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Vidal Alcázar, Daniel Borrajo, Carlos Linares López
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Abstract
Forward State Planning with Reachability Heuristics is
arguably the most successful approach to Automated
Planning up to date. In addition to an estimation of the
distance to the goal, relaxed plans obtained with such
heuristics provide the search with useful information
such as helpful actions and look-ahead states. However,
this information is extracted only from the beginning of
the relaxed plan. In this paper, we propose using in-
formation extracted from the last actions in the relaxed
plan to generate intermediate goals backwards. This al-
lows us to use information from previous computations
of the heuristic and reduce the depth of the search tree.

Introduction
The use of reachability heuristics along with a forward
search algorithm has proved to be one of the most effec-
tive approaches in Automated Planning, as seen in the last
International Planning Competitions. Most heuristics of this
kind are based on the relaxation of the delete effects of the
actions. In particular, the relaxed plan (RP) heuristic first
used in FF (Hoffmann 2001) still remains a very effective
way of guiding a forward search in the state space. It esti-
mates the distance to the goal by solving a relaxed instance
of the problem from the evaluated state and returning the
number of actions of its solution plan.

Apart from the heuristic numeric value obtained, the
actions that compose the RP offer additional information
that can be exploited in the search process. Helpful ac-
tions (Hoffmann 2001) can be used to prune unpromising
successors in domains with a high branching factor; look-
ahead states (Vidal 2003) are an attempt to advance several
steps at once in the search state; and macro-actions (Botea,
Müller, and Schaeffer 2007) may be inferred online from the
RP to redefine the domain and reduce its depth.

A common aspect of these techniques is that they all take
into account only the first actions of the RP. This is reason-
able, given that these techniques require legal sequences of
actions in the evaluated state, and RPs have a higher pos-
sibility to include illegal actions the farther the actions are
from the evaluated state. However, this ignores potential ad-
ditional information the RP may contain.
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In this work we propose a novel method to take advan-
tage of information from the last actions of the RP. The mo-
tivation behind this work is that the last actions in the RP
are often similar across different calls to the heuristic func-
tion. This fact allows to improve the search by: reusing in-
formation from previous computations of the heuristic; or
getting more accurate heuristic estimations. The way of ex-
ploiting this observation is by generating intermediate goals
backwards by using those actions from the last part of the
RP. This way, in subsequent computations of the heuristic,
the closest intermediate goal to the current state can be de-
tected. We have called this approach the Backwards Gener-
ated Goals (BGG) heuristic.

Those goals provide additional information that can be
used to reduce the number of levels used in the reachabil-
ity heuristic or to get heuristic estimations closer to the real
value than other heuristics. Besides, this technique allows
to finish the search earlier when satisfying an intermediate
goal, as the path to the original goal can be built by tracing
back the generation of the intermediate goal. This relies on
a careful generation of extra information together with the
intermediate goal.

To ensure the validity of the backwards generated goals,
actions must legally support the reached goal. This is done
by using concepts from regression heuristic planners like
HSPr (Haslum and Geffner 2000): considering delete effects
when supporting goals and taking into account static mu-
texes between the preconditions of the actions and the goal
propositions not satisfied by the supporting actions. Exper-
imental evaluation of the techniques presented in this paper
shows improvements in coverage and number of expanded
nodes over the regular FF heuristic. In particular, the ap-
proach seems to improve performance substantially in tradi-
tionally hard domains to common reachability heuristics.

The structure of the paper is as follows: first, some back-
ground on propositional planning and reachability heuris-
tics is given. Afterwards, the motivation of the work will
be explained, describing then the details of the employed
techniques both conceptually and in terms of implementa-
tion. An example in the Gold-Miner domain will be added
to illustrate how the technique works. Finally, some results
will be presented, followed by a discussion including related
work and possible future developments.
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Background
In this section, we will formally define propositional plan-
ning and define reachability heuristics, focusing on the RP
heuristic.

Propositional Planning
Automated Planning can be described as the task of com-
ing up with an ordered set of actions (in the common case
a sequence) that achieves a set of goals from a given ini-
tial state. We consider then a standard formalization of
a planning problem as a tuple P=(S,A,I,G) where S is a
set of atomic propositions (also known as facts), A is the
set of grounded actions derived from the operators (action
schemes) of the domain, I ⊆ S is the initial state and G ⊆
S the set of goal propositions. The actions that are appli-
cable depend on several propositions being true and their
effects can make propositions true of false, which is com-
monly known as adding and deleting the propositions, re-
spectively. Thus, in terms of a STRIPS (Fikes and Nilsson
1971) planning instance, an action would be defined as a
triple {pre(a), add(a), del(a)} in which a ⊆ A and pre(a),
add(a), del(a) ⊆ S.

