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Abstract

We suggest the use of linear temporal logic (LTL) for express-
ing declarative information about optimal solutions of search
problems. We describe a general framework that associates
LTLf formulas with search nodes in a heuristic search algo-
rithm. Compared to previous approaches that integrate spe-
cific kinds of path information like landmarks into heuristic
search, the approach is general, easy to prove correct and easy
to integrate with other kinds of path information.

Introduction
Temporal logics allow to formulate and reason about the de-
velopment of logic-based systems, for example about paths
in factored state spaces. These are for instance common in
planning, where temporal logics have always been present.
As one extreme, the entire planning task can be specified in a
temporal logic language and plans are generated by theorem
proving (Koehler and Treinen 1995) or model construction
(Cerrito and Mayer 1998).

In a different approach, the planning system can exploit
domain-specific search control knowledge, given as part of
the input. Such control knowledge can be a temporal logical
formula that every “meaningful” plan must satisfy, therefore
reducing the size of the search space and speeding up the
plan generation (Bacchus and Kabanza 2000; Doherty and
Kvarnström 2001).

This is related to planning for temporally extended goals
(e. g. Bacchus and Kabanza 1998; Kabanza and Thiébaux
2005), where a plan does not need to reach a state with a
given goal property but the action sequence must satisfy a
given temporal formula.

PDDL 3 state trajectory constraints (Gerevini and Long
2005) integrate both worlds by extending a fragment of lin-
ear temporal logic with an additional operator that allows to
specify a classical goal property.

For all these approaches, the temporal formulas are part
of the input. In contrast, Wang et al. (2009) generate tempo-
ral task-specific trajectory constraints in a fully automated
fashion from landmark orderings (Hoffmann, Porteous, and
Sebastia 2004; Richter and Westphal 2010). This informa-
tion is used to derive better estimates with the FF heuristic
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(Hoffmann and Nebel 2001) by evaluating it on a modified
task that makes the constraints visible to the heuristic.

We argue that trajectory constraints in propositional lin-
ear temporal logic on finite traces (LTLf ) are suitable for a
much more extensive application in heuristic search: a uni-
fied way of describing path-dependent information inferred
during the search. In planning, there are many techniques
that exploit a specific type of information and maintain it
with specialized data structures and implementations. For
example, landmark heuristics (Richter and Westphal 2010;
Karpas and Domshlak 2009; Pommerening and Helmert
2013) track the landmark status for each operator sequence.
A unified formalism for these techniques would offer two
main advantages: decoupling the derivation and exploita-
tion of information and easily combining different sources
of information.

Currently the derivation and exploitation of information
are integrated in most cases: someone proposes a new source
of information and shows how it can correctly be exploited
(requiring new correctness proofs every time). In our frame-
work, LTLf formulas meeting a feasibility criterion provide
an interface between derivation and exploitation. Thus, new
sources of information only need to be proven to be feasi-
ble, while new ways of exploiting information only need to
be proven to derive (path) admissible heuristics for any in-
formation meeting this criterion. This separation will also
make it easier for practitioners in real-world applications to
specify domain-specific knowledge and correctly exploit it
without needing to know the details of heuristic search.

Due to the unified LTLf representation in our framework,
it is trivial to combine information from different sources. If
heuristics are able to use any kind of feasible information,
combining information will strengthen the heuristic without
needing to adapt the heuristic itself.

In the rest of the paper, we first introduce the necessary
background on LTLf and the considered planning formal-
ism. We define a feasibility criterion for LTLf trajectory
constraints in optimal planning that allows to combine con-
straints and to develop them over the course of actions. Af-
terwards, we demonstrate how feasible trajectory constraints
can be derived from several established sources of informa-
tion. We present a heuristic based on LTLf constraints and
show how the entire framework integrates with the A∗ algo-
rithm. We finish with an experimental evaluation.



Background
In linear temporal logic (LTL, Pnueli 1977) a world w over a
set P of propositional symbols is represented as set w ⊆ P
of the symbols that are true in w. LTL extends propositional
logic (with operators ¬ and ∧) with a unary operator dand a
binary operator U , which allow to formulate statements over
infinite sequences of such worlds. Intuitively, dϕmeans that
ϕ is true in the next world in the sequence, and ϕUψ means
that in some future world ψ is true and until then ϕ is true.

In addition, we use the following common abbreviations:

• Standard abbreviations of propositional logic such as ∨
(or),→ (implies), > (true), ⊥ (false)

• ♦ϕ = >Uϕ expresses that ϕ will eventually be true.

• �ϕ = ¬♦¬ϕ expresses that from the current world on, ϕ
will always be true.

• ϕRψ = ¬(¬ϕU¬ψ) expresses that ψ holds until ϕ holds
as well (releasing ψ) or forever.1

LTL on finite traces (LTLf , De Giacomo and Vardi 2013;
De Giacomo, De Masellis, and Montali 2014) defines se-
mantics for finite world sequences, using the additional ab-
breviation last = ¬ d>, which is true exactly in the last
world of the sequence.

Definition 1 (Semantics of LTLf ). Let ϕ be an LTLf for-
mula over a set of propositional symbols P and let w =
〈w0, . . . , wn〉 be a sequence of worlds over P .

