and a state s, it starts with an empty order ω and
then iteratively appends the heuristic with the highest value-
per-cost ratio and updates the remaining cost function c un-
til all heuristics are part of ω. If there are multiple heuristics
with the same value-per-cost ratio, we break ties arbitrarily.

After the cost function c has been updated, all saturated
cost functions have to be recomputed for all remaining
heuristics H. This can become prohibitively time consum-
ing for tasks with many or large abstractions. In our practi-
cal implementation we therefore introduce a shortcut: at the
end of each loop, after updating the cost function c, we re-
move all heuristics h with hc(s) = 0 from H and collect
them in the set H0 (which is empty at the beginning of the
algorithm). Once the while-loop terminates, we append all
heuristics from H0 to ω in an arbitrary order. This change
has a negligible influence on the generated orders, but often
speeds up the algorithm significantly.

Even with this modification, computing dynamic greedy
orders can take several minutes for some tasks. By removing
line 7 from Algorithm 1 we obtain a static version that pre-
computes the saturated cost function for each heuristic once
and always returns a greedy order in less than 0.05 seconds.

Evaluation
We implemented the dynamic and static versions of our
greedy algorithm in the Fast Downward planning system
(Helmert 2006) and used the downward-lab toolkit (Seipp
et al. 2017) to conduct experiments. As above, we evaluate
our ideas on 1667 benchmark tasks from all previous op-
timal IPC tracks. We apply time and memory limits of 30
minutes and 2 GiB to all algorithm runs.

Single Order We begin by evaluating which algorithm
produces the best initial order for a given state. For each task
we compute a dynamic and static greedy order for the ini-
tial state and a random order. Table 2 compares the resulting
heuristic estimates for the initial state. Ignoring optimized
orders (*-opt) for now, we see that the orders found for the



optimized

rand static dyn rand static dyn

rand – 223 105 0 55 20
static 842 – 92 184 0 17
dyn 989 501 – 268 111 0
rand-opt 1086 650 463 – 179 111
static-opt 1058 681 511 344 – 115
dyn-opt 1108 747 548 402 231 –

Table 2: Pairwise comparison of algorithms producing a sin-
gle order for saturated cost partitioning. The entry in row x
and column y holds the number of tasks in which algorithm
x yielded a heuristic with a higher heuristic estimate for sI
than algorithm y. For each comparison we highlight the al-
gorithm with more such tasks in bold.

initial state by the dynamic and static greedy algorithms are
much better than random orders. The results also show that
the dynamic version has an edge over the static one: the for-
mer produces a better order than the latter in 501 tasks, while
the opposite is the case in only 92 tasks.

Single Optimized Order Even though the greedy algo-
rithms produce good orders on their own, Table 2 reveals
that we can usually improve them. The three “optimized”
versions take the non-optimized order as input and optimize
them with Seipp, Keller, and Helmert’s hill climbing search
(2017b) for at most three minutes. Depending on whether we
use a random, static or dynamic order, 1086, 681 and 548
tasks benefit from the optimization. The results also show
that optimizing the orders cancels out much of the advan-
tage that dynamic orders have over static ones: optimized
dynamic orders are better than optimized static orders in
231 tasks, but the opposite is true in 115 tasks as well. Opti-
mizing random orders often produces higher estimates com-
pared to using non-optimized dynamic orders (463 vs. 268
tasks). However, optimized dynamic orders are usually bet-
ter than optimized random orders (402 vs. 111 tasks), show-
ing that both an initial greedy order and optimizing it after-
wards are essential for obtaining the best orders.

Diverse Orders As Seipp, Keller, and Helmert (2017b)
demonstrated, we should use multiple orders and maximize
over the resulting heuristics if we want to obtain accu-
rate heuristic estimates for more than a single state. Con-
sequently, we use their diversification procedure, but instead
of random orders, we diversify optimized greedy orders. In
detail, our adapted diversification procedure samples 1000
states with the sampling algorithm by Haslum et al. (2007)
and then iteratively samples an additional state s, computes
a greedy order ω for s, optimizes ω for s with hill climbing
and adds ω to the set of orders if the corresponding heuristic
has a higher heuristic estimate for any of the 1000 samples
than all previously added orders. Preliminary experiments

optimized

rand max-rand rand dyn static hybrid tasks

rand – 5 3 5 2 2 1006
max-rand 8 – 6 4 2 2 1032
rand-opt 5 6 – 4 2 1 1009
dyn-opt 10 9 8 – 3 1 1034
static-opt 9 10 6 7 – 2 1041
hybrid-opt 10 10 8 6 3 – 1048

Table 3: Left: Pairwise coverage comparison of different
heuristics derived by saturated cost partitioning. The entry in
row x and column y holds the number of domains in which
algorithm x solved more tasks than algorithm y. For each
comparison we highlight the algorithm with higher cover-
age for more domains in bold. Right: Total number of solved
tasks by each algorithm.

made us use a time limit of one second for optimization.
Table 3 compares four different planners that use our new

diversification procedure, grouped under “optimized” and
only differing in the choice of initial order, to two planners
diversifying random orders. The “rand” planner corresponds
to the hSCP

HC,Sys,Cart planner in the first experiment and com-
putes diverse saturated cost partitionings over the combined
set of heuristics. The “max-rand” planner corresponds to the
max(hSCP

HC , hSCP
Sys , h

SCP
Cart) planner above and maximizes over

separately computed diverse saturated cost partitionings.
The results show that diversifying optimized random or-

ders (“rand-opt”) is insufficient for solving as many tasks in
total as “max-rand”, but the two algorithms are on par in a
domain-wise comparison. Among the algorithms diversify-
ing optimized orders, “static-opt” has an edge over “dyn-
opt”, which in turn has an edge over “rand-opt”, both in
a domain-wise comparison and in terms of total coverage.
Since there are domains in which the slower-to-compute, but
often more informative dynamic orders outperform static or-
ders, we also evaluate the following hybrid algorithm: com-
pute the dynamic order for the initial state and compute the
static order for all other samples. As we can see, “hybrid-
opt” combines the advantages of the two ingredients and
outperforms both.

Comparison to State of the Art In our final experiment
we compare the new hSCP

hybrid-opt algorithm to the symbolic
search planner SymBA∗2 (Torralba, Linares López, and Bor-
rajo 2016), the winner of the IPC 2014 sequential optimiza-
tion track. SymBA∗2 uses h2 mutexes to prune irrelevant op-
erators (Alcázar and Torralba 2015), an important prepro-
cessing step that can be combined with any planner. In 22
domains hSCP

hybrid-opt using h2 mutexes solves more tasks than
SymBA∗2, while the opposite is true in only 11 domains.
hSCP

hybrid-opt using h2 mutexes also solves significantly more
tasks in total (1084) than SymBA∗2 (1008).



Conclusion
We combined multiple types of abstraction heuristics in a
single heuristic with saturated cost partitioning and observed
a significant increase in the number of solved tasks. Ana-
lyzing the new heuristic revealed some weak spots of the
heuristic construction process. As a result, we proposed a
greedy algorithm for finding heuristic orders given a sam-
ple state. Combining our greedy algorithm, the hill climbing
search for optimizing an order and the procedure for finding
multiple diverse orders, we obtained a heuristic that outper-
forms the previous state of the art.

Acknowledgments
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