
Heuristics and Symmetries in Classical Planning: Additional Proofs
Alexander Shleyfman

Technion, Haifa, Israel
alesh@technion.ac.il

Michael Katz
IBM Haifa Research Lab, Israel

katzm@il.ibm.com

Malte Helmert and Silvan Sievers and Martin Wehrle
University of Basel, Switzerland

{malte.helmert,silvan.sievers,martin.wehrle}@unibas.ch

Technical Report CS-2014-006

Symmetries of the State Transition Graph –
Theorem 1 of the Main Paper

Theorem 1 Let Π be a planning task, let s be one of its
states, let π be a sequence of operators of Π, and let σ be a
symmetry of TΠ. Then π is a plan for s iff σ(π) is a plan for
σ(s), and the two plans have the same cost.

Proof: We only need to show one direction, since the inverse
element σ−1 is also a symmetry. Let π = o1 · . . . · ok be a
plan for s and let s0, . . . , sk be the sequence of states such
that s0 = s and for 1 ≤ i ≤ k, si = si−1JoiK. Let TΠ =
〈S,E〉. Then we have 〈si−1, si; oi〉 ∈ E for all 1 ≤ i ≤
k and therefore, by the definition of symmetries we have
〈σ(si−1), σ(si);σ(oi)〉 ∈ E and C(σ(oi)) = C(oi). Thus,
σ(π) is a sequence of actions that is applicable in σ(s) and
ends with the state σ(sk). Since sk is a goal state, by the
definition of symmetries σ(sk) is a goal state. Furthermore,
C(σ(π)) =

∑k
i=1 C(σ(oi)) =

∑k
i=1 C(oi) = C(π). �

Structural Symmetries – Theorem 2 of the
Main Paper

For convenience, we repeat here the definition of structural
symmetries.

Definition 1 Let Π = 〈P,O, I,G,C〉 be a STRIPS planning
task. A permutation σ of Π is a structural symmetry if
• σ(P) = P
• σ(O) = O, and for all o ∈ O:

– pre(σ(o)) = σ(pre(o))
– add(σ(o)) = σ(add(o))
– del(σ(o)) = σ(del(o))
– C(σ(o)) = C(o)

• σ(G) = G

Lemma 1 Let Π be a planning task. The set of structural
symmetries of Π with the permutation composition opera-
tion is a group.

Proof: Let Σ be the set of structural symmetries of Π =
〈P,O, I,G,C〉. To show that a set of permutations of a finite
set forms a group under composition, it is sufficient to show
that it is nonempty and that it is closed under composition
(if σ1 ∈ Σ and σ2 ∈ Σ, then σ1 ◦ σ2 ∈ Σ). For the former,

it is easy to verify that the identity function id satisfies the
conditions of Definition 1.

For the latter, let σ1, σ2 ∈ Σ, and consider σ := σ1 ◦ σ2.
We have σ(P) = σ1(σ2(P)) = σ1(P) = P , where we use,
in sequence: the definition of σ, the fact that σ2 is a struc-
tural symmetry, and the fact that σ1 is a structural symmetry.
In the same way, we obtain σ(O) = O and σ(G) = G.
Let o ∈ O. We have pre(σ(o)) = pre(σ1(σ2(o)) =
σ1(pre(σ2(o))) = σ1(σ2(pre(o))) = σ(pre(o)), where we
use, in sequence: the definition of σ, the fact that σ1 is a
structural symmetry, the fact that σ2 is a structural symme-
try, and the definition of σ. In the same way, we obtain
add(σ(o)) = σ(add(o)) and del(σ(o)) = σ(del(o)). Fi-
nally, we get C(σ(o)) = C(σ1(σ2(o))) = C(σ2(o)) =
C(o), where we use, in sequence: the definition of σ, the
fact that σ1 is a structural symmetry, and the fact that σ2 is a
structural symmetry. �

Lemma 2 Let Π be a planning task and σ be a structural
symmetry of Π. Let α be the mapping of TΠ = 〈S,E〉
induced by σ, that is α(s) = σ(s) and α(〈s, s′; o〉) =
〈σ(s), σ(s′);σ(o)〉. Then α is an automorphism of TΠ.

Proof: We must show for all states s, s′ and operators o:
1. 〈s, s′; o〉 ∈ E iff 〈σ(s), σ(s′);σ(o)〉 ∈ E
2. C(σ(o)) = C(o)

3. s is a goal state iff σ(s) is a goal state
Property 1: Let 〈s, s′; o〉 ∈ E. Because o is applicable

in s, we have pre(o) ⊆ s and hence σ(pre(o)) ⊆ σ(s).
Because σ is a structural symmetry, we have σ(pre(o)) =
pre(σ(o)) and hence pre(σ(o)) ⊆ σ(s), showing that σ(o)
is applicable in σ(s).

