
Integrating Partial Order Reduction and Symmetry Elimination
for Cost-Optimal Classical Planning

Martin Wehrle and Malte Helmert
University of Basel, Switzerland

martin.wehrle@unibas.ch
malte.helmert@unibas.ch

Alexander Shleyfman
Technion, Haifa, Israel
alesh@tx.technion.ac.il

Michael Katz
IBM Haifa Research Lab, Israel

katzm@il.ibm.com

Abstract
Pruning techniques based on partial order reduction
and symmetry elimination have recently found in-
creasing attention for optimal planning. Although
these techniques appear to be rather different, they
base their pruning decisions on similar ideas from
a high level perspective. In this paper, we propose
safe integrations of partial order reduction and sym-
metry elimination for cost-optimal classical plan-
ning. We show that previously proposed symmetry-
based search algorithms can safely be applied with
strong stubborn sets. In addition, we derive the no-
tion of symmetrical strong stubborn sets as a more
tightly integrated concept. Our experiments show
the potential of our approaches.

1 Introduction
Heuristic search is a leading approach to optimally solving
classical planning problems. However, for optimal plan-
ning, pure heuristic search based on A∗ is limited in the
sense that even almost perfect heuristics can lead to ex-
ponentially large state spaces in typical planning problems
[Helmert and Röger, 2008]. Hence, additional (and orthog-
onal) pruning techniques are desired to be able to efficiently
scale to larger problems. Pruning techniques allow for con-
sidering only a subset of successors in every state (and thus
potentially reduce the branching factor of the given planning
task), while preserving completeness and optimality of opti-
mal search algorithms. Recent approaches for optimal plan-
ning include strong stubborn sets [Alkhazraji et al., 2012;
Wehrle et al., 2013; Wehrle and Helmert, 2014], symme-
try elimination [Pochter et al., 2011; Domshlak et al., 2012;
2013], partition-based path pruning [Nissim et al., 2012], tun-
neling [Coles and Coles, 2010; Nissim et al., 2012], sleep
sets [Wehrle and Helmert, 2012; Holte et al., 2015], move
pruning [Holte and Burch, 2014], and commutativity pruning
[Haslum and Geffner, 2000].

Recently, techniques based on partial order reduction and
symmetry elimination have found particular attention in the
planning community. From a technical point of view, these
techniques appear to be rather different: While search-based
planning algorithms with partial order reduction work on
the original state space and prune “permutations” of plans

in every state, algorithms based on symmetry elimination
work on a modified state space (called the orbit space) that
consists of equivalence classes of symmetrical states. De-
spite these differences, both approaches exploit the “equiva-
lence” of permutations (variables and values vs. sequences
of operators, respectively) for their pruning decisions. Origi-
nally, both partial order reduction and symmetry elimination
stem from the area of model checking, where also combi-
nations of them have been studied [Emerson et al., 1997;
Bosnacki and Scheffer, 2015]. Overall, it naturally arises the
question whether these techniques can be integrated safely
and efficiently for the purpose of optimal planning as well.

In this paper, we propose safe integrations of partial order
reduction based on strong stubborn sets and symmetry elimi-
nation for optimal planning. Our first approach applies strong
stubborn sets “directly” as the basis for the orbit space com-
putation obtained by symmetry elimination. We show that
this combination is safe and optimality preserving when ap-
plied for planning. Our second approach, called symmetri-
cal strong stubborn sets, provides a more tightly integrated
concept based on restricting the original definition of strong
stubborn sets to canonical (“symmetrical”) operators. We
prove that symmetrical strong stubborn sets yield a safe state-
based successor pruning function as introduced by Wehrle
and Helmert [2014], which have the property that the prun-
ing decision in a state s is based solely on s. Such techniques
can safely be applied in graph search algorithms like A∗ and
are hence particularly attractive. We empirically investigate
the performance of our approaches on the benchmarks from
the international planning competitions.

2 Background
We consider SAS+ planning with a finite set of finite-domain
state variables V . Every variable v ∈ V has a finite do-
main dom(v). A variable/value pair 〈v,d〉 for v ∈ V and
d ∈ dom(v) is called a fact. A partial state s is defined as
a function from variables vars(s) ⊆ V to values in the do-
mains of vars(s), whereas all variables in V \ vars(s) have
an undefined value undef . We denote the value of v in s with
s[v] (including s[v] = undef in case v ∈ V \ vars(s)). A
state is a partial state where all values are defined, i. e., with
vars(s) = V .