For 0 ≤ i ≤ n, we inductively define when ϕ is true at
instant i (written w, i |= ϕ) as:

• For p ∈ P , w, i |= p iff p ∈ w0

• w, i |= ¬ψ iff w, i 6|= ψ

• w, i |= ψ1 ∧ ψ2 iff w, i |= ψ1 and w, i |= ψ2

• w, i |= dψ iff i < n and w, i+ 1 |= ψ

• w, i |= ψ1Uψ2 iff there exists a j with i ≤ j ≤ n s.t.
w, j |= ψ2 and for all i ≤ k < j, w, k |= ψ1

If w, 0 |= ϕ, we say that ϕ is true in w or that w satisfies
ϕ and also write this as w |= ϕ.

In our application, we do not only want to reason about
finalized world sequences but also about possible contin-
uations of given prefixes. Bacchus and Kabanza (2000)
showed for standard LTL with infinite world sequences how
we can evaluate formulas progressively over the beginning
〈w0, . . . , wi〉 of a world sequence. The idea is to cre-
ate a formula which is satisfied by arbitrary continuations
〈wi+1, wi+2, . . . 〉 iff the original formula is satisfied by the
entire sequence 〈w0, . . . , wi, wi+1, . . . 〉. As long as we do
not progress over the last world in the sequence, the progres-
sion rules (shown in Figure 1) also work for LTLf :

Proposition 1. For an LTLf formula ϕ and a world
sequence 〈w0, . . . , wn〉 with n > 0 it holds that
〈w1, . . . , wn〉 |= progress(ϕ,w0) iff 〈w0, . . . , wn〉 |= ϕ.

1WhileR can be expressed in terms of the essential operators, it
is necessary for the positive normal form, which we will introduce
and use later.

ϕ progress(ϕ,w)

p ∈ P: > if p ∈ w, ⊥ otherwise
¬ψ: ¬progress(ψ,w)

ψ ∧ ψ′: progress(ψ,w) ∧ progress(ψ′, w)

ψ ∨ ψ′: progress(ψ,w) ∨ progress(ψ′, w)dψ: ψ

�ψ: progress(ψ,w) ∧�ψ
♦ψ: progress(ψ,w) ∨ ♦ψ
ψUψ′: progress(ψ′, w) ∨ (progress(ψ,w) ∧ (ψUψ′))
ψRψ′: progress(ψ′, w) ∧ (progress(ψ,w) ∨ (ψRψ′))
last: ⊥
>: >
⊥: ⊥

Figure 1: Progression Rules

For an example, consider formula ϕ = dx ∧ ♦z over
P = {x, y, z} stating that in the following world proposi-
tion x should be true and at some point z should be true.
The progression of ϕ with a world w = {x, z} is

progress( dx ∧ ♦z, w) = progress( dx,w) ∧
progress(♦z, w)

= x ∧ (progress(z, w) ∨ ♦z)

= x ∧ (> ∨ ♦z) ≡ x
The progression eliminates the ♦z from the formula be-

cause it is already satisfied with w. Subformula dx gets re-
placed with x, which fits the requirement that x should now
be true if ϕ is satisfied by the overall world sequence.

In the special case where a progression results to ⊥ (or
>), it is clear that no (or any) continuation will result in an
overall world sequence that satisfies the original formula.

We consider search problems given as STRIPS planning
tasks with action costs. Such a planning task is a tu-
ple Π = 〈V,A, I,G〉, where V is a set of propositional
state variables, A is a set of actions, I ⊆ V is the ini-
tial state and G ⊆ V is the goal description. An action
a = 〈pre(a), add(a), del(a), c(a)〉 ∈ A consists of the pre-
condition pre(a) ⊆ V , the add effects add(a) ⊆ V , the
delete effects del(a) ⊆ V and the action cost c(a) ∈ R+

0 . A
state s ⊆ V is defined by a subset of the variables. Action a
is applicable in state s if pre(a) ⊆ s. Applying a in s leads
to the successor state s[a] = (s\del(a))∪add(a). A path is
a sequence of actions π = 〈a1, . . . , an〉 and is applicable in
state s if the actions are applicable consecutively. We denote
the resulting state with s[〈a1, . . . , an〉]. For the empty path,
s[〈〉] = s. The cost of the path is c(π) =

∑n
i=1 c(ai). A

plan is a path π such that G ⊆ I[π]. It is optimal if it has
minimal cost.

We will formulate LTLf trajectory constraints that do not
only cover state variables but also action applications. We
follow the approach by Calvanese, De Giacomo, and Vardi
(2002) and introduce an additional variable a for each action
of the planning task. Therefore, the set P comprises these
action variables plus the state variables of the planning task.



For the concatenation of two finite sequences σ and σ′,
we write σσ′. For example, 〈w1, . . . , wn〉〈w′1, . . . , w′m〉 =
〈w1, . . . , wn, w

′
1, . . . , w

′
m〉. We use this notation for action

and world sequences.

Feasible LTLf Formulas for Optimal Planning
Graph search algorithms like A∗ operate on search nodes n
that associate a state s(n) with a path of cost g(n) from the
initial state I to this state. We want to associate search nodes
with LTLf trajectory constraints that characterize how the
path to the node should be continued. This information can
then be exploited for deriving heuristic estimates.