Reachability Heuristics and the RP Heuristic
When using a heuristic search algorithm, the estimation
of the distance to a goal state is obtained by solving the
same problem, but after introducing some kind of relaxation.
The most common relaxation modifies the actions, remov-
ing their delete effects, actually becoming the tuple {pre(a),
add(a), ∅}. The value of the heuristic function is computed
from the solution of this problem. Computing the optimal
solution is still an NP-complete problem (Hoffmann 2001)
so in most cases the heuristic is non-admissible, making it
impossible to ensure optimality.

The relaxed plan heuristic originally made use of the
planning graph implemented by Graphplan (Blum and Furst
1995). It builds a layered directed graph alternating facts and
actions until all goals appear at some level, ignoring the pos-
sible mutual exclusions. Once the graph has been generated,
a plan is extracted by a backtrack-free search algorithm in
which actions that make the goals true are greedily selected.
The supported goals are removed and the preconditions of
the actions are added to the goal set, until all the goals be-
long to the initial state. The actions are chosen taking into
account the level they first appeared, choosing those with
lower levels. The heuristic value returned is the number of
actions in the relaxed plan.

While planning as heuristic search is the paradigm used
by most state-of-the-art planners, it has some disadvantages.
Even though reachability heuristics can be computed in
polynomial time, they still require heavy computation. Be-
sides, due to the complex interactions that often appear in
planning problems, heuristics must be recomputed for every
state from scratch. In fact, it has been reported that the com-
putation of the heuristic takes up to 80% of the time to find a
solution (Liu, Koenig, and Furcy 2002). While this has been
addressed by earlier works (Refanidis and Vlahavas 2001;
Liu, Koenig, and Furcy 2002), reducing the impact of this

heavy computation required for heuristic evaluation still re-
mains an open question.

One way to alleviate this is to extract additional informa-
tion from the heuristic computation. Reachability heuris-
tics solve a relaxed version of the problem, and thus yield
a relaxed plan as a solution. The RP may contain actions
in common with a possible solution, which can favorably
bias the search. Helpful actions and look-ahead states are
the most prominent examples of this kind of techniques. In
particular, helpful actions are sometimes more relevant than
the quality of the heuristic used (Richter and Helmert 2009).
Since these actions must have the possibility of belonging to
a real solution, they must be legal actions even in the relaxed
case. This is ensured by checking that the action is applica-
ble in the evaluated state in the case of helpful actions, and
that none of the preconditions of the actions that lead to the
look-ahead state is deleted by another action. Therefore, this
limits the actions to those close to the evaluated state.

However, there are ways of checking the legality of the ac-
tions when they are close to the goal as well. This is shown
by the existence of planners that do regression search. This
gives the opportunity to extract similar information from ac-
tions far from the beginning state. In forward state search,
goals are static. Thus, in many cases the last actions that
lead to the goal in the RP will be the same for different
heuristic computations. In fact, they may even belong to
a solution. Hence, generating sets of intermediate goals as
done in regression search using the information derived from
the RP may allow reusing information from relaxed plans
obtained in the evaluation of other nodes. This can bene-
fit the search in several ways like: decreasing the depth of
the search in both the heuristic computation and the forward
state search; and capturing constraints appearing in areas of
the search space around the goal. As it will be discussed
in the Related Work section, this is similar to the work on
landmarks (Richter, Helmert, and Westphal 2008), but it also
presents some important differences.

Intermediate Goals and Reachability
Heuristics

Reachability heuristics are computed using a relaxed Graph-
plan. This is actually a breadth-first search in the space
of relaxed problems. There is an important observation
about this: breadth-first search exhibits a wave-like behav-
ior. Therefore, it not only gives an estimation of the distance
to a goal, but also estimates that the first reached goal is the
closest to the state in case multiple goal states are present.
To better illustrate this, let us consider the example shown
in Figure 1. There is a grid in which some cells are labeled
as goal cells, and a key is needed to open a chest that con-
tains the gold. There is only one key, and it is available in
the initial state. An agent can only move to adjacent cells,
and there are obstacles. The key is lost when going through
them. In this case, in the heuristic computation, the first level
of the relaxed planning graph will check whether any of the
cells at distance one is a goal cell; at the second level, all the
cells at distance 2 will be checked, and so on. The heuris-
tic computation will find the closest goal cell in the relaxed
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Figure 1: The agent is located in A and cells marked with
G are goal cells. In the heuristic computation, only two lev-
els are expanded estimating that the goal cell to the left and
above the agent is the closest one.

problem, independently of how many goal cells exist in the
grid. The relaxed plan may be illegal (if for example there is
an obstacle in the way to a gold cell, since the key would be
lost), but it still gives an estimation to the closest goal.

