
Planning as Satisfiability with Relaxed ∃-Step Plans

Martin Wehrle1⋆ and Jussi Rintanen2⋆⋆

1 Albert-Ludwigs-Universität, Institut für Informatik, Freiburg, Germany
2 National ICT Australia Ltd and Australian National University, Canberra, Australia

Abstract. Planning as satisfiability is a powerful approach to solving domain

independent planning problems. In this paper, we consider a relaxed semantics

for plans with parallel operator application based on ∃-step semantics. Operators

can be applied in parallel if there is at least one ordering in which they can be

sequentially executed. Under certain conditions, we allow them to be executed

simultaneously in a state s even if not all of them are applicable in s. In this

case, we guarantee that they are enabled by other operators that are applied at

the same time point. We formalize the semantics of parallel plans in this setting,

and propose an effective translation for STRIPS problems into the propositional

logic. We finally show that this relaxed semantics yields an approach to classi-

cal planning that is sometimes much more efficient than the existing SAT-based

planners.

1 Introduction

Planning as satisfiability is a leading approach to solving domain independent planning

problems. An important factor in its efficiency is the notion of parallel plans. In the

definition of Kautz and Selman [1], operators can be applied in parallel as long as they

are mutually non-interfering. This guarantees that any total ordering on them is a valid

execution and leads in all cases to the same state. Therefore, non-interfering operators

need not be considered in all possible orderings, and respective propositional encodings

get more compact as many intermediate states do not have to be represented explicitly.

Based on an idea of Dimopoulos et al. [2], Rintanen et al. [3] present a relaxed

semantics which they call ∃-step semantics. In contrast to the standard ∀-step semantics,

operators are allowed to be executed in parallel if they are sequentially executable in

at least one ordering. This is a less restrictive condition than non-interference. As a

consequence, plans usually get shorter and can be found more efficiently. Rintanen et

al. present propositional encodings for general ADL problems that lead to a subclass of

general ∃-step plans with the additional constraint that simultaneously applied operators

in a state s have to be already applicable in s.

⋆ Supported by the German Research Council (DFG) as part of the Transregional Collaborative

Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14

AVACS). See http://www.avacs.org/ for more information.
⋆⋆ Supported by NICTA in the framework of the DPOLP project. NICTA is funded through the

Australian Government’s Backing Australia’s Ability initiative, in part through the Australian

National Research Council.



In this paper, we show that this concept can be further generalized for STRIPS prob-

lems. We present an encoding that allows operators to be executed in parallel in a state

s if they are all either already applicable in s or enabled by some other operators that

are applied at the same time point. This leads to a wider class of ∃-step plans in which

more operators are simultaneously applicable. We call this semantics of parallelism

the relaxed ∃-step semantics. In many planning domains, this leads to efficiency gains

because of shorter parallel plan lengths. Furthermore, the formulae get more strongly

constrained which can make them easier to solve. One main innovation in this context is

the notion of the disabling-enabling-graph which is an extension of the disabling graph

presented by Rintanen et al. [3].

The structure of this paper is as follows. Section 2 presents basic notations and

the formal definition of the new semantics. In Section 3, we present a translation into

the propositional logic. Section 4 shows its performance in comparison to the so far

most efficient ∃-step encoding and to the encoding used by SATPLAN06 [4], one of

the winners of the International Planning Competition 2006 for optimal deterministic

planning. Finally, we discuss related work and conclude the paper.

2 Background

2.1 Notation

We consider planning in a setting where the states of the world are represented in terms

of a set P of Boolean state variables that take the value true or false. Each state is a

valuation on P , i.e. an assignment s : P → {T, F}. A literal is a formula of the form

a or ¬a for all a ∈ P . For a literal l we define l by a = ¬a and ¬a = a. The set of

all literals is denoted by L = P ∪ {¬a | a ∈ P}. We use operators for expressing how

the state of the world can be changed. As this work restricts to STRIPS operators, we

use the term operator for STRIPS operator. An operator on a set of state variables P

is a tuple o = 〈p, e〉 where p ⊂ L is a set of literals, the precondition, and e ⊂ L is

a set of literals, the effect. The operator is applicable in a state s if s |= p (where we

identify a set of literals with their conjunction). In this case, we define appo(s) = s′

as the unique state that is obtained from s by making the effect literals of o true and

retaining the truth-values of the state variables not occurring in the effect. For sequences

of operators o1, . . . , on we define appo1;...;on
(s) as appon

(. . . appo2
(appo1

(s)) . . . ). We

say that app〈p1,e1〉;...;〈pn,en〉(s) is defined if and only if app〈p1,e1〉;...;〈pi,ei〉
(s) |= pi+1

for i = 0, . . . , n − 1.