Such per node LTLf constraints are suitable for opti-
mal planning if they are satisfied by any continuation of
the path to the node into an optimal plan. To capture
this notion, we define the world sequence induced by path
ρ = 〈a1, . . . , an〉 in state s as wsρ = 〈{a1} ∪ s[a1], {a2} ∪
s[〈a1, a2〉], . . . , {an} ∪ s[ρ], s[ρ]〉 and introduce the follow-
ing feasibility criterion:

Definition 2 (Feasibility for nodes). Let Π be a planning
task with goal G and optimal plan cost h∗ and let n be a
node in the search space that is associated with state s.

An LTLf formula ϕ is feasible for n if for all paths ρ such
that

• ρ is applicable in s,
• the application of ρ leads to a goal state (G ⊆ s[ρ]), and
• g(n) + c(ρ) = h∗

it holds that wsρ |= ϕ.

If the path to node n is not a prefix of an optimal plan,
then any formula is feasible for n. Otherwise, ϕ must be
true for any continuation of the path into an optimal plan but
not necessarily for continuations into suboptimal plans.

If a formula is feasible for a node, its progression is feasi-
ble for the corresponding successor node.

Theorem 1. Let ϕ be a feasible formula for a node n, and
let n′ be the successor node reached from n with action a.
Then progress(ϕ, {a} ∪ s(n′)) is feasible for n′.

Proof. Let Ra be the set of paths that continue the history
of n to an optimal plan (and are therefore relevant for the
feasibility of ϕ) and in addition begin with action a. If Ra

is empty, the path leading to n′ cannot be continued to an
optimal plan and therefore any formula is feasible for n′.
Otherwise let ρ′ be a path that continues the path to n′ to an
optimal plan. Then ρ = 〈a〉ρ′ is in Ra and ws(n)ρ |= ϕ.

Since ws(n)ρ = 〈{a} ∪ s(n′)〉ws(n
′)

ρ′ , Proposition 1 implies

that ws(n
′)

ρ′ |= progress(ϕ, {a} ∪ s(n′)).

We also have the opportunity to incorporate additional
feasible trajectory constraints: if we can derive a new fea-
sible formula ϕnew for a node, we can safely combine it
with the progressed formula ϕprogress to a feasible formula
ϕprogress ∧ ϕnew.

Since graph search algorithms eliminate nodes with dupli-
cate states, a strategy for combining feasible formulas from

nodes with identical state is desirable. Instead of only keep-
ing the formula of the preserved node, we can exploit the
information of two paths of equal cost by combining the two
feasible formulas:

Theorem 2. Let n and n′ be two search nodes such that
g(n) = g(n′) and s(n) = s(n′). Let further ϕn and ϕn′ be
feasible for the respective node. Then ϕn ∧ ϕn′ is feasible
for both n and n′.

Proof sketch. Whether a formula is feasible for a node only
depends on the set of relevant paths characterized in Defini-
tion 2. The node only influences this characterization with
its g-value and its associated state s. Therefore, a formula is
either feasible for all nodes that agree on these components
or for none of them. Feasibility of the conjunction follows
directly from the LTLf semantics.

Feasible formulas for a node only talk about the future but
do not cover the current state. This can lead to an needlessly
complicated specification of information that is derived be-
fore starting the search. For example, the notion of land-
marks is defined for the entire state sequence traversed by
a plan – including the initial state. We therefore also intro-
duce feasibility for tasks that allows to naturally formulate
information about this entire state sequence.

Definition 3 (Feasibility for tasks). Let Π be a planning task
with initial state I . An LTLf formula ϕ is feasible for Π if
〈I〉wIπ∗ |= ϕ for all optimal plans π∗.

Progressing a feasible formula for a task with its initial
state yields a feasible formula for the initial search node.

Finding Feasible LTLf Trajectory Constraints
In this section we will demonstrate how existing examples
from the literature can be used to derive feasible LTLf tra-
jectory constraints. We will present details for landmarks
and unjustified action applications. To give an intuition for
the scope of the framework, we will also briefly comment
on further possibilities.

Fact Landmarks and Landmark Orderings
A (fact) landmark (Hoffmann, Porteous, and Sebastia 2004)
is a state variable that must be true at some point in every
plan. A landmark ordering specifies that before a landmark
becomes true some other landmark must have been true.

There are several methods in the literature to extract
such landmark information for a given planning task (Zhu
and Givan 2003; Hoffmann, Porteous, and Sebastia 2004;
Richter and Westphal 2010; Keyder, Richter, and Helmert
2010).

Wang, Baier, and McIlraith (2009) already encoded land-
mark orderings in LTL. Since in our scenario, progression
notices when a landmark has been reached, we can use a
slightly more compact formalization.

We base our definitions of landmarks and landmark order-
ings on the notions by Richter and Westphal (2010).

A state variable p is a (fact) landmark of a planning task
Π if the application of every plan π of Π visits some state



that contains p. Therefore, ♦p is a feasible formula for the
task if p is a landmark.