We have s′ = (s \ del(o)) ∪ add(o), and hence

σ(s′) = σ((s \ del(o)) ∪ add(o))

= σ(s \ del(o)) ∪ σ(add(o))

= (σ(s) \ σ(del(o))) ∪ σ(add(o)) (*)
= (σ(s) \ del(σ(o))) ∪ add(σ(o)), (**)

which establishes that σ(s′) is the successor of σ(s) under
operator σ(o). Here, (*) uses the fact that σ is injective, and
(**) uses the fact that σ is a structural symmetry.

Together, this shows the “⇒” part of property 1. For
the opposite direction, let 〈σ(s), σ(s′);σ(o)〉 ∈ E for

a structural symmetry σ. From Lemma 1, σ−1 is also
a structural symmetry, and applying the “⇒” result, we
get 〈σ−1(σ(s)), σ−1(σ(s′));σ−1(σ(o))〉 ∈ E, and hence
〈s, s′; o〉 ∈ E, proving the result.

Property 2: This is true by definition of structural symme-
tries.

Property 3: If s is a goal state, then G ⊆ s, where G is
the set of goal facts. This implies σ(G) ⊆ σ(s) and hence
G ⊆ σ(s) (because σ(G) = G by definition of structural
symmetries), and hence σ(s) is a goal state. The opposite
direction follows in the same way as with Property 1 by con-
sidering the inverse symmetry σ−1. �

We now seek to relate structural symmetries to PDG sym-
metries. To this end, we next repeat the definition of PDGs.

Definition 2 Let Π = 〈P,O, I,G,C〉 be a STRIPS planning
task. The problem description graph (PDG) of Π is the col-
ored digraph 〈N,E〉 with nodes

N =
⋃
p∈P
{vp, vT

p , v
F
p} ∪ {vo | o ∈ O},

node colors

col(v) =


1 if v = vT

p , p ∈ G
2 + C(o) if v = vo, o ∈ O
0 otherwise

and edges

E =
⋃
p∈P
{〈vp, vT

p〉, 〈vp, vF
p〉} ∪

⋃
o∈O

(
Epre
o ∪ Eadd

o ∪ Edel
o

)
,

where Epre
o = {〈vT

p , vo〉 | p ∈ pre(o)},

Eadd
o = {〈vo, vT

p〉 | p ∈ add(o)},

Edel
o = {〈vo, vF

p〉 | p ∈ del(o)}.

Next, we define the notion of PDG symmetries.

Definition 3 Let Π a planning task. A PDG symmetry of
Π is an automorphism of the problem description graph
〈N,E〉 of Π, i.e., a function α : N → N such that:

1. α is bijective
2. col(α(n)) = col(n) for all n ∈ N
3. 〈n, n′〉 ∈ E iff 〈α(n), α(n′)〉 ∈ E

PDG symmetries induce transition graph symmetries. To
formally define these, first observe that every PDG symme-
try must map each node of the form vp (p ∈ P) to a variable
of the same form (because these nodes are the only nodes
with color 0 and outgoing arcs leading to nodes with color
0 or 1, and automorphisms must preserve such connectivity
properties). Having established this, it is easy to show that
if α(vp) = vp′ , then one of the two possibilities must hold:

1. α(vT
p) = α(vT

p′) and α(vF
p) = α(vF

p′), or

2. α(vT
p) = α(vF

p′) and α(vF
p) = α(vT

p′).

This means that PDG symmetries induce a permutation on
the propositions of the task, and they additionally have the
ability of swapping between truth and falsity of the mapped-
to propositions. In other words, they can be viewed as per-
mutations of the literals of a planning task where literals of
the same variable are always mapped to literals of the same
variable, but true and false literals may be reversed by the
mapping.

Definition 4 Let α be a PDG symmetry of a planning task
Π = 〈P,O, I,G,C〉 with states S.

The transition graph symmetry induced by α is the func-
tion σ defined on S ∪O as follows:

σ(s) = {p | ∃p′ ∈ P : (p′ ∈ s ∧ α(vT
p′) = vT

p ∨
p′ /∈ s ∧ α(vF

p′) = vT
p)}

σ(o) = o′ whenever α(vo) = vo′ for operators o, o′ ∈ O

It is not difficult to verify that σ is well-defined and sat-
isfies the criteria of a transition graph symmetry. We do
not show a formal proof because this follows from the ear-
lier work on symmetries by Pochter, Zohar, and Rosen-
schein (2011).

