Strengthening Canonical Pattern Databases with Structural Symmetries

Silvan Sievers¹

Martin Wehrle¹
Michael Katz²

Malte Helmert¹

¹University of Basel, Switzerland ²IBM Watson Health, Haifa, Israel

June 20, 2017

Motivation

- Structural symmetries in recent work:
 - Symmetry-based pruning in forward search
 - Symmetric lookups
 - Enhancing merge-and-shrink heuristics

Motivation

- Structural symmetries in recent work:
 - Symmetry-based pruning in forward search
 - Symmetric lookups
 - Enhancing merge-and-shrink heuristics
- In this work:
 - Symmetric pattern databases
 - Canonical PDB heuristic invariant under symmetry

Outline

- Background
- 2 Structural Symmetries and (Canonical) PDBs
- 3 Experiments

Setting

Optimal classical planning

TRANSPORT-OPT11, #5

Canonical PDB Heuristic

- Set of patterns: pattern collection C
- Maximal-disjoint-additive subsets A of C
- Canonical PDB heuristic: sum PDB values whenever possible, maximize otherwise

$$h^{C_C}(s) = \max_{B \in A} \sum_{P \in B} h^P(s)$$

Structural Symmetries

- Permutation of variables, operators, and facts
- Goal-stable automorphisms: preserve structure

Example

Example

Example

Outline

- Background
- 2 Structural Symmetries and (Canonical) PDBs
- 3 Experiments

Symmetric Patterns

Definition

For pattern $P = \{v_1, \dots, v_n\}$ and symmetry σ of planning task Π , the symmetric pattern is $\sigma(P) = \{\sigma(v_1), \dots, \sigma(v_n)\}.$

Symmetric Patterns

Definition

For pattern $P = \{v_1, \dots, v_n\}$ and symmetry σ of planning task Π , the symmetric pattern is $\sigma(P) = \{\sigma(v_1), \dots, \sigma(v_n)\}.$

Theorem

For all states s of Π : $h^{P}(s) = h^{\sigma(P)}(\sigma(s))$.

Implicit PDBs

- Patterns P, Q with $\sigma(Q) = P$
- Alternative to computing both PDBs:
 - Compute h^P
 - Keep $\langle h^P, \sigma \rangle$ as implicit representation
 - Computation of implicit PDB: $h^Q(s) = h^P(\sigma(s))$

Symmetric and Disjoint-additive Pattern Collections

Definition

Pattern collection C is closed under symmetry group Γ if for all $\sigma \in \Gamma$ and for all $P \in C$, $\sigma(P) \in C$.

• \overline{C} symmetric closure of C if $P, \sigma(P) \in \overline{C}$ for all $P \in C$

Symmetric and Disjoint-additive Pattern Collections

Definition

Pattern collection C is closed under symmetry group Γ if for all $\sigma \in \Gamma$ and for all $P \in C$, $\sigma(P) \in C$.

• \overline{C} symmetric closure of C if $P, \sigma(P) \in \overline{C}$ for all $P \in C$

Theorem

If pattern collection C is disjoint-additive, then also \overline{C} is disjoint-additive.

Invariance and Dominance of the CPDB Heuristic

Theorem

If pattern collection C is closed under symmetry group Γ , then for all states s of Π : $h^{C_c}(s) = h^{C_c}(\sigma(s))$.

Invariance and Dominance of the CPDB Heuristic

Theorem

If pattern collection C is closed under symmetry group Γ , then for all states s of Π : $h^{C_c}(s) = h^{C_c}(\sigma(s))$.

Theorem

For pattern collection C and symmetry group Γ , for all states s of Π : $h_{SI}^{\mathcal{C}_{\mathcal{C}}}(s) \leq h^{\mathcal{C}_{\overline{\mathcal{C}}}}(s)$.

 $C = \{v^{\rho_2}\} \{v^{\rho_3}\} \{v^{\rho_4}\} \{v^{\rho_5}\} \{v^{t_1}, v^{t_2}, v^{\rho_1}\} \}$

$$C = (\{v^{p_2}\}\{v^{p_3}\}\{v^{p_4}\}\{v^{p_5}\}\{v^{t_1}, v^{t_2}, v^{p_1}\})$$

$$= \{v^{t_1}, v^{t_2}, v^{p_1}\}$$

$$\overline{C} = \{v^{p_3}\}\{v^{p_4}\}\{v^{p_5}\}\{v^{p_2}\}$$

$$\{v^{t_1}, v^{t_2}, v^{p_2}\} = \{v^{p_1}\}\{v^{t_1}, v^{t_2}, v^{p_3}\}$$

• Example computations for the initial state:

Example computations for the initial state:

$$h^{C_C}(s_0) = \max\{2+2+2+2+180\} = 188$$

$$C = \{v^{p_2}\} \{v^{p_3}\} \{v^{p_4}\} \{v^{p_5}\} \{v^{t_1}, v^{t_2}, v^{p_1}\}$$

$$\overline{C} = \{v^{t_1}, v^{t_2}, v^{p_1}\}$$

$$\{v^{t_1}, v^{t_2}, v^{p_2}\} \{v^{p_3}\} \{v^{p_5}\} \{v^{p_2}\}$$

$$\{v^{t_1}, v^{t_2}, v^{p_2}\} \{v^{p_1}\} \{v^{t_1}, v^{t_2}, v^{p_3}\}$$

Example computations for the initial state:

$$h^{C_C}(s_0) = \max\{2+2+2+180\} = 188$$

 $h^{C_{\overline{C}}}(s_0) = \max\{180+2+2+2+2,$
 $476+2+2+2+2,$
 $180+2+2+2+2\} = 484$

Outline

- Background
- 2 Structural Symmetries and (Canonical) PDBs

3 Experiments

Results for A*

	HC-CPDB		
	orig	symm	symm-impl
Coverage (# solved tasks)	814	813	813
Search out of memory	774	736	730
Search out of time	70	109	115

Not shown: dominance over symmetric lookups

Expansions

(dominance in 194 task across 33 domains)

Experiments

Results for Symmetry-based Pruning

Background

	HC-CPDB with DKS			
	orig	symm	symm-impl	
Coverage (# solved tasks) Expansions 95th percentile	887 3510224	893 2584593	891 2584593	

Conclusions

- Implicit PDBs: trade-off between memory and runtime
- CPDB heuristic invariant under symmetry if using symmetric closure of pattern collection
- Fruitful combination with symmetry-based pruning methods