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Abstract

Transposition tables are a well-known method for pruning du-
plicates in heuristic search. This paper presents a detailed
analysis of transposition tables for IDA*. We show that some
straightforward implementations of IDA* with transposition
tables (IDA*+TT) can result in suboptimal solutions being
returned. Furthermore, straightforward implementations of
IDA*+TT are not complete. We identify several variants
of IDA*+TT which are guaranteed to return the optimal so-
lution, as well as a complete variant. An empirical study
shows that IDA*+TT can significantly improve upon the per-
formance of A* in domain-independent planning.

1. Introduction
Best-first search strategies such as A* (Hart, Nilsson, and
Raphael 1968) are widely used for solving difficult graph
search problems, but a significant limitation of A* is the
need to keep all of the generated nodes in memory. An alter-
native approach for exploring the search space in a best-first
manner without storing all nodes includes linear-space algo-
rithms such as IDA* (Korf 1985). IDA* performs a series of
depth-first searches with a cutoff bound, such that on each
iteration, states with a cost less than or equal to the bound
are expanded. A major issue with IDA* when searching a
graph is the re-expansion of duplicate states reached via dif-
ferent paths in the graph, which can result in a tremendous
amount of redundant search.

One method for detecting and pruning duplicate nodes
in IDA* is a transposition table, which caches information
about previously generated nodes. When a node is gen-
erated, this cache is consulted to detect and prune dupli-
cate nodes. As far as we know, transposition tables (TT)
for single-agent search were first proposed in (Reinefeld
and Marsland 1994) as one of the components of an “en-
hanced IDA*”. Although the use of transposition tables in
IDA* has been reported in a number of domains since then,
there has not been an in-depth analysis of IDA* using a TT
(IDA*+TT) in the literature. Although the basic idea of a
transposition table is simple, it turns out that there are subtle
but very important algorithmic details which affect the ad-
missibility and completeness of a search algorithm that uses
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algorithm Iterative Deepening;
1: bound := h(root); path := [root]; solved := 0;answer:=[];
2: repeat
3: bound := DFS*(root, bound, path);
4: until solved ∨ bound =∞;
5: if solved then
6: return path;
7: else
8: solution doesn’t exist!;
9: end if

Figure 1: Iterative Deepening template. DFS* calls one of
the recursive search functions described in the text.

a TT. In addition, the choice of replacement policy for the
TT has a significant impact on the performance of IDA*+TT.

In this paper, we investigate transposition tables for IDA*.
We first show that some straightforward implementations
of transposition tables can result in IDA* returning sub-
optimal solutions, as well as failing to terminate correctly
when there is no solution (incompleteness). These problems
are particularly prone to occur when arbitrary replacement
strategies are used to replace or retain elements in the TT
when the table is full. We identify IDA*+TT algorithms
which are guaranteed to find the optimal solution (regard-
less of replacement policy), but are incomplete. We then
propose an IDA*+TT algorithm which is complete. Then,
we discuss and propose replacement policies for transpo-
sition tables, and empirically demonstrate the effectiveness
of IDA*+TT in domain-independent planning. We imple-
mented IDA*+TT in a recent version of the state-of-the-art,
Fast-Downward (FD) sequential optimal planner (Helmert,
Haslum, and Hoffmann 2007), and show that IDA*+TT can
significantly outperform the standard A* algorithm in FD.

2. IDA* With Transposition Tables
IDA* performs an iterative-deepening search, as shown in
Figures 1 and 2, where each iteration performs a depth-first
search until the cost (f -value) exceeds bound (Fig 2). Given
an admissible heuristic function, IDA* returns a minimal-
cost solution, if a solution exists (Korf 1985).