Let π = 〈P, I,O,G〉 be a planning instance, consisting of a set P of state variables,

a state I on P (the initial state), a set O of operators on P , and a formula G on P (the

goal formula). A (sequential) plan for π is a sequence σ = o1; . . . ; on of operators from

O such that appσ(I) |= G, i.e. applying the operators in the given order starting in the

initial state is defined (the precondition of every operator is true when the operator is

applied) and produces a state that satisfies the goal formula.

In the rest of this paper we also consider plans that are sequences of sets of opera-

tors, so that at each execution step all operators are simultaneously applied. In contrast

to the ∃-step semantics given by Rintanen et al., operators that are applied simultane-

ously in a state s do not necessarily have to be applicable in s.



Example 1. Let π = 〈P, I,O,G〉 be a planning instance with state variables P =
{Ai | i ∈ {1, . . . , n}}, initial state I such that I |=

∧n

i=1 ¬Ai, goal state G such

that G =
∧n

i=1 Ai and operators o1 = 〈⊤, {A1}〉 and oi = 〈{Ai−1}, {Ai}〉 for

i = 2, . . . , n. As there is no state in which more than one precondition is satisfied,

the shortest ∃-step plan consists of n steps, whereas the more relaxed ∃-step plans can

reach the goal within only one step, as o1, . . . , on are applicable in parallel. This is be-

cause we allow simultaneously applied operators to be enabled by other operators, and

oi−1 enables oi for all i ∈ {2, . . . , n}.

2.2 Planning as Satisfiability

Planning can be performed by propositional satisfiability testing as follows. Produce

formulae Φ0, Φ1, Φ2, . . . such that Φi is satisfiable if there is a plan of length i. The

formulae are tested for satisfiability in order of increasing plan length, and from the

first satisfying assignment that is found a plan is constructed. Length i of a plan means

that there are i time points in which a set of operators is applied simultaneously. Next

we describe the general structure of such a formula Φi.

The state variables in a problem instance are P = {a1, . . . , an} and the operators

are O = {o1, . . . , om}. For a state variable a we have the propositional variable at that

expresses the truth-value of a at time point t. Similarly, for an operator o we have ot

for expressing whether o is applied at t. For formulae Φ we denote the formula with

all propositional variables superscribed with the index at time point t by Φt. The set of

propositions where all variables are superscribed with index t is denoted by P t.

For a planning instance π, a formula is generated to answer the following question.

Is there an execution of a sequence of sets of operators taking k time points that reaches

a state satisfying G from the initial state I? The structure of such a formula Φk is

I0 ∧ R(P 0, P 1) ∧ · · · ∧ R(P k−1, P k) ∧ Gk, (1)

where I0 and Gk are formulae describing the initial and goal state (the propositions are

marked with 0 and k, respectively), and R(P t, P t+1) describes the transition relation

leading from the state at time point t to the state at time point t+1 for all t ∈ {0, . . . , k−
1}. We will introduce a corresponding propositional encoding of that relation according

to our semantics.

2.3 Relaxed ∃-Step Semantics

Rintanen et al. [3] adapted the linearization idea of Dimopoulos et al. to planning as

satisfiability and showed that corresponding encodings in the propositional logic yield

efficiency gains in contrast to the standard definition. As they considered general oper-

ators (i.e. operators with arbitrary formulae as preconditions and conditional effects),

they additionally restricted their semantics such that the operators’ preconditions have

to be already satisfied in s. In the following, we present a semantics that relaxes this

requirement. In contrast to the approach of Rintanen et al., we allow operators to be

executed in parallel in a state s even if not all of them are already applicable in s. Such

operators have to be enabled by other operators applied at the same time point.