Unlike structural symmetries, which operate on the level
of propositions, PDG symmetries can be viewed as oper-
ating on variable/value assignments. As a consequence of
this, if s is a state and σ is a transition graph symmetry in-
duced by a PDG symmetries, it is possible that |σ(s)| 6= |s|,
which can never happen with structural symmetries. How-
ever, we will see in Theorem 2 that this does not give PDG
symmetries significantly more expressiveness than struc-
tural symmetries.

We first show that structural symmetries can be viewed as
a special case of PDG symmetries.

Lemma 3 Let σ be a structural symmetry of a planning task
Π = 〈P,O, I,G,C〉, and let 〈N,E〉 be the PDG of Π.

Define α : N → N as follows:

1. α(vp) = vσ(p) for all p ∈ P
2. α(vT

p) = vT
σ(p) for all p ∈ P

3. α(vF
p) = vF

σ(p) for all p ∈ P
4. α(vo) = vσ(o) for all o ∈ O

Then α is a PDG symmetry that induces the same transi-
tion graph symmetry as σ.

Proof: We first prove that α is a PDG symmetry by verifying
the three properties of Definition 2.

Property 1 (bijectivity of α): follows easily from σ(P) =
P and σ(O) = O

Property 2 (α preserves colors): for nodes of the form
vo with o ∈ O, we have col(α(vo)) = col(vσ(o)) =
2 + C(σ(o)) = 2 + C(o) = col(vo), where we use that
C(σ(o)) = C(o) for structural symmetries σ. All other
nodes have color 0 or 1 and are mapped to nodes that have
color 0 or 1, so it is sufficient to show that col(v) = 1
iff col(α(v)) = 1. Consider a node v with col(v) = 1.
Then v = vT

p for some p ∈ G. We obtain α(v) = vT
σ(p)

with σ(p) ∈ G (because p ∈ G and σ(G) = G), and
hence col(α(v)) = 1. The opposite direction (showing that
col(α(v)) = 1 implies col(v) = 1) is analogous.

For Property 3 (α preserves arcs), it is sufficient to show
the implication “If e = 〈n, n′〉 ∈ E, then α(e) :=
〈α(n), α(n′)〉 ∈ E.” The opposite direction then follows
from a counting argument and the fact that α is a bijection.
So consider the different kinds of arcs e ∈ E:
• If e = 〈vp, vT

p〉, then α(e) = 〈α(vp), α(vT
p)〉 =

〈vσ(p), v
T
σ(p)〉 ∈ E.

• The case of arcs of the form 〈vp, vF
p〉 is analogous.

• If e ∈ Epre
o for some operator o, then e = 〈vT

p , vo〉 for
some proposition p ∈ pre(o). Then σ(p) ∈ σ(pre(o)) =
pre(σ(o)) (where the equality holds because σ is a struc-
tural symmetry), and hence α(e) = 〈α(vT

p), α(vo)〉 =

〈vT
σ(p), vσ(o)〉 ∈ Epre

σ(o).

• The case of arcs in Eadd
o and of arcs in Edel

o is analogous.
It remains to show that σ and α induce the same transi-

tion system symmetry, i.e., that σ(s) = σ′(s) for all states
s and σ(o) = σ′(o) for all operators o, where σ′ is the tran-
sition system symmetry induced by α. This is obvious for
operators o, so consider a state s.

By definition, we have σ′(s) = {p | ∃p′ ∈ P : (p′ ∈
s∧α(vT

p′) = vT
p ∨ p′ /∈ s∧α(vF

p′) = vT
p)}. The second case

can never occur for the given PDG symmetry α because it
never maps “negative literals” to “true literals”, so for the
given α, we obtain:

σ′(s) = {p | ∃p′ ∈ P : p′ ∈ s ∧ α(vT
p′) = vT

p}
= {p | ∃p′ ∈ P : p′ ∈ s ∧ vT

σ(p′) = vT
p}

= {p | ∃p′ ∈ P : p′ ∈ s ∧ σ(p′) = p}
= {σ(p′) | ∃p′ ∈ P : p′ ∈ s}
= {σ(p′) | p′ ∈ s}
= σ(s).

�

We now show that the opposite conversion – from PDG
symmetries to structural symmetries – is also possible if
each proposition of the planning task occur as a precondi-
tion of some operator or as a goal.