When the search space is a graph, IDA* will regenerate
duplicate nodes when there are multiple paths to the same
node. A transposition table (TT) is a cache where the keys



function DFS(n, bound, path): real
1: if n is a goal state then
2: solved := true; answer := path; return (0);
3: end if
4: if successors(n) = ∅ then
5: new bound :=∞ ;
6: else
7: new bound := min{BD(m)|m ∈ successors(n)};
8: end if
9: return (new bound);

where BD(m) :=

Case 1: ∞, if path+m forms a cycle

Case 2: c(n,m) + DFS(m, bound− c(n,m), path+m),
if c(n,m) + h(m) ≤ bound

Case 3: c(n,m) + h(m), if c(n,m) + h(m) > bound

Figure 2: DFS for standard IDA*

are states and the entries contain the estimated cost to a so-
lution state. The TT is usually implemented as a hash table.
During the search, we compute the hash value for the current
state (if we use an incrementally computable hash function
such as (Zobrist 1970), this is at most several XOR oper-
ations per node), and then perform a hash table lookup to
check if the current state is in the TT. While this imposes
an additional overhead per node compared to standard IDA*
in order to prune duplicates, this tradeoff can be favorable
in applications such as domain-independent planning where
duplicate nodes are common, and this overhead is small
compared to state generation and heuristic computation.

Since a TT has finite capacity, a replacement policy can
be used to manage this limited capacity, i.e., determine
how/which entries are retained or replaced when the table
is full. In the analysis below, the replacement policy is as-
sumed to behave arbitrarily, so the results are independent
of replacement policy.

We now analyze some properties of IDA*+TT. We as-
sume that the search space is a finite, directed graph, which
may contain cycles.

Definition 1 A search algorithm is admissible if it returns
the minimum cost solution in finite time (assuming one ex-
ists).

A key property of search algorithms is whether it is guar-
anteed to be able to find an optimal solution. Whether a par-
ticular instance of IDA*+TT is admissible or not depends on
a subtle combination of algorithmic details (specifically, the
interaction among the backup policy, cycle detection mech-
anism, and TT replacement policy), as well as problem char-
acteristics (i.e., whether the heuristic is consistent).1

1For example, the 15-puzzle implementation in (Reinefeld and
Marsland 1994) combines IDA*+TT with a consistent heuristic
based on Manhattan distance, a TT replacement strategy based on
search depth, and a move generator eliminating a move placing a
piece back to the blank where that piece was located in the previous
state (such a move immediately creates a cycle).

function DFSTT1(n, bound, path): real
1: if n is a goal state then
2: solved := true; answer := path; return (0);
3: end if
4: if successors(n) = ∅ then
5: new bound :=∞;
6: else
7: new bound := min{BD(m)|m ∈ successors(n)};
8: end if
9: store (n, new bound) in TT ;

10: return (new bound);

where BD(m) :=

Case 1: ∞, if path+m forms a cycle

Case 2: c(n,m) + DFSTT1(m, bound− c(n,m), path+m),
if c(n,m) + Lookup(m) ≤ bound

Case 3: c(n,m) + Lookup(m),
if c(n,m) + Lookup(m) > bound

function Lookup(m,TT ): real
1: if m is is in TT then
2: return esti(m);
3: else
4: store (m,h(m)) in TT
5: return h(m)
6: end if

Figure 3: DFSTT1 - straightforward (but inadmissible) extension
of DFS using a transposition table; uses auxiliary Lookup function

Let us consider DFSTT1 (Fig 3), a straightforward exten-
sion of DFS which uses a a transposition table. The major
difference is that in the computation of BD(m) (the lower
bound on the cost of reaching a solution from m), calls to
the heuristic function h are replaced with calls to Lookup,
which either returns the stored estimate for a node (if the
entry exists), or computes, stores, and returns the estimate.
Since cycle detection is important in applications such as
domain-independent planning, DFSTT1 incorporates a gen-
eral, cycle detection mechanism which detects cycles of ar-
bitrary length.

If the capacity of the TT is unlimited (infinite memory),
then, with a consistent heuristic it is straightforward to show
that DFSTT1 is guaranteed to return the optimal solution (if
one exists).

Proposition 1 Given a consistent heuristic, IDA* using DF-
STT1 with an infinite capacity TT is admissible.

On the other hand, if the TT capacity is finite, it turns out
that DFSTT1 can return a suboptimal solution, depending
on the replacement policy.

Proposition 2 Given a consistent heuristic, IDA* using DF-
STT1 with a finite-capacity TT is not admissible (for some
replacement policies).