Definition 1 (Relaxed ∃-step plans). For a set of operators O and an initial state I , a

relaxed ∃-step plan is a sequence T = S1; . . . ;Sl of sets of operators such that there is

a sequence of states s0, . . . , sl (the execution of T ) such that s0 = I and

1. for all i ∈ {1, . . . , l} there is a total ordering o1 < · · · < on on Si such that

appo1;...;oj−1
(si−1) |= pj for all oj = 〈pj , ej〉 ∈ Si, si = appo1;...;on

(si−1), and

2. the set
⋃

〈p,e〉∈Si
e is consistent for all i ∈ {1, . . . , l}.

In the next section, we synthesize constraints that lead to relaxed ∃-step plans.

3 Propositional Encoding

For every o = 〈p, e〉 ∈ O there are the following axioms. First, if o is applied at a time

point t, then its effects are true at the next time point. This is expressed by

ot → et+1, (2)

where we identify the set e of literals with their conjunction. Second, the value of a

state variable does not change if no operator that changes it is applied. Hence for every

state variable a we have two formulae, one expressing the conditions for the change of

a from false to true, and another from true to false. The formulae are analogous, and

here we only give the one for change from true to false:

(at ∧ ¬at+1) →
∨

{ot|o = 〈p, e〉 ∈ O,¬a ∈ e}, (3)

where the empty disjunction is the constant ⊥. Finally, the preconditions of applied

operators must be true, and furthermore we need axioms for restricting the parallel ap-

plication of operators. These precondition and parallelism axioms are described next.

We define the notion of disabling-enabling-graphs in order to provide compact encod-

ings in the propositional logic. It generalizes the concept of disabling graphs introduced

by Rintanen et al. for the ∃-step semantics.

We first state when two operators conflict in their preconditions, i.e. we formulate

a necessary condition for being applied simultaneously according to our semantics.

Informally speaking, two operators o and o′ conflict if there is no reachable state s

such that they can be executed sequentially in s. Therefore, they cannot be applied

simultaneously in our relaxed ∃-step semantics.

Definition 2 (Conflict). Let π = 〈P, I,O,G〉 be a planning instance and o = 〈p, e〉,
o′ = 〈p′, e′〉 ∈ O. If there are literals m1 ∈ p and m2 ∈ p′, and

1. there is no reachable state3 s such that s |= (m1 ∧ m2), and

2. there is no operator o′′ = 〈p′′, e′′〉 such that

(a) m2 ∈ e′′,

3 As testing exactly whether a given state is reachable in a planning instance is already PSPACE-

complete (and therefore as hard as planning itself), we approximate this test by using a subclass

of 2-literal-invariants as produced by the algorithm by Rintanen [5] which are computable in

polynomial time.



(b) there is no literal m such that m ∈ e′′ and m ∈ p′, and

(c) o, o′′ and o′′, o′ have consistent effects,

then o and o′ conflict in the ordering o < o′. They conflict if they conflict in both

orderings o < o′ and o′ < o.

Example 2. Let π = 〈P, I,O,G〉 be a planning instance with P = {A,B}, initial

state I |= A ∧ ¬B, and operators O = {o1, o2}, where o1 = 〈{A}, {¬A,B}〉 and

o2 = 〈{B}, {A,¬B}〉. Then o1 and o2 conflict as there is no reachable state s such that

s |= A ∧ B, and there is no operator o′′ = 〈p′′, e′′〉 to resolve this conflict.

The motivation for using disabling-enabling-graphs is the following. The goal is to

identify all sets of operators that “could be applied” simultaneously in our semantics

(i.e. the operators do not conflict and have consistent effects), but there is a reachable

state such that there is no ordering in which they can be sequentially applied. Such sets

are subsets of a strongly connected component (SCC) of the disabling-enabling-graph.

Strongly connected components can be identified in linear time [6].

Definition 3 (Disabling-Enabling-Graph). Let π = 〈P, I,O,G〉 be a planning in-

stance. A disabling-enabling-graph for π is a directed graph G = 〈O,E〉 with the fol-

lowing properties: For all o = 〈p, e〉 and o′ = 〈p′, e′〉 ∈ O there is an edge (o, o′) ∈ E,

if

1. there is a literal m ∈ L such that m ∈ e and m ∈ p′ (enabling), or m ∈ e′ and

m ∈ p (disabling),

2. o and o′ do not conflict, and

3. there is a reachable state s such that s |= e ∧ e′ (parallel execution of o and o′

leads to a reachable state).