There are three types of sound landmark orderings.
A natural ordering l →nat l

′ states that if l′ becomes true
for the first time at time step i, then l must be true at some
time step j < i. This can be expressed as ¬l′U(l ∧ ¬l′)
because l′ can only become true after l was true.

A greedy-necessary ordering l →gn l
′ states that if l′ be-

comes true for the first time at step i, then l must be true at
time step i−1. This can be formulated as ¬l′U(l∧¬l′∧ dl′)
because l must be true directly before l′ becomes true for the
first time.

A necessary ordering l →nec l
′ states that for each time

step i where l′ becomes true, l must be true at time step
i − 1. Put differently, whenever l′ becomes true in the next
step, then currently l must be true: �(¬l′ ∧ dl′ → l).

There are important other landmark-related notions for
which we are not aware of any previous LTL encodings.

One such relevant source of information are the first
achievers of a landmark. A first achiever set FAl for a land-
mark l is a set of actions such that in any plan one of these
actions makes the landmark true for the first time. For a first
achiever set FAl the formula l ∨

∨
a∈FAl

♦a describes that if
the landmark is not initially true, then one of the actions in
the set needs to be applied.

The landmark count heuristic (Richter and Westphal
2010) counts how many landmarks have not yet been
reached (i. e., they have not been true on the path to the
node) and how many reached landmarks are required again.
A reached landmark l is required again if l is false in the
current state and there is a greedy-necessary (or necessary)
ordering l→ l′ where l′ has not yet been reached. Addition-
ally, any reached landmark l that is a goal proposition and
false in the current state is required again.

We can formulate these conditions for required again
landmarks as (♦l)U l′ for greedy-necessary orderings l →gn
l′ and as (♦g)U

∧
g′∈G g

′ for goal landmarks g and goal
specification G.

All these formulas can be combined into a single LTLf

formula that is feasible for the task:
Proposition 2. For planning task Π with goal G, let L be a
set of landmarks and let Onat, Ogn, and Onec be sets of nat-
ural, greedy-necessary and necessary landmark orderings,
respectively. Let FA be a set of first achiever sets for land-
marks. The following formula ϕ is feasible for Π.

ϕ = ϕlm ∧ ϕfa ∧ ϕnat ∧ ϕgn ∧ ϕnec ∧ ϕra ∧ ϕgoal

where
• ϕlm =

∧
l∈L ♦l

• ϕfa =
∧

FAl∈FA

(
l ∨
∨

a∈FAl
♦a
)

• ϕnat =
∧

l→natl′∈Onat

(
¬l′U(l ∧ ¬l′)

)
• ϕgn =

∧
l→gnl′∈Ogn

(
¬l′U(l ∧ ¬l′ ∧ dl′))

• ϕnec =
∧

l→necl′∈Onec
�(¬l′ ∧ dl′ → l)

• ϕra =
∧

l→l′∈Ogn∪Onec

(
(♦l)U l′

)
• ϕgoal =

∧
g∈G

(
(♦g)U

∧
g′∈G g

′)

The subformula ϕlm ∧ ϕra ∧ ϕgoal also provides an alter-
native way of computing the inadmissible landmark count
heuristic, which can only be used for planning without op-
timality guarantee: We determine this task-feasible formula
from the same precomputation as performed by the land-
mark count heuristic and progress it in our framework. The
heuristic estimate for a node can then be determined from
the associated feasible formula as the cardinality of the set
of all state variables that occur within a ♦ formula but are
false in the state of the node.

Action Landmarks
A (disjunctive) action landmark is a set of actions of which
at least one must occur in any plan.

If L is a set of action landmarks for state s′ then ϕL =∧
L∈L ♦(

∨
a∈L a) is feasible for all nodes n with s(n) = s′.

One example for an action landmark is the set of first
achievers for a landmark that is currently not true. Also the
LM-Cut heuristic (Helmert and Domshlak 2009) derives a
set of action landmarks as a byproduct of the heuristic com-
putation. The incremental LM-Cut heuristic (Pommerening
and Helmert 2013) stores and progresses this set to speed up
the LM-Cut computation for the successor states. At the ap-
plication of an action a, incremental LM-Cut creates a new
landmark set for the successor state by removing all action
landmarks that contain a. Let L and L′ be the respective
landmark sets before and after the action application. The
progression of ϕL over a is logically equivalent to ϕL′ , so
LTLf progression reflects the landmark-specific progression
by incremental LM-Cut.

Unjustified Action Applications
The key idea behind unjustified action applications (Karpas
and Domshlak 2011; 2012) is that every action that occurs in
a plan should contribute to the outcome of the plan – by en-
abling another action in the plan or by making a goal propo-
sition finally true.

The definition is based on the notion of causal links: a
path ρ = 〈a1, . . . , an〉 has a causal link between the i-th and
the j-th action application if i < j, ai adds a proposition p
which stays true and is not added again until step j − 1, and
p is a precondition of aj . If there is a link between the i-th
and a later action application in a plan π or the i-th action
adds a goal proposition that is not added again later, then the
i-th action application is justified, otherwise it is unjustified.

A plan π with an unjustified application of a positive-cost
action a cannot be optimal because removing this action ap-
plication from π results in a cheaper plan π′.