Proof: Consider the search graph in Fig 4. Assume that the
TT replacement policy is such that the estimates for A and
C are never stored (this could be part of a larger graph which
exhausts TT capacity), so that their h-value is always com-
puted and used, and that B is initially not stored. The cutoff
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Figure 4: Counterexample for Proposition 2

bound starts at (bound = h(S) = 2), and increases to 4,
then 5. Consider the iteration with bound = 5. The cycle
[S,A,B,A] is detected. At this point, (B,∞) is added to the
TT – assume that the replacement policy never replaces this
entry. Next, when the path [S,B] is generated, we compute
f(B) = 1+esti(B) =∞ and back up. On the next iteration
(bound = 7), the solution path [S,A,C,G] is found, and the
algorithm terminates and returns this suboptimal path. 2

Note that in this counterexample, the interaction between
the TT cycle detection mechanism and replacement strategy
is responsible for the incorrect behavior.

The definition of DFSTT1 in Fig 3 does not specify a TT
replacement policy. While there exist replacement policies
such that IDA*+DFSTT1 always returns the optimal solu-
tion, this is not quite satisfactory, because the TT is essen-
tially a cache, and it is preferable to identify IDA*+TT al-
gorithms which are admissible regardless of TT replacement
policy.

In fact, even with unlimited memory and no replacement,
DFSTT1 is not admissible if the heuristic is inconsistent.

Proposition 3 Given an admissible, inconsistent heuristic,
IDA* using DFSTT1 is not admissible.

This can be seen by replacing h(S) = 2 with h(S) = 5 in
Fig 4 and simulating an execution similar to that for Propo-
sition 2.

3. Admissible IDA* with a Transposition
Table

The main problem with DFSTT1 is the interaction be-
tween the transposition table and cycle detection mecha-
nism, which can result in an incorrect value (∞) being stored
in the TT. This is further complicated by the use of a replace-
ment strategy when TT capacity is limited. We can correct
this problem by keeping track of the lower bound to return
to the parent call (bound) and the estimate to be stored in the
TT (esti) separately. This modified algorithm, DFSTT2, is
shown in Fig 5. Note that DFSTT2 returns a pair of values,
(new esti, new bound) (Lines 11,2). The ET computation

uses the first return value (index “[0]”), and the BD compu-
tation uses the second value (index “[1]”).

Theorem 1 Given an admissible heuristic function,
IDA*+DFSTT2 is admissible.

Proof Sketch: Assume (without loss of generality) a search
graph with non-negative edge costs and a non-negative
heuristic function. Assuming a solution exists, let C∗ be the
cost of an optimal solution. The following properties hold:
(P1) DFSTT2(root, bound, [root]) terminates.
(P2) For any node n, 0 ≤ gmin(n) + esti(n) ≤ COST ∗(n)
where gmin(n) is the smallest g-value among multiple paths
to n and COST ∗(n) is the minimal cost of a path from the
initial state to a goal state via n. [TT entries for the nodes
on the optimal path never overestimate C∗].
(P3) If b < C∗, then b < DFSTT2(root, b, [root])[1] ≤ C∗.
[the cutoff bound b will increase as long as b < C∗].
(P4) If C∗ ≤ b, then DFSTT2(root, b, [root]) returns a path
with cost ≤ b. [if the cutoff bound b ever reaches C∗, the
solution will be found].

The key property is P2, which guarantees that the TT be-
haves like an admissible heuristic. To prove P2, we con-
sider how TTi, the state of the transposition table at step
i, changes as the algorithm progresses. Starting with an
empty transposition table at step 0 (TT0 = ∅), it can be
shown straightforwardly by induction on time step i that P2
is correct. P2 applies to all entries that are in the TT at any
given time – although replacement might cause entries to be
deleted from the TT, it does not matter what the replacement
policy is, because we only care that P2 holds true for all en-
tries currently in the TT, and we do not care how or when en-
tries are deleted. Given P1 and P2, properties P3 and P4 are
straightforward properties of standard IDA*, so their proofs
are omitted. The iterative deepening (Fig 1) starts with an
initial cutoff of bound1 = h(root) ≤ C∗. By Properties
2,3, and 4, IDA*+DFSTT2 will iteratively increase the cut-
off bound and search until an optimal path is found, at which
point it will terminate. Thus, this algorithm is admissible.2

A different admissible approach was implemented in the
RollingStone sokoban solver (Junghanns 1999). Assume
(without loss of generality) unit edge costs. Instead of stor-
ing the lowest cost estimate found under an exhaustively
searched node in the TT, this policy stores bound−g(n)+1.2
Rather than storing this value in the tree after searching the
subtree, the value is stored in the TT before descending into
the tree. Cycling back into this state will result in g(s) being
higher than its previous value, resulting in a cutoff (thus, this
strategy does not require a separate cycle detection mecha-
nism). It is easy to see that this RollingStone (RS) strategy
is admissible:3 Let g1 and g2 be g-values of n via paths p1

and p2, respectively. Assume RS first reaches n via p1, and
(n, bound− g1 + 1) has been stored in the TT. Suppose that
we later encounter n via p2. If g1 ≤ g2, a cut off happens
because bound−g1+1+g2 > bound (p2 is longer than p1).