Example 3. Let π = 〈P, I,O,G〉 be a planning instance with P = {A,B,C}, initial

state I |= A ∧ B ∧ C, and operators O = {o1, o2, o3}, where o1 = 〈{A}, {¬B}〉,
o2 = 〈{B}, {¬C}〉, and o3 = 〈{C}, {¬A}〉. In this case, the disabling-enabling-graph

only contains disabling edges. There is a strongly connected component indicating that

there is no ordering < such that the operators can be executed according to <.

As the reachability of states is approximated, the disabling-enabling-graph that we

use in our implementation is not necessarily minimal, but it can be computed in polyno-

mial time in the size of the problem instance. This does not affect the correctness of our

encoding as less operators are simultaneously applicable if the graph is not minimal.

The number of edges typically increases in comparison to the disabling graph because

enabling edges have to be considered as well. Moreover, the condition to be applied

at some time point is relaxed, and we have to consider more operators that “could be

applied” in parallel.

We impose a fixed ordering on all SCCs beforehand and allow operator execution

only in that ordering. The resulting encoding is stricter than our formal definition of re-

laxed ∃-step semantics and does not always allow all the parallelism that is possible, but

it leads to small formulae. For an SCC S = 〈V,E〉 with V = {o1, . . . , on}, fixed order-

ing o1 < · · · < on and i ∈ {1, . . . , n}, we denote the set of operators {oi+1, . . . , on}
that occur after oi in this ordering by Succ(S, oi).



In the following, we describe the precondition axioms. In order to get a compact

representation, we define for all operators and literals a corresponding set of enabling

operators.

Definition 4 (Enabling Operators). Let o = 〈p, e〉 be an operator, m a literal. The

set enOps(o;m) of enabling operators for o and m is defined such that o′ = 〈p′, e′〉 ∈
enOps(o;m) if and only if o′ 6= o, m ∈ e′, o and o′ have consistent effects and do not

conflict in the ordering o′ < o.

Informally speaking, enOps(o;m) contains operators that can be applied in parallel

with o and have the literal m in their effect. In order to be applicable in a state s, we

require for an operator o = 〈p, e〉 that for all literals m ∈ p either s |= m or there is an

enabling operator o′ = 〈p′, e′〉 ∈ enOps(o;m) that is applied simultaneously. This is

stated in the formula

ot →
∧

m∈p

(mt →
∨

(enOpst(o;m) \ Succt(S, o))), (4)

where S is the (unique) SCC in which o occurs and all propositions are labeled with

time point t, and enOps(o;m)t is the set of enabling operators that are labeled with

t. Operators occurring after o are ruled out because this allows us to use weaker paral-

lelism axioms which are described next.

We guarantee that operators that are applied in parallel can be executed sequentially

in at least one way. A sufficient but too strong constraint is the acyclicity of the cor-

responding disabling-enabling-graph. Instead, we only require that there is no cycle of

operators that disable one another. This is sufficient because of our definition of the

precondition axioms (4). Therefore, for SCC S and operator o in S, we require that if

o is applied, then all operators in S that are disabled by o and occur after o in the fixed

ordering are not applied at the same time point.

Let S = 〈V,E〉 be an SCC, V = {o1, . . . , on}, m a literal, and o1 < · · · < on a

fixed ordering. Let E = {o = 〈p, e〉 ∈ V |m ∈ e} be the set of operators that falsify m

and R = {o = 〈p, e〉 ∈ V |m ∈ p} the set of operators that require m to remain true.

Similarly to Rintanen et al. [3], we introduce the chain-formula

∧

{

oi → aj
m | i < j, oi ∈ E, oj ∈ R, {oi+1, . . . , oj−1} ∩ R = ∅

}

∪
{

ai
m → aj

m | i < j, {oi, oj} ⊆ R, {oi+1, . . . , oj−1} ∩ R = ∅
}

∪
{

aj
m → ¬oj | oj ∈ R

}

,

where the auxiliary variable aj
m is true if there is an operator oi ∈ Em with oi < oj that

is applied and falsifies m. The number of auxiliary variables is linear in the number of

operators. The key idea behind this chain-formula is to ensure that if an operator o is

applied that falsifies a literal m, then all operators occurring after o in the fixed ordering

that require m to be true cannot be applied.