Lemma 4 Let Π = 〈P,O, I,G,C〉 be a planning task with⋃
o∈O pre(o)∪G = P . Let α be a PDG symmetry of Π, and

let 〈N,E〉 be the PDG of Π.
Define σ : P ∪O → P ∪O as follows:

1. σ(p) = p′ for all p, p′ ∈ P with α(vp) = vp′ .
2. σ(o) = o′ for all o, o′ ∈ O with α(vo) = vo′

Then σ is a structural symmetry that induces the same
transition graph symmetry as α.

Proof: We need to establish that σ is well-defined, that it is
a structural symmetry, and that it induces the same transition
graph symmetry as α.

We first show that σ is well-defined:

• NP = {vp | p ∈ P} are the only nodes with color 0 and
no incoming edges in the PDG, and hence we must have
α(NP) = NP . This ensures that σ is well-defined on P .
It also establishes σ(P) = P .

• Similarly, NO = {vo | o ∈ O} are the only nodes
with color strictly larger than 1, and hence we must have
α(NO) = NO. This ensures that σ is well-defined
on O. It also establishes σ(O) = O. Moreover, we
have C(σ(o)) = col(vσ(o)) − 2 = col(α(vo)) − 2 =
col(vo)− 2 = C(o) for all operators o.
We now show that σ satisfies the remaining properties of

structural symmetries. From our previous observation re-
garding the way that PDG symmetries map a group of nodes
referring to one variable to a group of nodes referring to one
variable, for all p ∈ P we must have α(vT

p) = vT
σ(p) or

α(vT
p) = vF

σ(p). Under the restriction to Π in the statement
of the lemma, the first case must always apply:
• Each p ∈ P belongs to G or be a precondition of some

operator. First consider p ∈ G. Then we must have
α(vT

p) = vT
σ(p) because α must preserve the color of vT

p ,
which is 1.

• Now consider p such that p ∈ pre(o) for some operator
o. Then we must have α(vT

p) = vT
σ(p) because vT

p has
an outgoing arc in the PDG (to vo) and hence must be
mapped to another node with an outgoing arc. Nodes of
the form vF

p′ do not have outgoing arcs.
We have thus shown that α only maps “positive literals”

to “positive literals” and consequently must map “negative
literals” to “negative literal”. The proof of the remaining
properties of σ and the proof that α and σ define the same
transition system symmetry is now a mechanical exercise
along the same lines as the proof of the previous lemma. �

Theorem 2 Let Π be a planning task. Then:
1. If σ is a structural symmetry of Π, then σ (viewed as a

function on the states and operators of Π) is a transition
graph symmetry of TΠ.

2. The structural symmetries form a subgroup of Aut(TΠ).
3. Every structural symmetry of Π corresponds to a PDG

symmetry of Π in the sense that they induce the same tran-
sition graph symmetry.

4. If each proposition of Π occurs as an operator precondi-
tion or in the goal, then every PDG symmetry of Π cor-
responds to a structural symmetry of Π in the sense that
they induce the same transition graph symmetry.

Proof: Statement 1 is due to Lemma 2. Statement 2 is due
to Lemmas 2 and 1. Statement 3 is due to Lemma 3. State-
ment 4 is due to Lemma 4. �

Delete Relaxation – Corner Cases and
Theorem 6 of the Main Paper

After the proof that the optimal delete relaxation heuristic
h+ is invariant under symmetry, the main paper notes (foot-
note 2):

To keep the presentation short, we gloss over some de-
tails here: the case of zero-cost actions and the case
where the equations minimize or maximize over empty
sets are discussed in the technical report.

We now discuss these cases.

Empty Sets and Infinities
The equations defining hmax contain two instances of min-
imization and maximization: Eq. (5) maximizes over the
costs of achieving all facts in a given set. If the set is empty,
this maximum can simply be defined to be 0. The more com-
plicated instance is Eq. (3), which includes a minimization
over the cost estimate for of all operators that achieve a given
fact. If no operator exists that achieves a given fact, this is
ill-defined.

A simple solution to avoid treating this case specially is
to consider a slightly modified planning task Π′ which is
identical to the given planning task Π except that we add an
additional operator oall, without preconditions, which adds
all facts of the task.

We set the cost of oall large enough that it cannot affect
the hmax estimate of any state with finite hmax value. For ex-
ample, we can set C(oall) to 1 plus the sum of operator costs
of all other operators.1 Then hmax in Π and Π′ are identical
for all states with finite hmax estimates in Π. Moreover, we
can ignore the case of states with infinite hmax value because
hmax(s) =∞ iff h+(s) =∞ for all states s, and we have al-
ready established earlier that h+ is invariant under structural
symmetry.