2With non-unit edge costs, bound − g(n) + ε is stored, where
ε the smallest edge weight in the graph.

3Since RS detects cycles using the TT, the replacement nodes
must not replace nodes on the current search path - this is easily
enforced.



function DFSTT2(n, bound, path): (real,real)
1: if n is a goal state then
2: solved := true; answer := path; return (0, 0);
3: end if
4: if successors(n) = ∅ then
5: new esti :=∞; new bound :=∞;
6: else
7: new esti := min{ET(m)|m ∈ successors(n)};
8: new bound := min{BD(m)|m ∈ successors(n)};
9: end if

10: store (n, new esti)in TT ;
11: return (new esti, new bound);

Where ET(m) :=

Case 1: c(n,m) + Lookup(m), if path+m forms a cycle

Case 2: c(n,m) + DFSTT2(m, bound− c(n,m), path+m)[0],
if c(n,m) + Lookup(m) ≤ bound

Case 3: c(n,m) + Lookup(m),
if c(n,m) + Lookup(m) > bound

BD(m) :=

Case 1: ∞, if path+m forms a cycle

Case 2: c(n,m) + DFSTT2(m, bound− c(n,m), path+m)[1],
if c(n,m) + Lookup(m) ≤ bound

Case 3: c(n,m) + Lookup(m),
if c(n,m) + Lookup(m) > bound

Figure 5: DFSTT2: An admissible algorithm

If g1 > g2, we reexpand n to try to find a solution within the
current bound.

We now propose DFSTT2+RS, a hybrid strategy com-
bining DFSTT2 and RS. Instead of storing (n, new esti),
we store (n,max{new esti, esti(n), bound − g(n) + ε})
where ε is the smallest edge cost (ε = 1 in our planning
domains below). In this hybrid strategy, the value is stored
after the search under node m is exhausted, while RS stores
bound − g(n) + ε before descending into the tree. For all
nodes, the TT entry for DFSTT2+RS dominates both DF-
STT2 and RS, and it is easy to extend the proof of admissi-
bility for DFSTT2 to show that DFSTT2+RS is admissible.

An alternate approach to addressing the corruption of fi-
nite TTs by cycles is to completely ignore cycles. This
algorithm, DFSTTIC, is identical to DFSTT1 (Fig 3),
except that the BD computation rule is the following:
(case 1) BD(m) := c(n,m) + DFSTTIC(m, bound −
c(n,m), path + m), if c(n,m) + Lookup(m) ≤ bound,
and (case 2) BD(m) := c(n,m)+Lookup(m), if c(n,m)+
Lookup(m) > bound. Unlike the BD computation rule for
DFSTT1, this modified rule lacks a cycle check. DFSTTIC
is easily seen to almost always returns the optimal solution
path in finite time. However, it can fail to terminate in graphs
that contain a cycle of cost 0. Thus, DFSTTIC is not admis-
sible.

4. Complete, Admissible IDA*+TT
In addition to admissibility, another important property is
completeness, i.e., will the algorithm always terminate even
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Figure 6: Counterexample for Proposition 4

Figure 7: An example in which both DFSTT2 and DF-
STT2+RS returns “no solution”, but RS never terminates

when there is no solution?

Definition 2 A search algorithm is complete if it is admis-
sible, and returns no solution in finite time when no solution
exists.

Proposition 4 IDA* using DFSTT2, RS, and DFSTT2+RS
are incomplete.

Proof: Consider the search graph in Figure 6.
First, consider DFSTT2: bound is initially h(S) = 2.