Example 4. Consider again the planning instance 〈P, I,O,G〉 with P = {A,B,C},

initial state I |= A∧B∧C, and operators O = {o1, o2, o3}, where o1 = 〈{A}, {¬B}〉,
o2 = 〈{B}, {¬C}〉, and o3 = 〈{C}, {¬A}〉. As we have seen in Example 3, these



operators are not serializable. For a fixed ordering o1 < o2 < o3, the chain-encoding

leads to the following parallelism axioms. For variable A, the set of operators that falsify

A is E = {o3}, the set of operators that require A to remain true is R = {o1}. As

o1 < o3, we do not need any parallelism axioms for A. For B, we get E = {o1} and

R = {o2}. Therefore, we have to ensure that if o1 is applied, then o2 cannot be applied

at the same time point. Hence, we get the parallelism axioms o1 → a2
B and a2

B → ¬o2.

For C, we get the axioms o2 → a3
C and a3

C → ¬o3 in a similar way.

In our experiments, we have kept the operators’ ordering as they have come out of

our PDDL front end.

The conjunction of the effect, frame, precondition and parallelism axioms for all

operators describes a transition relation R(P t, P t+1) leading from the state at time

point t to the successor state. In a state s, if s |= R(P t, P t+1), there is a total ordering

o1 < · · · < on on the parallel operators o1, . . . , on such that appo1;...;on
(s) is defined.

Let Var(t) be the set of all variables occurring in R(P t, P t+1).

Theorem 1. Let π = 〈P, I,O,G〉 be a planning instance, and s a state reachable from

I . Let ν be a valuation of Var(t) for some t such that ν(at) = s(at) for all at ∈ P t

and ν |= R(P t, P t+1). Let {o | ν |= ot} = {o1, . . . , on} be the set of operators that

is applied at time point t. Then there is a total ordering o1 < · · · < on such that

appo1;...;on
(s) is defined.

Proof. (sketch) There is an ordering o1 < · · · < on such that for all o, o′ ∈ {o1, . . . , on}:

If o, o′ are contained in the same SCC Gi = 〈Vi, Ei〉, then o < o′ iff o <i o′ (where

<i is the ordering imposed on Vi). If o, o′ are contained in different SCCs, then o < o′

if there is an edge from o to o′. As o, o′ do not conflict (the reader may verify this) and

have consistent effects for all o, o′ ∈ {o1, . . . , on}, it can be shown by induction that

appo1;...;on
(s) is defined: for all oi = 〈pi, ei〉 ∈ {o1, . . . , on} and for all m ∈ pi the fol-

lowing holds. There is no oj = 〈pj , ej〉 ∈ {o1, . . . , oi−1} with m ∈ ej . If s 6|= m, then

there is oj = 〈pj , ej〉 ∈ {o1, . . . , oi−1} with m ∈ ej . Therefore appo1;...;oi−1
(s) |= pi.

3.1 Optimizations

In order to speed up planning, we additionally use invariants, which are formulae that

are true in all states reachable from the initial state. A restricted class of invariants

can be identified in polynomial time. In our experiments, we use formulae lt1 ∨ lt2 for

invariants l1 ∨ l2 as produced by the algorithm by Rintanen [5].

For an operator o = 〈p, e〉 and a literal m, invariants can also be used to further

reduce the number of enabling operators in enOps(o;m). Consider o′ = 〈p′, e′〉 ∈
enOps(o;m). If there is an invariant l1 ∨ l2 such that l1 ∈ e′ and l2 ∈ p, then o′ cannot

be used to enable o at the same time point. Hence, such operators o′ are ruled out in our

implementation of enOps(o;m). Note that this does not affect correctness.

Furthermore, it is useful to keep the SCCs as small as possible because of the fixed

ordering that we impose on their operators (the more operators we restrict to be executed

in a fixed ordering, the more parallelism will possibly be lost). In order to tackle the

problem of increasing SCCs, we add constraints ¬ot
1 ∨ ¬ot

2 for operators o1 and o2

that disable each other (i.e. o1 disables o2, and vice versa), because such pairs cannot



be executed in parallel anyway according to our semantics. The quadratical worst case

size is almost never an issue in practice, but the size of the SCCs decreases because we

need no edges between o1 and o2 in the disabling-enabling-graph.