An operator o is a tuple 〈pre(o), eff (o)〉, where pre(o) and
eff (o) are partial states and denote the precondition and the



effect of o, respectively. An operator o is applicable in a state
s iff s[v] = pre(o)[v] for all v ∈ vars(pre(o)). If o is ap-
plicable in s, the successor state o(s) of s is obtained from
s by setting the values of variables in vars(eff (o)) to their
values in eff (o), and leaving the remaining variable values
unchanged. We denote the set of applicable operators in s
with app(s). Furthermore, we say that an operator o is an
achiever of a fact 〈v,d〉 if eff (o)[v] = d.

A SAS+ planning task is a tuple Π = 〈V,O, s0, s?, C〉,
consisting of a finite set of finite-domain state variables V ,
a finite set of operators O, an initial state s0, and a partial
goal state s?. In addition, we are given a cost function C
that assigns a non-negative cost value C(o) to each operator
o ∈ O. We denote the set of all states of Π with S. The
state transition graph TΠ = 〈S, E〉 of Π is a directed graph
whose set of vertices is the set of states S, and there is an edge
〈s, s′, o〉 ∈ E from s to s′ labeled with o iff o is applicable in
s and s′ = o(s). A plan in state s is a sequence of operators
σ = o1 . . . on such that σ is sequentially applicable in s and
leads to a state that complies with s?. A state s is called
solvable if there is a plan in s. A plan π is optimal if the sum
of operator costs in π is minimal among all plans. A plan
π is strongly optimal if π is optimal and contains a minimal
number of zero-cost operators. In the following, we focus on
finding optimal plans based on A∗ search [Hart et al., 1968].

2.1 Strong Stubborn Sets
Strong stubborn sets yield safe successor pruning functions as
defined by Wehrle and Helmert [2014]: A successor pruning
function for a planning task Π is a function f : S → 2O that
maps states s to subsets ops(s) of applicable operators in s,
i. e., ops(s) ⊆ app(s). A successor pruning function is safe
iff in a modified state transition graph where only the opera-
tors in ops(s) may be applied in all states s, the original solu-
tion costs remain the same. As a sufficient criterion, Wehrle
and Helmert show that if for all solvable non-goal states s,
ops(s) contains at least one operator that starts a strongly op-
timal plan, then the corresponding successor pruning function
is safe. In the following, we call pruning functions that satisfy
this criterion strongly safe.

Recently, strong stubborn sets have been considered in dif-
ferent generalities. In the following, we introduce a variant
that is general enough for the purpose of this paper, based on
a state-dependent notion of interference [Wehrle and Helmert,
2014]. For this, we need more terminology. Firstly, we
say that two operators o, o′ interfere in a state s iff both o
and o′ are applicable in s, and at least one of the following
conditions holds: o disables o′ (i. e., o′ is not applicable in
o(s)), or vice versa, or o(o′(s)) and o′(o(s)) are both de-
fined, but o(o′(s)) 6= o′(o(s)). Secondly, for a planning task
Π = 〈V,O, s0, s?, C〉, for a state s and an operator o ∈ O, a
necessary enabling set for o and s is a set of operatorsN such
that for all plans π that start in s and include o, some o′ ∈ N
occurs in π before the first occurrence of o. Furthermore, a
disjunctive action landmark L in a state s is a set of operators
such that every plan in s includes at least one operator of L.

Definition 1 (strong stubborn set) Let s be a solvable non-
goal state in planning task Π = 〈V,O, s0, s?, C〉. A set of

operators T (s) is a strong stubborn set in s if
1. T (s) contains a disjunctive action landmark in s,
2. for every o ∈ T (s) not applicable in s, T (s) contains a

necessary enabling set for o and s, and
3. for every o ∈ T (s) applicable in s, T (s) contains all

operators that interfere with o in s.

2.2 Symmetry Elimination
In contrast to strong stubborn sets, symmetry elimination
considers equivalence classes of symmetrical states, and al-
lows for using representative states of each equivalence class.
Recently, Shleyfman et al. [2015] introduced the notion of
structural symmetries, which capture previously proposed
concepts of symmetry for classical planning. In a nutshell,
structural symmetries directly work on the factored represen-
tation of a given planning task Π. They map operators to oper-
ators, and variable/value pairs to variable/value pairs in such
way that the induced mapping on the state transition graph TΠ

is an automorphism of TΠ. More formally, structural symme-
tries for SAS+ planning tasks are defined as follows.

Definition 2 (Structural symmetry) For a planning task
Π = 〈V,O, s0, s?, C〉, let F be the set of Π’s facts, i. e., pairs
〈v, d〉 with v ∈ V and d ∈ dom(v). A structural symmetry
for Π is a permutation σ : F ∪ O → F ∪ O where

1. σ(FV ) = FV , where FV := {{〈v, d〉 | d ∈ dom(v)} |
v ∈ V },

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), and C(σ(o)) = C(o).