It is easy to see that Π and Π′ have essentially the same
structural symmetries: every structural symmetry in Π′ must
map oall to itself (because no other operator has the same
cost), and it is easy to verify that σ is a structural symmetry
of Π iff σ′ defined as σ′(oall) = oall and σ′(x) = σ(x) for
all x 6= oall is a structural symmetry of Π′.

Hence, we can in the following assume that we are work-
ing on the modified task Π′ instead of Π. This means that
the minimization in Eq. (3) is always over a non-empty set
and that all numbers involved in the computation of hmax are
finite.

Zero-Cost Operators
In the presence of zero-cost operators, the equations defining
hmax and other delete relaxation heuristics can have multiple
solutions, which complicates the analysis of the heuristic.

Let Π = 〈P,O, I,G,C〉 be a planning task. For ε > 0,
let Πε be the planning task obtained from Π by replacing
the cost of 0-cost operators with ε. Thus, Πε has no 0-cost
operators. Let hmax

ε be the maximum heuristic for Πε. Then
hmax
ε is invariant under structural symmetry because we have

established this property for hmax on tasks without 0-cost
operators.

If we fix the planning task Π = 〈P,O, I,G,C〉 and one
of its states s, we can vie hmax

ε (s) as a function of s. From
the well-known definition of hmax in terms of relaxed plan-
ning graphs, it is easy to see that hmax

ε (s) can be expressed
1The same basic idea works for other delete relaxation heuris-

tics like hadd, but we might need to assign a higher cost to oall.

i

oi→a oi→b

a b

oa→c oa→d oa→e ob→d ob→e ob→f

c d e f

oc→g ode→g of→g

g

σ

σ

σ

Figure 1: An example STRIPS planning task.

as a finite-size2 expression whose components are all of the
following type:
• maximum over a number of subexpressions,
• summation over a number of subexpressions, or
• the cost of a given operator.
If we take the operator costs as the variables in this expres-
sion, all ingredients are continuous functions of their com-
ponents, and the composition of continuous functions is con-
tinuous.

Hence, the hmax value for a given state is a continuous
function of the operator costs, and we get

hmax(s) = lim
ε→0

hmax
ε (s).

Therefore, showing that hmax is invariant under structural
symmetry for operators with positive cost is sufficient for
showing that the same also holds in the general case of non-
negative cost.

FF Heuristic
Theorem 6 1. There exist tie-breaking policies for which

FF/hmax is not invariant under structural symmetry.
2. There exist tie-breaking policies for which FF/hadd is not

invariant under structural symmetry.
3. Let hFF be a randomized variant of the FF heuristic

where supporters are selected w.r.t. a heuristic that is
invariant under structural symmetry (like hmax or hadd)
and ties are broken uniformly randomly. This heuristic
is invariant under structural symmetry in the sense that
for all states s and structural symmetries σ, hFF(s) and
hFF(σ(s)) are identically distributed random variables.
2There must be a constant L such that the hmax costs in the

relaxed planning graph “level off” after at most L layers, no matter
how the operator costs are chosen. For example, setting L to the
number of facts is always sufficient since at least one new fact must
receive its final hmax value at each new layer where the relaxed
planning graph has not leveled off yet.

i

oi→a oi→b

a b

oa→cd oa→e ob→d ob→ef

c d e f

ocd→g ode→g oef→g

g

σ

σ

σ

Figure 2: An example STRIPS planning task.

Proof: Statement 1. is shown by the example planning task
Π1 illustrated in Figure 1. The propositions are marked
by circle nodes and operators by rounded nodes with pre-
conditions/add effects as incoming/outgoing arcs. Formally,
Π = 〈P,O, I,G,C〉 where P = {i, a, b, c, d, e, f, g}, with
I = {i} and G = {g}. Operators O = {oi→a, oi→b,
oa→c, oa→d, oa→e, ob→d, ob→e, ob→f , oc→g , ode→g , of→g}
have unit cost. Operators are denoted by their preconditions
and add effects, opre→add, and delete effects are empty for
all operators. Let s = {i, a}. Note that both oc→g and
ode→g can be best-supporters og(s) of g, since hmax(c; s) =
hmax({d, e}; s) = 1. However, if og(s) = oc→g is chosen,
then hFF(s) = C(oa→c) + C(oc→g) = 2. Alternatively,
if og(s) = ode→g , then hFF(s) = C(oa→d) + C(oa→e) +
C(ode→g) = 3.

Our example task Π has one structural symmetry σ of
order two, with mapping of propositions depicted by dot-
ted edges, self loops left out. Mapping of operators by σ
is depicted by colors, having operators with the same color
mapped into each other. Note that for each ox→y ∈ O, we
have σ(ox→y) = oσ(x)→σ(y), and thus σ is indeed a struc-
tural symmetry of Π.