4 Experiments

We evaluated our new relaxed ∃-step encoding in comparison to the so far most effi-

cient ∃-step encoding [3] and to the encoding used in SATPLAN06 [4], winner of the

IPC 2006 for optimal deterministic planning, on a number of benchmarks from the In-

ternational Planning Competitions 2004 and 2006. We used the SAT Solver SIEGE [7]

and averaged the runtimes and serial plan lengths over 50 runs. In cases where a run

exceeded 1200 seconds, we took the average runtime of 5 runs. Cases in which a run

exceeded 3600 seconds are indicated with a dash. The results for the SATPLAN06, the

∃-step and relaxed ∃-step encoding are compared in Table 1. We report the parallel and

average serial plan length, as well as the total evaluation time of the formulae by a se-

quential evaluation (i.e. if Φi−1 is found unsatisfiable, then test Φi for i = 1, 2, 3, . . .

until the first satisfiable formula is found). The runtime data only include the time for

solving the formulae. The generation of disabling-enabling-graphs is possible almost as

efficiently as the generation of disabling graphs [3]. The results were obtained on a PC

running at 2.8 GHz with 2 GB main memory, and a LINUX operating system.

In the PSR, Airport and Pathways domains we get (sometimes significantly) better

runtimes due to shorter parallel plan lengths. In particular, the PSR domain makes use

of this more relaxed semantics. Storage is interesting because except for one instance

(storage 17) we do not get shorter plans than with ∃-step semantics, but in that instance

the last unsatisfiable formula gets much easier to solve. A more sophisticated heuristic

ordering of the SCCs would possibly yield shorter plans and better runtimes in general.

Furthermore, we implemented a domain structured similarly to Example 1 in which a

hoist has to fill boxes with three objects in a predefined order4. We obtain a significant

speedup in this setting as the more relaxed ∃-step plans get only half as long as the

corresponding ∃-step plans. Moreover, we did experiments for other domains but give

only a short overview of the results because of lack of space. In the tested instances,

we can summarize the results as follows. Philosophers is easy for all the encodings,

a fraction of a second is needed to solve the largest instances. In comparison to the

SATPLAN06 encoding, the runtimes of the relaxed ∃-step encoding are (sometimes

significantly) lower in the Openstacks and Pipesworld domain, and comparable (i.e.

sometimes better, sometimes worse) in TPP. In comparison to the ∃-step encoding, the

runtimes are comparable in Pipesworld and TPP, and slightly worse in Openstacks.

The parallel plan lengths of the relaxed ∃-step encoding usually decreases or is

equal in comparison to the other encodings. The quality of the serial plans for ∃-step

and relaxed ∃-step is comparable: The average serial plans produced by the relaxed ∃-

step encoding are equally long or at most slightly longer than those produced by the

∃-step encoding in most of the cases. As we do no postprocessing step to eliminate

redundant operators, the serial plans produced by SATPLAN06 are usually shorter than

those produced by the (relaxed) ∃-step encodings.

4 Where boxes n means that n boxes have to be filled.



Table 1. Experimental results with SATPLAN06, ∃-step and relaxed ∃-step encodings

SP06

parallel

length

SP06

serial

length

SP06

total

time

∃-step

parallel

length

∃-step

serial

length

∃-step

total

time

relaxed

parallel

length

relaxed

serial

length

relaxed

total

time
psr 46 29 34 246.9 28 42 16.4 16 43 1.1

psr 47 23 27 11.1 21 35 0.6 12 38 0.1

psr 48 26 37 42.7 24 42 2.3 15 43 0.3

psr 49 36 47 874 34 56 132.6 22 58 8.7

airport 17 28 88 0.5 28 88 1 25 88 0.3

airport 18 31 107 3.1 31 108 6.6 26 109 0.5

airport 19 30 90 0.9 30 90 0.8 25 90 0.3

airport 20 32 115 5.4 32 116 14.0 27 115 1.2

pathways 5 9 30 0.04 9 40 0.1 7 47 0.1

pathways 6 12 55 1.2 12 69 1.3 10 69 0.9

pathways 7 13 72 38.3 13 90 7.1 11 97 8.1

pathways 8 - - - - - - 14 134 2339

storage 15 9 25 11.5 6 22 0.09 6 23 0.1

storage 16 - - - 7 28 0.5 7 29 0.5

storage 17 - - - 8 30 78.4 7 31 0.5

storage 18 - - - 9 36 50.2 9 38 40.4

boxes 5 21 25 9.8 20 30 2 10 29 0.1

boxes 6 25 30 149.7 24 37 28.3 12 34 0.2

boxes 7 - - - 28 45 354 14 52 0.9

boxes 8 - - - - - - 16 63 2.6

5 Related Work

Planning as satisfiability was pioneered by Kautz and Selman. They presented a first

translation of a planning problem into the propositional logic [8] as well as the standard

encoding for parallel operator application [1]. In a further approach [9], they combined

planning as satisfiability with the GraphPlan algorithm [10] resulting in the well known

BLACKBOX planner. This planner has been further developed to SATPLAN06 [4].