Due to the TT updates for esti(A) and esti(B), the search
enters a pathological alternation where on the odd itera-
tions, we generate the paths S,A,B, and S,B, and on the
even iterations, we generate the paths S,B,A and S,A.
On each iteration, bound increases by 1. The TT entries
are updated as follows: when bound = i, and esti(A) =
i, esti(B) = i − 1 at the beginning of the iteration, then
esti(A) = i, esti(B) = i + 1 at the end of the iteration;
when bound = i, and esti(A) = i − 1, esti(B) = i at the
beginning of the iteration, then esti(A) = i+1, esti(B) = i
at the end of the iteration. This process alternates forever
and IDA*+DFSTT2 never terminates. IDA*+RS also fails
on this graph because the bound never stops increasing. 2

Note that while RS fails to terminate on all instances
which have this type of cycle, DFSTT2 is able to solve a
subset of these instances, i.e., DFSTT2 dominates RS. Fig-
ure 7 illustrates this.

We now propose DFSTT3 (Fig 8), a modified version of
DFSTT2 which is both complete and admissible. The main
idea is to store not only esti, but also the g-cost associated
with esti. When we revisit a node, the g-cost information
allows us to determine whether we are revisiting a node that
has already been reached via a shorter path. Lookup2 is sim-
ilar to Lookup, except that it retrieves (and stores, if no en-
try was present) the g-cost in addition to esti. Additionally,
esti(n) is passed as an argument of DFSTT3 to be used as
a conservative estimation when a cycle is detected. This al-
lows us to label such nodes as dead ends. In the search graph
in Figure 6, the algorithm labels both A and B as dead ends,
and correctly returns∞ as the bound.



function DFSTT3(n, bound, path, esti) : (real,real)

1: if n is a goal state then
2: solved := true; answer := path; return (0, 0);
3: end if
4: if successors(n) = ∅ then
5: new esti :=∞; new bound :=∞;
6: else
7: new esti := min{ET(m)|m ∈ successors(n)};
8: new bound := min{BD(m)|m ∈ successors(n)};
9: end if

10: store (n, new esti, g(path)) in TT ;
11: return (new esti, new bound);

Where: ET(m) :=

Case 1: esti, if path+m is suboptimal

Case 2: c(n,m) + DFSTT3(m, bound − c(n,m), path +
m,Lookup2(m))[0],
if c(n,m) + Lookup2(m) ≤ bound

Case 3: c(n,m) + Lookup2(m),
if c(n,m) + Lookup2(m) > bound

BD(m) :=

Case 1: ∞, if path+m is suboptimal

Case 2: c(n,m) + DFSTT3(m, bound − c(n,m), path +
m,Lookup2(m))[1],
if c(n,m) + Lookup2(m) ≤ bound

Case 3: c(n,m) + Lookup2(m),
if c(n,m) + Lookup2(m) > bound

* path + m is suboptimal iff path + m forms a cycle, or TT
contains an entry (m, estim, g(m)), and g(m) < g(path+m).

Figure 8: DFSTT3: An admissible and complete algorithm

Theorem 2 Given an admissible heuristic function,
IDA*+DFSTT3 is complete.

Proof sketch: Properties analogous to P1-P4 for DFSTT2 are
easily seen to be true for DFSTT3, so it follows that DFSTT3
is admissible.

To show completeness: Let MAX := maxn{gmax(n) +
h(n)}, the longest acyclic path in the graph (assuming wlog
h(n) <∞). The following properties hold:
(P5) If the transposition table contains an entry
(n, esti, g(n)) for node n, esti ≤ MAX − g(n). This can
be proven straightforwardly by induction, similar to (P2).
(P6) If no solution exists, DFSTT3(root,MAX, [root])[1] =
∞. This can be shown by showing that when computing
BD(n), either g(n) + esti(n) ≤ MAX, or the current path is
suboptimal. Thus, if there is no solution within cost MAX,
then for every node in this last iteration the computed value
of BD(n) =∞. 2

Like DFSTT2, DFSTT3 can be combined with RS. Let
p = (esti(n), gTT (n)) be a pair of esti and g-value cur-
rently in the TT, and g(n) be the g-value of the current path,
and v = max{new esti, bound− g(n)}. This hybrid, DF-
STT3+RS, stores (n, v, g(n)) in the TT if v > esti(n). Oth-
erwise, p is preserved. Note that the second term of v is
bound − g(n) instead of bound − g(n) + ε and that is im-
portant considering which g-value is stored to preserve P5 in

Theorem 2. As the experimental results show, this difference
of ε results in a large performance degradation compared to
RS; however, in order to maintain completeness, we have
not yet been able to increase the second term.