The notion of unjustified action applications is defined
for entire plans but during search the question is whether
the current path can be extended to a plan without unjusti-
fied action applications and how we can characterize such an
extension. The relevant information can easily be encoded
within the LTLf framework: if the last action application is
justified, at least one of the add effects must stay true and
cannot be added again until it is used as a precondition or
for satisfying the goal. Since we want to preserve all opti-
mal plans, we do not exploit this information for zero-cost
actions.



Theorem 3. Let Π = 〈V,A, I,G〉 be a planning task and
let n be a search node that was reached with a positive-cost
action a. Then the following formula ϕa is feasible for n:

ϕa =
∨

e∈add(a)\G

(
(e ∧

∧
a′∈A with
e∈add(a′)

¬a′)U
∨

a′∈A with
e∈pre(a′)

a′
)
∨

∨
e∈add(a)∩G

(
(e ∧

∧
a′∈A with
e∈add(a′)

¬a′)U
(
last ∨

∨
a′∈A with
e∈pre(a′)

a′
))

Proof sketch. Let ρ denote the path that lead to n. Assume
that ϕa is not feasible for n, so there is a path ρ′ that satisfies
the conditions from Definition 2 but ws(n)ρ′ 6|= ϕa. Then ρ′

does not use any add effect of a before it gets deleted or
added again by another action application. Also each goal
atom added by a is deleted or added again by ρ′. Therefore
the application of a in the plan ρρ′ is unjustified. As c(a) >
0 there exists a cheaper plan and g(n)+c(ρ′) cannot be equal
to the optimal plan cost of Π. This is a contradiction to ρ′
satisfying the conditions from Definition 2.

The original implementation of unjustified action appli-
cations requires an analysis of the causal links and resulting
causal chains of the action sequence. All information re-
quired for this reasoning is encoded in the LTLf formulas
and standard LTLf progression replaces this analysis of the
causal interactions.

We could even go further: Instead of adding a feasible
formula ϕa after each application of action a, we could also
extend the feasible formula for the initial node with a con-
junction

∧
a∈A a → dϕa, ranging over the set of all actions

A, and let the progression do the rest. However, since plan-
ning tasks can have thousands of actions, this would lead to
significant overhead in the progression.

Other Sources of Information
The scope of our approach is by far not limited to the pre-
viously introduced sources of information. Since space is
limited, we only briefly mention some other ideas.

One obvious possibility is the integration of previous LTL
methods like hand-written (Bacchus and Kabanza 2000;
Doherty and Kvarnström 2001) or learned (de la Rosa and
McIlraith 2011) LTL search control knowledge.

Also invariants such as mutex information can be added
to the LTLf formula to make them explicit to the heuristic
computation. The same holds for the fact that at the end the
goal G must be true (♦(last ∧

∧
g∈G g)).

The recent flow-based heuristics (van den Briel et al.
2007; Bonet 2013; Pommerening et al. 2014) build on the
observation that a variable cannot be (truly) deleted more
often than it is made true (with some special cases for the
initial state and the goal) but they ignore the order of the cor-
responding action applications. With LTLf formulas we can
express statements of the same flavor but preserving parts of
the ordering information. For an intuition, consider a for-
mula that states that whenever we apply an action deleting p

and later apply an action requiring p, we in between have to
apply an action adding p.

In principle, we could go as far as encoding the entire
planning task in the LTL formula (Cerrito and Mayer 1998).
The challenge with the framework will be to find a suitable
balance of the incurred overhead and the gain in heuristic
information.

Deriving Heuristic Estimates from Feasible
LTLf Trajectory Constraints

Deriving heuristic estimates from feasible LTLf trajectory
constraints is an interesting research question, which can-
not finally be answered in this paper. For the moment, we
only present a proof-of-concept heuristic that extracts land-
marks, essentially ignoring the temporal information carried
by the LTLf formula. However, the temporal aspects of the
LTLf formulas are still important for the heuristic estimate
because they preserve information over the course of pro-
gression. In the future we also want to investigate methods
that are based on LTL reasoning and which are therefore able
to derive stronger estimates from the temporal information.

Although we extract landmarks from the input LTLf for-
mula, this does not mean that this LTLf formula must stem
from landmark information. The heuristic is correct for any
kind of feasible LTLf formulas.

The heuristic computation first derives so-called node-
admissible disjunctive action landmarks from the LTLf

formula. The heuristic estimate is then determined from
these landmarks with the landmark heuristic by Karpas and
Domshlak (2009).

As introduced earlier, a disjunctive action landmark for a
state s is a set of actions such that every path from s to a
goal state contains at least one action from the set. We use a
weaker path-dependent notion that covers all optimal plans:
Definition 4. Let Π = 〈V,A, I,G〉 be a planning task and
n be a search node. A set L ⊆ A is a node-admissible dis-
junctive action landmark for n if every continuation of the
path to n into an optimal plan contains an action from L.

Using such node-admissible disjunctive action landmarks
in the landmark heuristic gives admissible estimates for all
nodes that correspond to a prefix of an optimal plan. Karpas
and Domshlak (2012) call this property path admissible.