Now, let s′ = σ(s) = {i, b}. Note that, similarly to s,
we have og(s′) ∈ {of→g, ode→g}. Also, similarly to s, if
og(s

′) = of→g , then hFF(s′) = 2, and if og(s′) = ode→g ,
then hFF(s′) = 3. Since nothing prevents a tie breaking
where og(s′) 6= σ(og(s)), there exists a tie breaking such
that hFF(s) 6= hFF(s′). One such tie breaking and the result-
ing heuristic calculation for s and s′ are depicted in Figure 1
by red and green colors, respectively.

Statement 2. is shown by the example planning task Π2

illustrated in Figure 2. The notation we use here is similar to
the notation of Statement 1. As in the previous example the
operators O = {oi→a, oi→b, oa→cd, oa→d, oa→ef , ob→d,
ob→e, ob→f , ocd→g , ode→g , oef→g} have unit cost.

Let s = {i, a}. Note that both ocd→g and ode→g can be

best-supporters og(s) of g, since hadd(c; s) + hadd(d; s) =
hadd(d; s) + hadd(e; s) = 2. If og(s) = ocd→g is chosen,
then hFF(s) = C(oa→cd) + C(ocd→g) = 2. However, if
og(s) = ode→g , then hFF(s) = C(oa→cd) + C(oa→e) +
C(ode→g) = 3.

The symmetrical part of the example for the state s′ =
σ(s) = {i, b} is done almost identically to Statement 1.

For statement 3., we must define supp, plan and hFF as
random variables, modeling the random tie-breaking be-
tween supporters with the same opcost values in Eq. 3 of
the main paper. For this purpose, for every state s, we de-
fine a finite probability space with carrier set Ω(s), where
each atomic event ω ∈ Ω(s) corresponds to one of the pos-
sible choices for the best supporter function in state s. More
precisely, let Π = 〈P,O, I,G,C〉. Then

Ω(s) = {supp : P → O | ∀p ∈ P :

opcost(supp(p), s) = min
o∈O:p∈add(o)

opcost(o, s)}

consists of all possible best supporter functions. We set
P (s, ω) = 1

|Ω(s)| for all states s and all ω ∈ Ω(s). In other
words, for every state s, each best supporter function that
minimizes opcost in s is assigned the same probability. This
is equivalent to saying that each individual best supporter de-
cision for a given fact p ∈ P is made uniformly randomly.
(The probability space Ω(s) can be viewed as a product of
individual probability spaces that uniformly choose between
the best supporters of each fact.)

The definition of the FF heuristic value depends
on propcost, opcost and setcost, which remain non-
probabilistic in this setting because they only depend on
heuristic computations such as hadd or hmax (for the compu-
tation of supporters) that are not affected by tie-breaking. It
also depends on supp and plan, which are now random vari-
ables, i.e., also depend on the random choice of ω ∈ Ω(s).
We reflect this by making supp, plan and hFF itself functions
of ω in addition to the arguments they previously depended
on, obtaining:

supp(p, s, ω) = ω(p) if p /∈ s (1)
plan(p, s, ω) = ∅ if p ∈ s (2)

plan(p, s, ω) = {supp(p, s, ω)} ∪
⋃

q∈pre(supp(p,s,ω))

plan(q, s, ω) if p /∈ s

(3)

hFF(s, ω) =
∑

o∈
⋃

q∈G plan(q,s,ω)

C(o) (4)

(Note how the definition of supp(p, s, ω) captures that ω is
the randomly selected best supporter function for state s, so
ω(p) is the randomly chosen best supporter for fact p.)

For a given best supporter function ω : P → O and struc-
tural symmetry σ, let σ(ω) : P → O be the function that
maps σ(p) to σ(o) whenever ω(p) = o. Due to the sym-
metry results for hadd shown in the main paper, we have that
whenever ω is a best supporter function for a given state s,
σ(ω) is a best supporter function for σ(s). Therefore, we
get σ(Ω(s)) = Ω(σ(s)). Among other things, this shows

that Ω(s) and Ω(σ(s)) have the same size, and hence the
probability of choosing best supporter function ω in state s
is the same as the probability of choosing σ(ω) in σ(s).

We now show how supp and plan interact with structural
symmetries σ. For supp, we obtain:

supp(σ(p), σ(s), σ(ω)) = σ(ω)(σ(p))

= σ(ω(p))

= σ(supp(p, s, ω)).