5. Replacement Policies
So far, we have identified a set of transposition table up-
date strategies which robustly guarantees the admissibility
of IDA*+TT. We now describe several TT replacement poli-
cies that we have implemented. Since our analysis of DF-
STT2 and DFSTT3 above made no assumptions about re-
placement policy, all of the replacement policies below can
be safely used without compromising the admissibility of
these algorithms.

A trivial policy is no replacement – add entries until the
table is full, but entries are never replaced (although the
stored estimated values for the cached nodes will be up-
dated as described above). Stochastic Node Caching (SNC)
is a policy based on (Miura and Ishida 1998), which seeks
to only cache the most commonly revisited nodes in mem-
ory by probabilistically storing the state with some constant
probability p. After the table is full, there is no replacement.

The standard practice for TT replacement 2-player games
is collision-based replacement, which decides to either re-
place or retain the entry where a hash collision for a table
entry occurs. The most common collision resolution policy
keeps the value associated with the deeper search (which has
a larger subtree size, and presumably saves more work).

An alternative to collision-based replacement is batch re-
placement, which has also been studied in two-player games
(Nagai 1999). This is similar to garbage collection, and is
triggered by running out of space. In this scheme, mem-
ory management for the TT is done using a dedicated object
memory pool – there is a pool (linked list) of TT entry ob-
jects which are initially allocated and empty. When a new
TT entry object is requested, the first available element from
the pool is returned; when a TT entry is “freed”, the object
is marked and returned to the pool.

When the TT becomes full, the nodes are sorted based
on one of the replacement criteria: (a) subtree size (prefer
larger subtrees since they tend to save the most computa-
tion), (b) backed up cost estimate for the node (prefer the
most promising nodes), and (c) the number of accesses for
the entry (prefer frequently accessed entries). Then, the bot-
tomR% of the entries are chosen and marked as “available”.
These entries are not immediately discarded – batch replace-
ment merely designates the set of entries which will be over-
written (with equal priority) as new nodes are generated, so
the entries remain accessible until overwritten.

6. Experimental Results
We implemented the IDA* variants described in this paper
as a replacement search algorithm for a recent version of
the Fast-Downward domain-independent planner using ab-
straction heuristics (Helmert, Haslum, and Hoffmann 2007),
and evaluated their performance. The following TT replace-
ment strategies were considered: (a) no replacement, (b)
stochastic caching, (c) collision-triggered replacement based



Algorithm TT Replacement Num Tot. Runtime
Policy Solved (seconds)

A* 173 539
DFS No TT 128 178098

DFSTT2 TT, No Replace 183 73477
DFSTT2 Replace 0.3, subtree size 194 52256

RS Replace 0.3, subtree size 195 68319
DFSTT2+RS TT, No Replace 189 106147
DFSTT2+RS Stochastic Caching, p=0.001 187 213765
DFSTT2+RS Replace 0.3, est 194 40290
DFSTT2+RS Replace 0.3, subtree size 195 66960
DFSTT2+RS Replace 0.3, access freq. 194 39187
DFSTT2+RS Collision, est 189 141249
DFSTT2+RS Collision, subtree size 192 114057
DFSTT3+RS Replace 0.3, subtree size 152 170296

Table 1: Performance on 204 IPC planning instances, 2GB
memory total for solver, 10 hours/instance. Runtimes in-
clude successful runs only.

on subtree size and estimated cost (d) batch replacement
based on subtree size, estimated cost, and access frequency.

The fraction of nodes marked as available by batch re-
placement was R = 30%. The Fast Downward abstrac-
tion size was 1000 for all configurations. The algorithms
were tested on a set of 204 instances from the IPC planning
competition (IPC3: depots, driverlog, freecell, zenotravel,
rovers, satellite; IPC4: pipes tankage, pipes no tankage, air-
port, psr small; IPC6: sokoban, pegsol).4 Each algorithm
was allocated 10 hours/instance. The experiments (single-
threaded) were run on a 2.4GHz Opteron. 2GB RAM was
allocated for the entire solver (including the transposition
table and abstraction table) – the TT is automatically sized
to fully use available memory, depending on the type of in-
formation needed by the TT replacement policy (i.e., esti,
g-value, and auxiliary data used by the replacement policy).
The results are shown in Table 1.