Our method of extracting node-admissible landmarks
from LTLf formulas requires the formula to be in positive
normal form (also called negation normal form), where ¬
only appears in literals or before last. This is uncritical be-
cause any LTLf formula can efficiently be transformed into
positive normal form with De Morgan’s law and the follow-
ing equivalences:

¬ dϕ ≡ last ∨ d¬ϕ ¬�ϕ ≡ ♦¬ϕ
¬(ϕ1Uϕ2) ≡ (¬ϕ1)R(¬ϕ2) ¬♦ϕ ≡ �¬ϕ
¬(ϕ1Rϕ2) ≡ (¬ϕ1)U(¬ϕ2)

Moreover, progression preserves the normal form.
For the landmark extraction from the feasible formula, we

first derive an implied LTLf formula (Proposition 3) in con-
junctive normal form. We then extract node-admissible dis-
junctive action landmarks from its clauses (Theorem 4).



Proposition 3. Let ϕ be an LTLf trajectory constraint in
negation normal form. The following function lm defines an
LTLf formula such that ϕ |= lm(ϕ):

lm(x) = ♦x for literals x
lm(last) = ♦last

lm(¬last) = ♦¬last
lm(ϕ ∧ ψ) = lm(ϕ) ∧ lm(ψ)

lm(ϕ ∨ ψ) = lm(ϕ) ∨ lm(ψ)

lm( dϕ) = lm(�ϕ) = lm(♦ϕ) = lm(ϕ)

lm(ϕUψ) = lm(ϕRψ) = lm(ψ)

The proposition can easily be checked from the seman-
tics of LTLf . By distributing ∨ over ∧, we can trans-
form the formula into conjunctive normal form (CNF)∧n

i=1

∨mi

j=1 ♦ϕi,j , where each ϕi,j is a literal, last, or ¬last.
Clauses containing ♦last are tautologies and therefore not
valuable for the heuristic. Clauses containing ♦¬last are
trivially true for each world sequence of length at least two,
which is the case for the induced world sequences for any
path leading from a non-goal state to a goal state. There-
fore, we derive the action landmarks only from the remain-
ing clauses.
Theorem 4. Let Π = 〈V,A, I,G〉 be a planning task and
let ϕ be a feasible LTLf trajectory constraint for node n. Let
further ψ =

∨m
j=1 ♦xj (with xj being literals) be a formula

such that ϕ |= ψ.
If progress(ψ, s(n)) 6≡ >, then L =

⋃m
j=1 support(xj)

with

support(x) =


{a ∈ A | x ∈ add(a)} if x ∈ V
{a ∈ A | x ∈ del(a)} if x̄ ∈ V
{x} if x ∈ A

is a node-admissible disjunctive action landmark for n.

Proof. Since ϕ |= ψ, ψ also is feasible for n. By the se-
mantics of ♦, at least one xj must be true in some world in
any continuation to an optimal plan. If the progression is not
valid, then no state-variable literal xj is already true in the
current state.2 Thus, one of the xj needs to become true in
any optimal plan. For a proposition p, this means that pmust
be added by an action. Similarly, for a negated proposition
¬p, the proposition p must be deleted. An action variable a
requires the action to be applied. Therefore, any continua-
tion of the path to n into an optimal plan contains an action
from L.

Our proposed heuristic is the landmark heuristic com-
puted from all node-admissible disjunctive action landmarks
that can be derived from the trajectory constraints as de-
scribed in Proposition 3 and Theorem 4. In the special case
where the LTLf formula is detected unsatisfiable (simplifies
to ⊥), the heuristic returns∞ because the path to the node
cannot be extended into an optimal plan.

2Moreover, none of the xj is a negated action variable. Al-
though these would not prevent the clause from generating an ac-
tion landmark, the landmark would be very weak.

A∗ with LTLf Trajectory Constraints
Since LTLf trajectory constraints are path-dependent and
the heuristic is not admissible but only path admissible, we
need to adapt the A∗ algorithm so that it still guarantees op-
timal plans. This is only a small modification: whenever a
cheaper path to a state has been found, we need to recom-
pute the heuristic estimate with the new feasible information
instead of using a cached estimate (Karpas and Domshlak
2012). This leads to a different treatment of infinite heuristic
estimates. We also use the opportunity to show the integra-
tion of feasible LTLf formulas.

Algorithm 1 shows the adapted A∗ algorithm. We for-
mulated the algorithm with “eager” duplicate elimination so
that there is always at most one node for each state. Be-
sides the planning task, the algorithm takes a path admis-
sible heuristic function as input that computes the estimate
from a state and an LTLf formula.

We use a method taskFeasibleFormula(Π) that returns a
feasible formula for Π, and a method feasibleFormula(Π, π)
that generates a (path-dependent) feasible formula for the
node reached by path π.

The feasible formula for the task (line 3) is progressed
with the initial state to receive a feasible formula ϕ for the
initial search node, which can be further strengthened with
any other feasible formula for this node (line 4). If the
heuristic for the initial state and this formula is∞ then the
task is unsolvable. Otherwise, we create the initial node and
add it to the open list (lines 6–8).