3. σ(s?) = s?,
where σ({x1, , . . . , xn}) := {σ(x1), . . . , σ(xn)}, and for a
partial state s, s′ := σ(s) is the partial state obtained from
s such that for all 〈v, d〉 with v ∈ vars(s) and d ∈ dom(v),
σ(〈v, d〉) = 〈v′, d′〉 and s′[v′] = d′.

For a planning task Π with states S, a set of structural sym-
metries Σ induces a group Γ and an equivalence relation ∼Γ

on S, where s ∼Γ s′ iff there is σ ∈ Γ such that σ(s) = s′.
For a state s, pruning algorithms based on symmetry elim-
ination only consider the equivalence classes of the succes-
sor states of s instead of all successor states, and only keep
one representative element of these classes. In this sense,
A∗ with symmetry elimination applies all operators in s, but
prunes some of the resulting successor states. The resulting
reduced state transition graph is guaranteed to still contain an
optimal plan in s. To achieve this, Domshlak et al. [2012]
have introduced a variant of the A∗ algorithm (called DKS)
that performs duplicate elimination based on canonical states.
For that, the DKS algorithm maintains an additional (i. e., the
canonical) state for each search node, leading to an increased
memory consumption. To overcome this problem, a further
variant of A∗ called orbit space search (OSS) has been intro-
duced [Domshlak et al., 2015]. Orbit space search directly
performs the search in the orbit space which is induced by
canonical representatives. In other words, orbit space search
searches the state transition graph induced by canonical rep-
resentatives for each encountered state, i. e., every state is
mapped to a corresponding representative.



3 Strong Stubborn Sets + Orbit Space Search
Strong stubborn sets and symmetries are orthogonal concepts
in terms of pruning power. (For space reasons, we refer to
a technical report showing examples where strong stubborn
sets can prune more than symmetries, and vice versa [Wehrle
et al., 2015]). Following previous work in model checking
[Emerson et al., 1997; Bosnacki and Scheffer, 2015], our first
approach “directly” integrates strong stubborn sets and sym-
metry elimination for optimal planning: In every state s, in-
stead of computing canonical states for all successor states
of s, the computation of canonical states is restricted to those
successors that result from a strong stubborn set in s. The
proposed modification is both completeness and optimality
preserving. In the following, we prove the more general re-
sult that both DKS and OSS can be safely combined with
strongly safe successor pruning functions.

Theorem 1 Restricting the successor generation of the DKS
and OSS algorithms with a strongly safe successor pruning
function yields complete and optimal planning algorithms.

Proof: Let f be some strongly safe successor pruning func-
tion. For each expanded state s, we have that if there ex-
ists a plan for s, then there exists a strongly optimal plan
πs = o1, . . . , on for s such that o1 ∈ f(s). Then s1 = o1(s)
is one of the successors generated using f . DKS will prune s1

only if some other state s′1 with the same canonical represen-
tative was already generated by DKS. OSS will generate the
canonical representative sc1 of s1 instead of s1. In both cases,
at least one representative state in each equivalence class re-
mains eligible for expansion at each time. For each plan from
s1, there exists a plan of the same cost from sc1 and there exists
one from s′1 as well. Thus, as DKS and OSS are complete and
optimal planning algorithms, the claim follows with a simple
induction over the length of the strongly optimal plan. �

3.1 Experimental Evaluation
We have implemented the resulting search algorithms in the
Fast Downward planner [Helmert, 2006] on top of the strong
stubborn set implementation using full envelopes, mutex-
based inference, and static FD ordering [Wehrle and Helmert,
2014], and on top of the orbit space search implementation
[Domshlak et al., 2015]. Our experiments were performed on
machines with Intel Xeon E5-2660 CPUs running at 2.2 GHz.
The time and memory bounds used per run were 30 minutes
and 2 GB, respectively. All configurations used the LM-Cut
heuristic [Helmert and Domshlak, 2009], the state-of-the-art
heuristic for optimal planning, on all optimal STRIPS IPC
benchmarks up to 2011 that are supported by LM-Cut (44
domains, 1396 instances). The results are given in Figure 1.