Next, we define planσ as follows:

planσ(p, s, ω) = σ−1(plan(σ(p), σ(s), σ(ω)))

For all p ∈ s, we have:

planσ(p, s, ω) = σ−1(plan(σ(p), σ(s), σ(ω)))

= ∅,

where the last equality holds because σ(p) ∈ σ(s).
For all p /∈ s, we have σ(p) /∈ σ(s), and we obtain:

σ(planσ(p, s, ω))

= σ(σ−1(plan(σ(p), σ(s), σ(ω))))

= plan(σ(p), σ(s), σ(ω))

= {supp(σ(p), σ(s), σ(ω))} ∪
⋃

q∈pre(supp(σ(p),σ(s),σ(ω)))

plan(q, σ(s), σ(ω))

= {σ(supp(p, s, ω))} ∪
⋃

σ(q′)∈pre(supp(σ(p),σ(s),σ(ω)))

plan(σ(q′), σ(s), σ(ω))

= {σ(supp(p, s, ω))} ∪
⋃

σ(q′)∈pre(σ(supp(p,s,ω)))

plan(σ(q′), σ(s), σ(ω))

= {σ(supp(p, s, ω))} ∪
⋃

σ(q′)∈σ(pre(supp(p,s,ω)))

plan(σ(q′), σ(s), σ(ω))

= {σ(supp(p, s, ω))} ∪
⋃

q′∈pre(supp(p,s,ω))

plan(σ(q′), σ(s), σ(ω))

= {σ(supp(p, s, ω))} ∪
⋃

q′∈pre(supp(p,s,ω))

σ(planσ(q′, s, ω))

= σ({supp(p, s, ω)} ∪
⋃

q′∈pre(supp(p,s,ω))

planσ(q′, s, ω))

and therefore

planσ(p, s, ω)

= {supp(p, s, ω)} ∪
⋃

q′∈pre(supp(p,s,ω))

planσ(q′, s, ω).

This shows that planσ satisfies the same recursive equa-
tions as plan. Because these equations uniquely define plan,
we must thus have planσ = plan, and we can conclude:

σ(plan(p, s, ω)) = σ(planσ(p, s, ω))

= σ(σ−1(plan(σ(p), σ(s), σ(ω))))

= plan(σ(p), σ(s), σ(ω)).

For the random variable denoting the FF heuristic, we thus
obtain:

hFF(σ(s), σ(ω)) =
∑

o∈
⋃

q∈G plan(q,σ(s),σ(ω))

C(o)

=
∑

o∈
⋃

q∈G plan(σ(q),σ(s),σ(ω))

C(o)

=
∑

o∈
⋃

q∈G σ(plan(q,s,ω))

C(o)

=
∑

o′∈
⋃

q∈G plan(q,s,ω)

C(σ(o′))

=
∑

o′∈
⋃

q∈G plan(q,s,ω)

C(o′)

= hFF(s, ω).

Taking into account the bijection between ω ∈ Ω(s)
and σ(ω) ∈ Ω(σ(s)) discussed previously, this shows that
hFF(s) and hFF(σ(s)), seen as random variables, are identi-
cally distributed. This concludes the proof. �

Landmarks – Theorem 11 of the Main Paper
Theorem 11 LetL be a landmark generation method that is
invariant under structural symmetry, and let h be a heuristic
such that h(s) derives a heuristic estimate from L(s) using
one of the following techniques:
1. counting landmarks (Richter and Westphal 2010)
2. summing the minimal operator costs of each landmark

(Richter, Helmert, and Westphal 2008)
3. optimal cost partitioning (Karpas and Domshlak 2009)
4. uniform cost partitioning with or without special treat-

ment of action landmarks (Karpas and Domshlak 2009)
5. hitting sets (Bonet and Helmert 2010)
Then h is invariant under structural symmetry.

Proof: All parts except 4. are shown in the main pa-
per, so we now discuss the remaining part 4. Let Π =
〈P,O, I,G,C〉 be the planning task under consideration,
and let L be a landmark generation method that is invari-
ant under structural symmetry. Let h1 be the variant of the
landmark heuristic with uniform cost partitioning that treats
action landmarks specially, and let h2 be the one that does
not.

First, we define the set of action landmarks that are treated
specially, which we denote by OAL(s):

OAL(s) = {o ∈ O | {o} ∈ L(s)} if h = h1

OAL(s) = ∅ if h = h2.

Denote by L′(s) all landmarks that participate in the cost
partitioning process:3

L′(s) = {L ∈ L(s) | L ∩OAL(s) = ∅}
3Informally, in h2, these are simply all landmarks. In h1, these

are all landmarks which do not contain an operator that defines an
action landmark. The stated definition in terms ofOAL(s) works in
either case.