When generating the successor n′ of node nwith action a,
we first progress the LTLf formula of n to get a new feasible
formula for n′, based on Theorem 1 (line 17). Based on
Theorem 2, this formula can be strengthened with a newly
derived LTLf formula that is feasible for this node (line 18).
If we do not want to incorporate additional information, the
method can simply return >.

If we encounter the successor state for the first time, we
create a new node n′ with the respective properties (line 21).
Otherwise, we distinguish three cases for the previously best
node for this state. If we already found a better path to this
state, we skip this successor (line 24). If we previously
found an equally good path to the state, we strengthen the
LTLf formula of the previous node based on Theorem 2 and
recompute the heuristic estimate (lines 26–28). If the previ-
ously best path to the state was worse, we update the node
with the data from the newly found path (lines 30–33).

In contrast to an admissible heuristic, with a path admis-
sible heuristic it is not safe to prune a state from the search
space if the heuristic estimate via one path (of cost g′) is∞.
However, we can conclude that no optimal plan traverses the
state with a cost of at least g′. To exploit this pruning power
for nodes encountered later, we do not discard a node with
infinite heuristic estimate but store it in the closed list (lines
35–36). If the node has a finite estimate, it gets enqueued in
the open list (line 38).

Experimental Evaluation
For the experimental evaluation, we implemented the LTLf

framework on top of Fast Downward (Helmert 2006). We



Algorithm 1: A∗ with LTLf trajectory constraints

input : Planning task Π = 〈V,A, I,G〉 and
path-admissible heuristic function h

output: Optimal plan π or unsolvable if Π is unsolvable

1 open← empty priority queue of nodes
2 closed← ∅
3 ϕΠ ← taskFeasibleFormula(Π)
4 ϕ← progress(ϕΠ, I) ∧ feasibleFormula(Π, 〈〉)
5 hval← h(I, ϕ)
6 if hval 6=∞ then
7 n← new node with n.state = I , n.g = 0,

n.h = hval, n.ϕ = ϕ and n.parent = ⊥
8 add n to open with priority hval
9 while open is not empty do

10 n← remove min from open
11 s← n.state
12 if s is goal state then
13 return extractPlan(n)
14 add n to closed
15 for all actions a applicable in s do
16 s′ ← s[a]
17 ϕ′ ← progress(n.ϕ, {a} ∪ s′)
18 ϕ′ ← ϕ′ ∧ feasibleFormula(Π, path to s′ via n)
19 g′ ← n.g + c(a)
20 if there exists no node n′ with n′.state = s′ then
21 n′ ← new node with n′.state = s′,

n′.g = g′, n′.h = h(s′, ϕ′),
n′.ϕ = ϕ′ and n′.parent = n

22 else
23 n′ ← unique node in open or closed with

n′.state = s′

24 if g′ > n′.g then continue
25 remove n′ from open /closed
26 if g′ = n′.g then
27 n′.ϕ← n′.ϕ ∧ ϕ′
28 n′.h← h(s′, n′.ϕ)
29 else
30 n′.ϕ← ϕ′

31 n′.g ← g′

32 n′.h← h(s′, ϕ′)
33 n′.parent← n
34 end
35 if n′.h =∞ then
36 add n′ to closed
37 else
38 add n′ to open with priority n′.g + n′.h
39 end
40 end
41 end
42 return unsolvable

conducted all experiments with a memory limit of 4 GB
and a time limit of 30 minutes (excluding Fast Downward’s
translation and preprocessing phase).

Our heuristic derives disjunctive action landmarks from
LTLf constraints as input for the admissible landmark
heuristic (Karpas and Domshlak 2009). To evaluate the
overhead of our approach, we compare it to the standard
implementation of the landmark heuristic with specialized
data structures exploiting the same (initial) landmark infor-
mation. In both cases, the landmark heuristic applies opti-
mal cost-partitioning for computing the estimate.

For the landmark generation, we use the same approach as
the BJOLP planner (Domshlak et al. 2011), combining land-
mark information from two generation methods (Richter and
Westphal 2010; Keyder, Richter, and Helmert 2010).

For the LTLf approach, we generate an initial feasible
LTLf formula from the first achiever and the required again
formulas (corresponding to ϕfa, ϕra, and ϕgoal in Proposi-
tion 2) for these landmarks. We do not use the landmark and
ordering formulas because they would not additionally con-
tribute to the heuristic estimates. We use this LTLf formula
as shown in Algorithm 1, not incorporating additional infor-
mation in line 18. In the following, we refer to this setup as
LTL-A∗ with hLM

AL .
A meaningful application of the standard implementa-

tion of the landmark heuristic requires the search algorithm
LM-A∗ (Karpas and Domshlak 2009) that extends A∗ with
multi-path support for landmarks. We refer to this setup as
LM-A∗ with hLA.

The comparison of these two approaches is not entirely
fair because LM-A∗ combines information from all paths to
a state while LTL-A∗ only combines formulas from equally
expensive paths. Thus, with a comparable search history,
LM-A∗ can sometimes derive better heuristic estimates.

Table 1 shows results for the STRIPS benchmarks of the
International Planning Competitions 1998–2011.