First, we compared the performance of our IDA* vari-
ants with the performance of the default A* search algo-
rithm in Fast-Downward (Helmert, Haslum, and Hoffmann
2007). A* solved 173 problems, but exhausted memory on
the remaining problems The total runtime (540 seconds) for
A* is very low compared to the IDA* variants because the
search terminates when memory is exhausted. Note that the
DFS+TT variants also solve these easy problems quickly.
DFSTT2+RS solves 182 problems (9 more than A*) within
30 minutes (total); the remainder of the 66960 seconds were
spent on the most difficult instances which were solved by
DFSTT2+RS (but not solved by A*). Figures 9 and 10 show
the runtime distributions of A* and DFSTT2+RS, respec-
tively, on the set of planning benchmarks (problems which
were not solved are excluded). We also took the 173 prob-
lems which were solved by both A* and DFSTT2+RS, and
computed the ratio of the runtimes of these two algorithms,
time(DFSTT2 + RS)/time(A∗) for each problem. The

4To avoid wasting a lot of time on problems that couldn’t be
solved by any configuration, our benchmark set was selected from
these problem sets based on preliminary experiments.
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Figure 9: Runtime distribution of A* (solved instances only)

distribution of these runtime ratios is shown in Figure 11.
This shows that DFSTT2+RS was 1-2x slower than A* on
44 instances, 2-3x slower than A* on 61 instances, and so
on. Although IDA* is much slower than A* on a fraction
of the benchmarks, its runtime was within a factor of 4 of
A* on most (76%) of the instances. Since IDA* can solve
problems which A* fail on due to memory exhaustion, the
slowdown on the easier instances seems to be worthwhile
tradeoff.

It is clear that using a transposition table results in a
significant improvement over plain IDA*. Among the
IDA*+TT variants, the DFSTT2+RS hybrid strategy with
subtree size based replacement resulted in the best overall
performance.

The batch replacement-marking methods significantly
outperformed IDA*+TT without replacement and SNC,
showing the importance of replacement. Interestingly, some
of the variants using collision-based replacement performed
worse than no replacement, showing that choice of replace-
ment policy is critical for performance.

The DFSTT3 strategy performed poorly compared to DF-
STT2 and RS, showing that there is a significant price to be
paid when we store conservative values in the TT in order
to guarantee completeness. An evaluation of DFSTT3 with
unsolvable problems is future work.

7. Related Work
Transposition tables are used extensively in 2-player games.
In 2-player games, the problem of incorrect results caused
by storing path-dependent results in the transposition ta-
ble has been studied as the Graph-History Interaction (GHI)
problem (Campbell 1985; Kishimoto and Müller 2004). As
with the single-agent case investigated in this paper, han-
dling the GHI imposes some overhead. Since the ultimate
goal in 2-player games is usually strong play, many im-
plementations trade off some correctness (of the backed-
up evaluations) in order to achieve higher speed. However,
handling the GHI is still important even in 2-player games
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Figure 10: Runtime distribution of IDA*+DFSTT2TT
(solved instances only)

especially in solving difficult game positions (Nagai 2002;
Schaeffer et al. 2007).

Although several previous papers have considered trans-
position tables for single-agent search (Reinefeld and Mars-
land 1994; Junghanns and Schaeffer 2001), the use of trans-
position tables is not as widespread as in 2-player games. As
far as we know, this is the first paper to focus on TT usage
and the issues that arise when integrating TT, cycle detec-
tion, and TT replacement policies for single-agent search.
Also, this is the first paper to give formal analysis for an
IDA*+TT variant which guarantees that any replacement
strategy can be used (with consistent or inconsistent heuris-
tics) without sacrificing admissibility.

An alternate approach to duplicate detection uses a finite-
state machine (FSM) to detect sequences of operators that
generate duplicates (Taylor and Korf 1993). This approach
uses very little memory during search; however, a separate
preprocessing phase is required for learning the FSM.