We observe that the strengths of strong stubborn sets and
symmetry elimination are rather orthogonal: Our integration,
called o/s in Fig. 1, mostly achieves at least the same cover-
age (i. e., number of solved problems) as the maximum cover-
age of the previous approaches. In particular, this is the case
in domains where the coverage of the previous approaches
is very different (e. g., in Gripper and Parcprinter, respec-
tively). Overall, our approach solves 859 out of 1396 prob-

no sss oss o/s no sss oss o/s
airport 28 28 28 28 16879 16879 17103 17103
barman-11 4 4 8 8 4.8e+6 4.8e+6 1.1e+6 1.1e+6
blocks 28 28 28 28 816728 816728 816728 816728
depot 7 7 9 9 674671 674516 321352 321279
driverlog 13 14 13 14 265448 250655 191816 179217
elev.-08 22 22 22 22 3.3e+6 2.7e+6 2.6e+6 1.9e+6
elev.-11 18 18 18 18 2.9e+6 2.7e+6 2.0e+6 1.9e+6
floortile-11 7 7 8 8 3.7e+6 3.7e+6 2.3e+6 2.3e+6
freecell 15 14 15 14 935600 935600 935003 935003
grid 2 2 2 2 76778 76778 71953 71953
gripper 7 7 20 20 1.3e+7 1.3e+7 322 322
logistics00 20 21 20 21 859645 271971 687504 173516
logistics98 6 6 6 6 107126 46413 15072 6904
miconic 141 141 142 142 125703 125703 64570 64570
mprime 22 22 23 23 83047 82544 32431 32303
mystery 17 17 17 18 6.4e+6 6.1e+6 855601 733538
nomys.-11 14 14 15 14 65815 65815 66042 66042
openst.-08 19 20 24 24 1.8e+6 1.1e+6 449913 319856
openst.-11 14 15 19 19 1.8e+6 1.1e+6 448874 318857
openst. 7 7 7 7 914091 914091 907304 907304
parcpr.-08 18 30 18 30 299130 208 299130 208
parcpr.-11 13 20 13 20 299125 203 299125 203
parking-11 2 2 3 2 43167 43167 41917 41917
pathw.-nn 5 5 5 5 46689 6889 44442 6484
pegsol-08 27 27 28 28 2.0e+6 2.0e+6 869397 869397
pegsol-11 17 17 18 18 2.2e+6 2.2e+6 937137 937137
pipesw.-nt 17 17 21 21 1.2e+6 1.2e+6 272760 272748
pipesw.-t 12 12 16 16 1.5e+6 1.5e+6 629390 629390
psr-small 49 49 50 50 6.3e+6 5.5e+6 2.7e+6 2.4e+6
rovers 7 9 8 10 110002 32663 108770 31816
satellite 7 12 13 14 100571 3916 27019 1281
scan.-08 15 14 17 16 706977 706977 12359 12359
scan.-11 12 11 14 13 706973 706973 12355 12355
soko.-08 30 29 30 30 1.5e+7 1.5e+7 7.9e+6 7.9e+6
soko.-11 20 20 20 20 3.1e+6 3.1e+6 1.4e+6 1.4e+6
tidybot-11 14 14 14 13 64499 43619 64299 52190
tpp 6 6 8 8 27810 27810 4069 4069
trans.-08 11 11 11 11 56208 56208 44620 44620
trans.-11 6 6 7 7 55681 55681 44103 44103
trucks 10 10 12 12 610852 610852 172920 172920
visitall-11 11 11 11 11 6.6e+6 6.6e+6 6.5e+6 6.5e+6
wood.-08 17 27 20 27 232835 2165 109694 2018
wood.-11 12 19 14 19 232811 2152 109670 2005
zenotravel 13 13 13 13 224467 210874 127141 121795
Sum 762 805 828 859 8.4e+7 7.8e+7 3.7e+7 3.4e+7

Figure 1: Results overview for LM-Cut, coverage (left) and
expansions without last f layer (right). Abbreviations: no:
pure A∗, sss: A∗ with strong stubborn sets, oss: orbit space
search, o/s: orbit state space with strong stubborn sets.

lems, which is particularly remarkable due to the usual expo-
nential complexity increase in the size of the problems. Con-
sidering the number of expanded states, we observe a more
fine grained picture: While still in most domains the num-
ber of expansions with o/s is at most as high as the minimum
of the previous approaches, in 19 out of these the number
of expansions is strictly lower than the minimum. Although
the difference is sometimes moderate, it shows that there ex-
ist synergy effects which could further be exploited by future
benchmark problems. In addition, in the Mystery, Rovers and
Satellite domains, this synergy effect is already strong enough
to yield the uniquely highest coverage.

4 Symmetrical Strong Stubborn Sets
The concept of symmetrical strong stubborn sets integrates
strong stubborn sets and symmetries more tightly. It is based
on restricting strong stubborn sets to canonical representa-
tives of equivalence classes of symmetrical operators.

4.1 Canonical Operators
We will derive canonical operators by applying symmetry-
based reasoning to operators. This concept will provide a



strongly safe successor pruning function in its own right,
and will form the basis for symmetrical strong stubborn sets.
While it might appear obvious to achieve these objectives for
a given structural symmetry group (i. e., by just considering
the representative operators of each equivalence class of op-
erators induced by the given symmetries), care must be taken
with the details: structural symmetries σ that do not stabi-
lize the current state s (i. e., σ(s) 6= s) are not guaranteed to
yield safe successor pruning functions. For brevity, we again
refer to a technical report for an example showing that non-
stabilizing symmetries do not yield strongly safe successor
pruning functions in general [Wehrle et al., 2015].