Dimopoulos et al. [2] noticed that the notion of parallel plans used by Blum and

Furst can be relaxed to what we have called ∃-step semantics. Cayrol et al. [11] imple-

mented this idea in the GraphPlan framework. Rintanen et al. [3] proposed propositional

encodings for the ∃-step semantics for arbitrary operators that restrict parallel operator

application in a state s to operators that are already applicable in s.

Van den Briel et al. [12] used a concept of parallelism that is similar to our re-

laxed ∃-step semantics for an integer programming approach. They, however, presented

a loosely constrained approach causing an exponential number of cycle elimination

constraints, which their search algorithm has to take into account explicitly. Therefore,

they considered it unfeasible to generate all the required constraints for guaranteeing

a total ordering of parallel actions, and instead generate the necessary constraints dur-

ing search. We avoided this problem by enforcing a fixed ordering on the number of



operators of non-trivial SCCs. This may rule out some plans, but leads to small formu-

lae which can be solved very efficiently. For our approach, we do not need specialized

search algorithms, but can use arbitrary SAT solver to perform the planning task.

6 Conclusions

We have given a translation of a relaxed semantics for parallel planning into SAT and

shown that it is efficient in domains of the recent International Planning Competitions

if they exploit the relaxation of our semantics. In this case, we are often one order of

magnitude faster than the so far most efficient encodings. Our encoding is restricted

to STRIPS because the generalization does not seem to be possible for general ADL

problems due to disjunctive preconditions of operators. As various planning domains

and different semantics have been developed in the last years, it will be interesting for

further research if there are general structures of planning domains that are well suited

for certain types of semantics. In this context, there is also the question whether there

are other classes of parallel plans that lead to efficient planning as satisfiability.

References

1. Kautz, H., Selman, B.: Pushing the Envelope: Planning, Propositional Logic, and Stochastic

Search. In: Proceedings of the 13th National Conference on Artificial Intelligence. (1996)

1194–1201

2. Dimopoulos, Y., Nebel, B., Koehler, J.: Encoding Planning Problems in Nonmonotonic

Logic Programs. In: Proceedings of the 4th European Conference on Planning. (1997) 169–

181

3. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as Satisfiability: Parallel Plans and Algo-

rithms for Plan Search. Artificial Intelligence 170 (2006) 1031–1080

4. Kautz, H., Selman, B., Hoffmann, J.: SatPlan: Planning as Satisfiability. Abstracts of the 5th

International Planning Competition (2006)

5. Rintanen, J.: A Planning Algorithm not Based on Directional Search. In: Proceedings of

the 6th International Conference on Principles of Knowledge Representation and Reasoning.

(1998) 617–624

6. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing

1 (1972) 146–160

7. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon

Fraser University (2004)

8. Kautz, H., Selman, B.: Planning as Satisfiability. In: Proceedings of the 10th European

Conference on Artificial Intelligence. (1992) 359–363

9. Kautz, H., Selman, B.: Unifying SAT-based and Graph-based Planning. In: Proceedings of

the 16th International Joint Conference on Artificial Intelligence. (1999) 318–325

10. Blum, A.L., Furst, M.L.: Fast Planning through Planning Graph Analysis. In: Proceedings

of the 14th International Joint Conference on Artificial Intelligence. (1995) 1636–1642

11. Cayrol, M., Régnier, P., Vidal, V.: Least Commitment in Graphplan. Artificial Intelligence

130 (2001) 85–118

12. van den Briel, M., Vossen, T., Kambhampati, S.: Reviving Integer Programming Approaches

for AI Planning: A Branch-and-Cut Framework. In: Proceedings of the 15th International

Conference on Automated Planning and Scheduling. (2005) 310–319