MREC (Sen and Bagchi 1989) behaves similarly to A*
while memory is available. Once memory is filled up, it exe-
cutes IDA* from the fringe nodes. The set of states stored in
memory by MREC remains static (no replacement of states
occurs). SNC (Miura and Ishida 1998) is similar to MREC,
except that when memory is available, SNC probabilistically
caches nodes with probability p. After memory runs out,
SNC behaves like MREC.5

While MREC and SNC never update the set of nodes that
are cached in memory, MA* (Chakrabarti et al. 1989) and
a simplified, improved variant, SMA* (Russell 1992) seek
to dynamically update the set of nodes that are in limited
memory. SMA* behaves like A* until memory is full. At
this point, SMA* removes the shallowest, highest-f -cost
node from OPEN (freeing up space for another node), and

5While our experiments considered replacement strategies sim-
ilar to MREC (TT/no replacement) and SNC (TT+SNC), these are
not intended to substitute for a direct comparison (future work).
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Figure 11: IDA*+DFSTT2+RS vs. A* performance

backs up its value to its parent. The parent keeps the min-
imum of its children’s values, and is placed back on the
OPEN list. This keeps the most promising portions of the
search space in memory. Keeping the backed-up values of
the less promising nodes ensures that the algorithm can re-
generate the forgotten portions in order of how promising
they appeared at the time they were forgotten. ITS (Ghosh,
Mahanti, and Nau 1994) is a related approach with a tree
search formulation. Our work differs from this previous line
of work in two respects. MREC, SNC, SMA* are based
on A*, rather than IDA*. Second, the previous work on
MREC, SNC, SMA* and ITS propose and analyze a partic-
ular search algorithm with a specific policy by which nodes
are stored (and possibly removed from) memory. In contrast,
while Theorems 1 (admissibility) and 2 (completeness) con-
sider a particular search strategy (IDA*+TT), we make min-
imal assumptions about the TT replacement policy, which
determines which nodes are retained in memory.

Recent work has identified several ways to address mem-
ory limitations in search, including reducing the set of
nodes which need to be stored (Korf et al. 2005), as
well as increasing memory capacity by using external stor-
age (Korf 2008). These methods can be applied to do-
main independent planning (Edelkamp and Jabbar 2006;
Zhou and Hansen 2007). Another approach is to use mas-
sive amounts of aggregate memory in a distributed search
algorithm (Kishimoto, Fukunaga, and Botea 2009). How-
ever, although these methods allow problems to be solved
which would be otherwise unsolvable with previous algo-
rithms, they eventually run out of memory and terminate on
harder problems. In contrast, IDA*+TT will, in principle,
continue running until the search is finished (although the
IDA*-based search may not be as efficient as these meth-
ods).



8. Discussion and Future Work
In this paper, we investigated transposition tables for IDA*.
Our main contributions are:
• Theoretical analysis showing that straightforward imple-

mentations of transposition tables can result in inadmissi-
ble and incomplete behavior. This is the result of subtle
interactions between the TT and cycle detection, particu-
larly when TT capacity is finite. It turns out that replace-
ment behavior can affect the correctness of the TT entries;

• Identification of several strategies which are admissible,
regardless of replacement policy;

• An admissible and complete IDA*+TT algorithm; and
• An experimental study which showed that IDA*+TT can

significantly improve performance on a recent version of
the state-of-the-art Fast Downward domain-independent
planner, which uses A*.
A key advantage of IDA*+TT over A* is that while A*

terminates when memory is exhausted, IDA*+TT will use
all available memory and continue searching for a solution
until one is found or time runs out. In applications such as
domain-independent planning, this is important because it is
difficult to estimate the amount of memory required for an
arbitrary planning instance a priori. One previous advantage
of A* over IDA* was completeness – our IDA*+DFSTT3
algorithm is both admissible and complete, but the con-
servative rules for backing up values resulted in relatively
poor performance. Improving the performance of complete
IDA*+TT is an area for future work.

Our experimental results indicate that the replacement
policy can have a significant impact on performance. The
effectiveness of TT replacement policies may depend on the
problem, as well as the heuristic, and this remains an area
for future work. However, since we have shown that a rel-
atively simple modification to IDA*+TT results in an algo-
rithm which is admissible regardless of replacement policy,
the correctness of IDA*+TT and the choice of replacement
policy has been modularized – a wide range of replacement
policies can now be investigated further without being con-
cerned about compromising admissibility (and for DFSTT3,
completeness as well).
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