In the following, we make these ideas more precise. Let
Π = 〈V,O, s0, s?, C〉 be a planning task, Σ be a set of struc-
tural symmetries of Π, and s be a state of Π. Let Σs ⊆ Σ
be the set of structural symmetries that stabilize s (that is,
σ(s) = s for all σ ∈ Σs). Let Γs be a group induced by Σs
and let ∼s be the equivalence relation over the operator set
O induced by Γs. The relation ∼s defines a partitioning of
the operator setO into equivalence classes. Each equivalence
class is identified with one of the operators from the class,
which is chosen to be the canonical operator for that equiva-
lence class. Slightly abusing the notation, the canonical oper-
ator for the operator o ∈ O is denoted by [o]s. The mapping
CLs : O 7→ O defined by CLs(o) := [o]s is called the canon-
ical operator labeling in s. We denote the induced successor
pruning function sop(s) := {CLs(o) | o ∈ app(s)} as sym-
metrical operator pruning. Symmetrical operator pruning is
strongly safe, and more generally, it can safely be combined
with any strongly safe successor pruning function.

Theorem 2 Let f be a strongly safe successor pruning func-
tion, and let ops be the successor pruning function defined as
ops(s) := {CLs(o) | o ∈ f(s)}. Then ops is strongly safe.

Proof: Let π = o1, . . . , on be a strongly optimal plan for s
such that o1 ∈ f(s). Such a plan exists, since f is strongly
safe. Let σ be some structural symmetry stabilizing s such
that σ(o1) = CLs(o1). Then π′ = σ(π) = σ(o1), . . . , σ(on)
is a strongly optimal plan for s = σ(s), starting with an oper-
ator in ops(s). Thus ops is strongly safe. �

Computing canonical operator labelings for a given state is
polynomial time. Let o1, . . . , ok be the operators of a plan-
ning task, with i being the index of oi. For a state s, a canon-
ical operator labeling CLs for s is computed as follows.

1. In a pre-search phase, we compute for each genera-
tor σ a canonical operator labeling CLσ for σ as fol-
lows: Starting with CLσ(oi) = i, we iteratively set
CLσ(o) := min(CLσ(o),CLσ(σ(o))) for each operator
o until a fixed-point is reached.

2. During search, for a set of generators stabilizing s, we
compute CLs for s by starting with an identity labeling,
and continue the following procedure until a fixed-point
in CLs is reached: For each stabilizing generator σ, for
each operator o, CLs(o) := min(CLσ(o),CLs(o)).

Since the indices only reduce, the number of iterations is
bounded by O(k2), with each iteration being linear in k and
the number of symmetry group generators.

Overall, Theorem 2 allows us to safely use symmetrical op-
erator pruning in polynomial time withinA∗, and more gener-
ally, it allows us to use it on top of any strongly safe successor
pruning functions. In addition, Theorem 2 will serve as an in-
gredient for integrating strong stubborn sets and symmetries.

4.2 Symmetrical Strong Stubborn Sets
As outlined, symmetrical strong stubborn sets restrict the def-
inition of strong stubborn sets to canonical operators.

Definition 3 (symmetrical strong stubborn set) Let Π =
〈V,O, s0, s?, C〉 be a planning task, let s be a state of Π, and
CLs be the canonical operator labeling in s. A symmetrical
strong stubborn set (SSSS) in s is a set of operators H ⊆ O
with the following properties. If s is an unsolvable or goal
state, every set H ⊆ O is a SSSS. If s is a solvable non-goal
state, then H satisfies the following constraints:

1. H contains the canonical operators of a disjunctive ac-
tion landmark L in s, i. e., {CLs(o) | o ∈ L} ⊆ H ,

2. for every o ∈ H not applicable in s, H contains the
canonical operator labeling of a necessary enabling set
N for o and s, i. e., {CLs(o) | o ∈ N} ⊆ H , and

3. for every o ∈ H applicable in s, H contains the canon-
ical operator labeling of all operators o′ that interfere
with o, i. e., {CLs(o

′) | o interferes with o′ in s} ⊆ H .

Symmetrical strong stubborn sets yield a safe successor
pruning function.

Theorem 3 Let ops be a successor pruning function defined
as ops(s) = H(s) ∩ app(s), where H(s) is a symmetrical
strong stubborn set in s. Then ops is strongly safe.