Denote by OL(s) all operators that participate in at least
one landmark in L′(s):

OL(s) =
⋃

L∈L′(s)

L

We assign a “per-landmark cost share” to each such op-
erator in state s, which is the operator cost divided by the
number of landmarks for which it participates in the cost
partitioning:

share(o, s) =
C(o)

|{L ∈ L′(s) | o ∈ L}|
for all o ∈ OL(s).

The overall heuristic value is then the sum of two parts:

h(s) = hAL(s) + hL(s),

where hAL(s) is the cost contributed by action landmarks
that are treated specially:

hAL(s) =
∑

o∈OAL(s)

C(o)

and hL(s) is the cost contributed by other landmarks:

hL(s) =
∑

L∈L′(s)

min
o∈L

share(o, s)

We now show that h is invariant under structural symme-
try, so let σ be a structural symmetry. The proof proceeds in
stages, showing in sequence:

OAL(σ(s)) = σ(OAL(s)) (5)

L′(σ(s)) = σ(L′(s)) (6)
OL(σ(s)) = σ(OL(s)) (7)

share(σ(o), σ(s)) = share(o, s) (8)
hAL(σ(s)) = hAL(s) (9)
hL(σ(s)) = hL(s) (10)
h(σ(s)) = h(s) (11)

The last of these results then concludes the proof.
Regarding Eq. 5: if h = h2, this is trivial, as both sides

are equal to ∅. If h = h1, we get

OAL(σ(s)) = {o ∈ O | {o} ∈ L(σ(s))}
= {o ∈ O | {o} ∈ σ(L(s))}
= {σ(o′) | o′ ∈ O, {σ(o′)} ∈ σ(L(s))}
= {σ(o′) | o′ ∈ O, {o′} ∈ L(s)}
= σ({o′ ∈ O | {o′} ∈ L(s)})
= σ(OAL(s)).

Regarding Eq. 6:

L′(σ(s)) = {L ∈ L(σ(s)) | L ∩OAL(σ(s)) = ∅}
= {L ∈ σ(L(s)) | L ∩ σ(OAL(s)) = ∅}
= {σ(L′) | L′ ∈ L(s), σ(L′) ∩ σ(OAL(s)) = ∅}
= {σ(L′) | L′ ∈ L(s), σ(L′ ∩OAL(s)) = ∅}
= {σ(L′) | L′ ∈ L(s), L′ ∩OAL(s) = ∅}
= σ({L′ ∈ L(s) | L′ ∩OAL(s) = ∅})
= σ(L′(s))

Regarding Eq. 7:

OL(σ(s)) =
⋃

L∈L′(σ(s))

L

=
⋃

L∈σ(L′(s))

L

=
⋃

L′∈L′(s)

σ(L′)

= σ

(⋃
L′∈L′(s)

L′
)

= σ(OL(s))

Regarding Eq. 8, for all o ∈ OL(s) (or equivalently:
σ(o) ∈ σ(OL(s)) = OL(σ(s))):

share(σ(o), σ(s)) =
C(σ(o))

|{L ∈ L′(σ(s)) | σ(o) ∈ L}|

=
C(o)

|{L ∈ σ(L′(s)) | σ(o) ∈ L}|

=
C(o)

|{σ(L′) ∈ σ(L′(s)) | σ(o) ∈ σ(L′)}|

=
C(o)

|{L′ ∈ L′(s) | o ∈ L′}|
= share(o, s)

Regarding Eq. 9:

hAL(σ(s)) =
∑

o∈OAL(σ(s))

C(o)

=
∑

o∈σ(OAL(s))

C(o)

=
∑

o′∈OAL(s)

C(σ(o′))

=
∑

o′∈OAL(s)

C(o′)

= hAL(s)

Regarding Eq. 10:

hL(σ(s)) =
∑

L∈L′(σ(s))

min
o∈L

share(o, σ(s))

=
∑

L∈σ(L′(s))

min
o∈L

share(o, σ(s))

=
∑

L′∈L′(s)

min
o∈σ(L′)

share(o, σ(s))

=
∑

L′∈L′(s)

min
o′∈L′

share(σ(o′), σ(s))

=
∑

L′∈L′(s)

min
o′∈L′

share(o′, s)

= hL(s)

Regarding Eq. 11:

h(σ(s)) = hAL(σ(s)) + hL(σ(s))

= hAL(s) + hL(s)

= h(s)

�

References
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. ECAI 2010, 329–334.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proc. IJCAI 2009, 1728–1733.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
Proc. AAAI 2011, 1004–1009.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI 2008, 975–982.