Overall, LM-A∗ with hLA solves 723 tasks and LTL-A∗

with hLM
AL finds solutions for 711 tasks. All unsolved in-

stances of the former are due to the time limit. With the
LTLf implementation 11 instances fail due to the memory
limit with 9 of them being airport instances.

To get a clearer idea of the memory overhead of the ap-
proach, we summed up the memory consumption of all com-
monly solved instances of each domain. The percentage in
parentheses shows the fraction of these two values where
numbers above 100% indicate that the LTLf approach re-
quired more memory. A positive surprise is that more often
than not our approach requires less memory. However, there
are also cases, where the increase in memory consumption
is significant, for example in the logistics-00 domain where
the LTLf implementation needs more than three times the
amount of the specialized implementation. This result is
not caused by the unfavorable comparison of the approaches
because the expansion numbers in both cases are identical.
Nevertheless, the memory consumption only is responsible
for a single unsolved task in this domain because 7 of the 8
affected instances fail due to a timeout.



LM-A∗ LTL-A∗

hLA hLM
AL hLM+UAA

AL

airport (50) 31 28 (335%) 26
barman (20) 0 0 (−%) 0
blocks (35) 26 26 (107%) 26
depot (22) 7 7 (86%) 7
driverlog (20) 14 14 (88%) 14
elevators-08 (30) 14 14 (78%) 13
elevators-11 (20) 11 11 (77%) 11
floortile (20) 2 2 (95%) 4
freecell (80) 52 51 (123%) 50
grid (5) 2 2 (108%) 2
gripper (20) 6 6 (187%) 6
logistics-00 (28) 20 20 (327%) 20
logistics-98 (35) 5 5 (99%) 5
miconic (150) 141 141 (116%) 141
mprime (35) 19 19 (90%) 20
mystery (30) 15 15 (83%) 15
nomystery (20) 18 17 (147%) 16
openstacks-08 (30) 14 12 (200%) 12
openstacks-11 (20) 9 7 (229%) 7
openstacks (30) 7 7 (107%) 7
parcprinter-08 (30) 15 14 (149%) 14
parcprinter-11 (20) 11 10 (152%) 10
parking (20) 1 1 (121%) 1
pathways (30) 4 4 (98%) 4
pegsol-08 (30) 26 26 (155%) 26
pegsol-11 (20) 16 16 (174%) 16
pipesworld-notan (50) 17 17 (91%) 17
pipesworld-tan (50) 9 10 (98%) 10
psr-small (50) 49 49 (87%) 49
rovers (40) 7 7 (91%) 7
satellite (36) 7 7 (86%) 7
scanalyzer-08 (30) 10 9 (111%) 9
scanalyzer-11 (20) 6 6 (114%) 6
sokoban-08 (30) 22 21 (76%) 22
sokoban-11 (20) 18 18 (76%) 18
tidybot (20) 14 14 (103%) 13
tpp (30) 6 6 (95%) 6
transport-08 (30) 11 11 (90%) 11
transport-11 (20) 6 6 (86%) 6
trucks (30) 7 7 (82%) 7
visitall (20) 16 16 (136%) 16
woodworking-08 (30) 14 14 (80%) 14
woodworking-11 (20) 9 9 (78%) 9
zenotravel (20) 9 9 (93%) 9
Sum (1396) 723 711 709

Table 1: Results for LM-A∗ with the standard landmark
heuristic and for LTL-A∗ using a feasible landmark-based
constraint (hLM

AL ) and using additional feasible LTLf con-
straints from unjustified action applications (hLM+UAA

AL ). The
percentage in parentheses shows the memory consumption
on the commonly solved instances compared to the first con-
figuration. All other numbers show coverage results.
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Figure 2: Comparison of expansions.

In a second experiment, we include in addition feasi-
ble LTLf trajectory constraints as described in the section
on unjustified action applications. We denote the result-
ing heuristic hLM+UAA

AL . Coverage results are shown in the
last column of Table 1. Overall, the inclusion of the ad-
ditional feasible information leads to two fewer solved in-
stances. However, there are also domains where the cover-
age increases. One main reason for failure is a higher mem-
ory consumption leading to 83 instances that failed due to
the memory limit. Another reason is a time overhead that
leads to 13.4% fewer evaluations per second on the com-
monly solved instances. On the positive side, the heuristic is
indeed better informed which translates to a reduction in the
number of expanded nodes (cf. Figure 2).

Conclusion
We propose a clean and general LTLf framework for opti-
mal planning that is easy to prove correct. It is based on a
feasibility criterion for LTLf trajectory constraints and there
are plenty of possibilities to derive such feasible constraints
from established planning methods.

We presented a baseline heuristic from such constraints,
based on the extraction of disjunctive action landmarks. This
heuristic does not yet fully exploit the potential of the ap-
proach because it does not consider the temporal informa-
tion of the constraints. We plan to change this in future work
where we will to a greater extend exploit LTLf reasoning
methods in the heuristic computation. We also will investi-
gate the potential for strengthening other heuristic computa-
tions with the information from LTLf trajectory constraints,
similar to what Wang, Baier, and McIlraith (2009) have done
with landmark orderings and the FF heuristic. Another re-
search direction will be the examination of further sources
of information and of possible positive interactions of their
combination.
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