Proof: Our proof is based on the proof of Theorem 1 by
Wehrle and Helmert [2014]. Let s be a state andH be a SSSS
in s. We show that if s is a solvable non-goal state, then H
contains an operator which is the first operator in a strongly
optimal plan for s. The claim then follows with Proposition 1
of Wehrle and Helmert [2014]. In the following, we refer to
the three conditions of Def. 3 as C1–C3.

Let π = o1, . . . , on be a strongly optimal plan for s such
that CLs(oi) ∈ H for some i ∈ {1, . . . , n}. Such a plan must
exist because of C1. Let k ∈ {1, . . . , n} be the minimal index
for which ock := CLs(ok) ∈ H and let σk be a structural
symmetry that stabilizes s such that ock = σk(ok).

We show by contradiction that ock is applicable in s. As-
sume it is not applicable. Since ock ∈ H , C2 guarantees that
H contains the canonical operator labeling of a necessary en-
abling set for ock. Let πk = σk(π) = σk(o1), . . . , σk(on).
πk is a strongly optimal plan for s, since it is a mapping of
π with a structural symmetry that stabilizes s. Therefore, a
necessary enabling set for ock will include the canonical op-
erator labeling of some operator σk(oi) for i < k. Since
CLs(σk(oi)) = CLs(oi), according to C2, H must contain
the canonical operator labeling of oi, contradicting the mini-
mality of k. It follows that ock is applicable in s.

Let s0, . . . , sn be the sequence of states visited by πk:
s0 = s and si = σk(oi)(s

i−1) for all i ∈ {1, . . . , n}. It



follows that ock does not interfere with any of the operators
σk(o1), . . . , σk(ok−1) in any of the states sj : if it did, then
from C3 (with o = ock), the canonical operator labeling of the
interfering operators would be contained in H , together with
CLs(σk(oi)) = CLs(oi) contradicting the minimality of k.

The remainder of the proof, showing that if ock is not al-
ready the first operator in πk, it can be shifted to the front of
πk, is exactly as in Wehrle and Helmert (2014). �

Symmetrical strong stubborn sets generalize symmetrical
operator pruning and stubborn sets in the following sense.

Theorem 4 Let G be a strong stubborn set in s. Then H =
{CLs(o) | o ∈ G} is a symmetrical strong stubborn set in s.

Proof: It is clear that C1 will hold for H . To see that
C2 holds, let o ∈ G be some non-applicable operator and
let N ⊆ G be its necessary enabling set. Let σ be some
structural symmetry stabilizing s such that σ(o) = CLs(o).
Then Nσ = {σ(o′) | o′ ∈ N} is a necessary enabling
set for CLs(o). Note that for all actions o′ ∈ N we have
CLs(o

′) = CLs(σ(o′)) and thus N c = {CLs(o
′) | o′ ∈ N}

is the canonical operator labeling of a necessary enabling
set for CLs(o). To see that C3 holds as well, let o ∈ G
be some applicable operator and let o′ interfere with o in s.
Let σ be some structural symmetry that stabilizes s such that
σ(o) = CLs(o). Then σ(o) interferes with σ(o′) in s = σ(s).
Thus, CLs(σ(o′)) = CLs(o

′) ∈ H . �

We remark that although Theorem 4 shows a theoretical
dominance result, the choice of the algorithms in practical im-
plementations does not necessarily guarantee the dominance
in terms of state explorations. However, in our experiments,
the latter is established in almost all domains (we will come
back to this point in the next section).

In addition, symmetrical strong stubborn sets offer the po-
tential to prune more than the combination of strong stubborn
sets with orbit space search according to Theorem 1, and than
the combination of strong stubborn sets and symmetrical op-
erator pruning according to Theorem 2. Intuitively, this is the
case because symmetrical strong stubborn sets recognize (and
can exploit) symmetries also for inapplicable operators.

Example 1 Let Π1 be a planning task with binary vari-
ables V = {a, b, c, d, g} and uniform-cost operators O =
{o1, o2, o3, o4, o5} with
• pre(o1) = {〈a,1〉, 〈b,1〉}, eff (o1) = {〈g,1〉}
• pre(o2) = {〈b,1〉, 〈c,1〉}, eff (o2) = {〈g,1〉}
• pre(o3) = ∅, eff (o3) = {〈a,1〉}
• pre(o4) = ∅, eff (o4) = {〈c,1〉}
• pre(o5) = {〈d,1〉}, eff (o5) = {〈b,1〉}.

Let s0 ={〈a,0〉, 〈b,0〉, 〈c,0〉, 〈d,1〉, 〈g,0〉} and s? = {〈g,1〉}.
We observe that there is a structural symmetry σ that maps

operator o1 to o2 and o3 to o4, and vice versa, and stabilizes
the initial state (by mapping a = 1 and c = 1 to each other).
Without loss of generality, assume that the canonical operator
for both o1 and o2 is o1 and for both o3 and o4 is o3.

• Consider the combination of strong stubborn sets with
orbit space search (o/s) based on Theorem 1. Strong
stubborn sets in s0 can be obtained according to the fol-
lowing procedure: {o1, o2} is a disjunctive action land-
mark (consisting of the operators that set the goal vari-
able). A necessary enabling set for o1 is {o3}, a cor-
responding set for o2 is {o5}, resulting in the strong
stubborn set {o1, o2, o3, o5}. Out of this set, o3 and
o5 are applicable. Furthermore, as previously proposed
algorithms for symmetry detection base their computa-
tion on a syntactic planning task description [Pochter
et al., 2011], the successor of s0 under o5 will not be
recognized as symmetrical to s0’s other successors (like
the successor under o3 in particular). Thus orbit space
search with strong stubborn sets will classify s0’s suc-
cessors under o3 and o5 in different orbits.
• Consider the successor pruning function obtained by the

combination of strong stubborn sets and symmetrical
operator pruning based on Theorem 2: Starting with the
strong stubborn set according to the description in the
bullet above, o3 and o5 out of this set are applicable,
but not symmetrical, hence no further reductions are ob-
tained. Thus again, two successor states are generated.

In contrast, symmetrical strong stubborn sets only produce
one successor state in s0 because of the restriction to canon-
ical operators: Only o1 is included due to C1 (compared to
o1 and o2 for the other methods), and o3 is included due to
C2, resulting in a set that only contains one applicable op-
erator o3. Intuitively, symmetrical strong stubborn sets can
achieve more pruning as they already recognize symmetries
in “intermediate” steps during the fixed-point computation.

The example shows that symmetrical strong stubborn sets
can further increase the pruning power under reasonable prac-
tical design choices w.r.t. their computation (i. e., using the
achievers of an unsatisfied goal fact as disjunctive action
landmark, and using the achievers of the first unsatisfied pre-
condition fact as necessary enabling sets). We remark that
selecting the achievers of a first unsatisfied precondition fact
according to a particular ordering for computing necessary
enabling sets (e. g., selecting the achievers of 〈b,1〉 for o2 in
the initial state) can be viewed as tie-breaking. However, this
is a way strong stubborn sets have recently been successfully
implemented, e. g., by Alkhazraji et al. [2012].

4.3 Experimental Evaluation
We have implemented and evaluated symmetrical strong stub-
born sets in the same setting as in the previous experimental
section. The coverage results are given in Fig. 2. We com-
pare symmetrical operator pruning (called sop), symmetrical
strong stubborn sets (ssss), and the combination of standard
strong stubborn sets and symmetrical operator pruning ac-
cording to Theorem 2 (s/s) with standard strong stubborn sets
(sss) within A∗ and orbit space search.

We observe that symmetrical strong stubborn sets yield a
slightly higher coverage than strong stubborn sets within A∗,
and lowers the coverage within OSS. One reason for the latter
is the overhead for computing canonical operators. The rel-
ative coverage difference of A∗ and OSS (slightly improved



Domain A∗ OSS
no sss sop s/s ssss no sss sop s/s ssss

barman-11 4 4 4 4 4 8 8 8 8 8
depot 7 7 7 7 7 9 9 8 8 8
driverlog 13 14 13 14 14 13 14 13 14 14
floortile-11 7 7 7 7 7 8 8 8 8 8
freecell 15 14 15 14 13 15 14 15 14 14
gripper 7 7 11 11 11 20 20 20 20 20
logistics00 20 21 20 21 21 20 21 20 21 21
miconic 141 141 140 140 140 142 142 141 141 141
mprime 22 22 22 22 22 23 23 22 22 22
mystery 17 17 17 17 17 17 18 16 16 16
nomys.-11 14 14 15 14 14 15 14 15 14 14
openst.-08 19 20 19 20 20 24 24 20 21 21
openst.-11 14 15 14 15 15 19 19 15 16 16
parcpr.-08 18 30 18 30 30 18 30 18 30 30
parcpr.-11 13 20 13 20 20 13 20 13 20 20
parking-11 2 2 3 2 2 3 2 3 2 2
pegsol-08 27 27 28 28 28 28 28 28 28 28
pegsol-11 17 17 18 18 18 18 18 18 18 18
pipesw.-nt 17 17 18 18 18 21 21 20 20 20
pipesw.-t 12 12 12 12 12 16 16 13 13 13
psr-small 49 49 49 49 49 50 50 50 50 50
rovers 7 9 7 10 10 8 10 8 10 10
satellite 7 12 7 11 11 13 14 7 12 12
scan.-08 15 14 14 13 13 17 16 16 15 15
scan.-11 12 11 11 10 10 14 13 13 12 12
soko.-08 30 29 30 29 29 30 30 30 30 30
tidybot-11 14 14 14 13 13 14 13 14 13 13
tpp 6 6 7 7 7 8 8 8 8 8
trans.-11 6 6 6 6 6 7 7 7 7 7
trucks 10 10 10 10 10 12 12 10 10 10
visitall-11 11 11 11 11 10 11 11 11 11 11
wood.-08 17 27 19 27 27 20 27 19 27 27
wood.-11 12 19 13 19 19 14 19 13 19 19
others 160 160 160 160 160 160 160 160 160 160

Sum 762 805 772 809 807 828 859 800 838 838

Figure 2: Coverage results overview for LM-Cut. Domains
with equal coverage in all configurations are summarized in
“others”. Abbreviations: no additional pruning, sss: strong
stubborn sets, sop: symmetrical operator pruning, s/s: combi-
nation of strong stubborn sets and symmetrical operator prun-
ing, ssss: symmetrical strong stubborn sets.

for A∗ vs. considerably reduced for OSS) is presumably due
to the different number of expanded states (see below for
more details). Furthermore, symmetrical strong stubborn sets
perform favorably compared to symmetrical operator pruning
and similar to the combination s/s. The overall best configu-
ration remains the previously introduced integration of strong
stubborn sets and orbit space search, where no additional
computational overhead for canonical operators occurs.

In the following, let us discuss the number of expanded
states for the various configurations. For space reasons, we
will only provide one scatterplot, and shortly explain the ten-
dencies for the other comparisons in the running text.

Firstly, we compare symmetrical strong stubborn sets to
strong stubborn sets. For A∗, Fig. 3 shows that symmet-
rical strong stubborn sets can further reduce the number of
expansions (by several orders of magnitude in some cases).
In contrast, for OSS, only slightly fewer states are expanded
by symmetrical strong stubborn sets across all domains.
This difference in state expansions in turn explains the rel-
ative coverage difference of these configurations as discussed
above. Secondly, symmetrical strong stubborn sets show
promising search behavior compared to symmetrical operator
pruning: for both A∗ and OSS, symmetrical strong stubborn
sets expand (sometimes significantly) fewer states than sym-
metrical operator pruning. The resulting scatterplots (which
are not shown again for space reasons) look similar to the
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Figure 3: Expansions (without last f layer) forA∗ + LM-Cut:
strong stubborn sets vs. symmetrical strong stubborn sets

plot in Fig. 3. Thirdly, symmetrical strong stubborn sets com-
pared to the combination of strong stubborn sets and symmet-
rical operator pruning yields almost no additional pruning in
almost all domains (for both A∗ and OSS). Apparently, in
practice, OSS already mostly captures the additional pruning
power offered by symmetrical strong stubborn sets.

Overall, the experiments show that the generalization result
of Theorem 4 often carries over to practice. However, the ad-
ditional pruning offered by symmetrical strong stubborn sets
is exploited in terms of coverage by actual implementations
only partly. Nevertheless, for A∗, there are problems where
the additional pruning power is significant and pays off.

5 Related Work
Combinations of partial order reduction and symmetry elimi-
nation have already been (and still are) studied in the area of
computer aided verification [Emerson et al., 1997; Bosnacki
and Scheffer, 2015]. Both Emerson et al. and Bosnacki and
Scheffer consider partial order reduction based on ample sets.
While Emerson et al. require considering unique canonical
states within orbit space search, Bosnacki and Scheffer ex-
tend this theory by also allowing multiple representatives.
Like the latter, we allow using multiple representatives: the
approach by Bosnacki and Scheffer corresponds to our inte-
gration of strong stubborn sets and orbit space search for goal
reachability, which we have additionally shown to be opti-
mality preserving. Symmetrical strong stubborn sets further
extend these concepts for goal reachability. In addition, we
have empirically shown these approaches to be useful on a
large number of planning benchmarks.

6 Conclusions
We have proposed two integration approaches of partial or-
der reduction and symmetry elimination for planning, and
proved them to be completeness and optimality preserving.



Our experiments show that the most direct integration is al-
ready most powerful in terms of coverage: restricting the or-
bit space search to states generated by strong stubborn sets
often inherits the strengths of both partial order reduction and
symmetry elimination, and significantly increases the num-
ber of solved problems in the standard benchmark suite from
the international planning competitions. Furthermore, our
concept of symmetrical strong stubborn sets offers additional
pruning power compared to previous approaches, which is
partly exploited by our current implementations. For the fu-
ture, it will be interesting to further investigate the questions
if more powerful integrations of partial order reduction and
symmetry elimination can be derived, and to which extent
the pruning power can be carried over to practice.
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[Helmert and Röger, 2008] Malte Helmert and Gabriele
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