In most domains the set of goal propositions does not de-
scribe a complete state (an exception being the N-Puzzle do-
main, for instance), so the reachability analysis deals with
multiple goal states implicitly. The goal (set of goal proposi-
tions in G) does not describe a complete state when the value
of some proposition in the instantiated problem is not de-
fined. For example, if S={a,b} and G={a}, both s1={a,b}
and s2 = {a,¬b} are goal states. However, this fact does not
change the behavior of the heuristic, meaning that regular
reachability heuristics effectively take into account multiple
potential goals. This interesting property can be extended to
the case in which there are different sets of goal propositions
as well.

Taking advantage of this fact, the key observation of this
work is to generate multiple intermediate goals that lead to
the original goal. Actions known to lead to the problem
goals are used to generate the intermediate goals. At each
call to the heuristic function, a new intermediate goal set G′
is obtained so it can be added to the set of goals G. Ini-
tially, G = {G}. In the first call to the heuristic function,
there will only be a set of goals G. Then, G′ is generated
by choosing an action a from the RP that supports one of
the goal propositions g ∈ G. We remove the propositions
in G supported by a and add the preconditions of the ac-
tion (technique known as goal regression, which determines
the qualification of a backwards generated goal). Then, this
new set G′ may be added to G, a list of goals relevant to
subsequent computations of the heuristic. Whether a back-
wards generated goal is added or not to the list depends on its
potential usefulness. Usually, the intermediate goal obtained
from a node with a bad heuristic value is probably not useful
and hence discarded, although the criteria may vary depend-
ing on the forward search algorithm used. An example of
a possible criteria when using greedy best-first search will
be given in the experimentation section. Lastly, the chosen
action a and the originally reached goal proposition g are
also stored together with G′ with two purposes: allowing re-
constructing a path by tracing back the chosen actions; and
obtaining the distance from the intermediate goal to the orig-
inal goal, that is the cost of the intermediate goal. Optimality
on this distance cannot be ensured, as there may be shorter

paths from the intermediate goal to the original goal.
In the following iterations, there will be several goal sets

in G. So, instead of finishing the expansion of the relaxed
planning graph when all goal propositions g ∈ G appear in
a given layer Pi, the expansion finishes in a propositional
layer Pi when ∃Gj ∈ G such that Gj ⊆ Pi. In that case,
the steps in the previous paragraph are executed to generate
a new goal set G′ to be added to G.

The implementation of this technique is closely related to
how actions are known to be applicable at a given level, as
the preconditions of any action form a subgoal themselves.
Each proposition maintains a list of indexes of the sets of
goals Gi ∈ G they appear in. Also, we define a counter
that keeps the number of unsatisfied propositions in each in-
termediate goal set Gi. Whenever a goal proposition p is
satisfied by a new action in the relaxed planning graph, the
counter of the goal sets Gi where it appears (p ∈ Gi) is de-
creased. When the counter of any Gi reaches zero, there is
a RP that can reach Gi.

A key difference with respect to the standard computation
of the RP heuristic is that we require at least one action that
reached the intermediate goal set in the last step to be a legal
support. The concept of legal support is based on the appli-
cation of the action in the search space: it must be able to
appear as the last action in a valid solution plan. There are
three conditions that must be fulfilled to ensure that a sup-
porting action a is legal for supporting Gi (thus, being able
to generate a new G′):

• its delete effects must not include a proposition appearing
in the reached goal (del(a) ∩ Gi = ∅);

• the preconditions of the action must not be mutually ex-
clusive with any proposition of the goal not supported by
the action; and

• the new set of goal propositions must not have been pre-
viously generated (G′ �∈ G)

The first constraint is straightforward: an action that
deletes a goal proposition can never be the last action of a
plan, as it necessarily leads to a non-goal state. In fact, this
constraint ensures that there is a legal path from a given in-
termediate goal to the original goal, although it might not be
enough since sets of unreachable goal propositions may be
generated.

The second constraint is related to the concept of mu-
tual exclusivity between propositions as it was originally de-
scribed in (Haslum and Geffner 2000). A static relation of
mutual exclusivity between propositions (or static mutex) is
a set of propositions M = (p0, . . . , pn) for which there is
no reachable state s ⊆ S such that two or more elements
from M are true. Static mutexes may not suffice to detect
all the unreachable sets of propositions in the search space,
but in many domains they are able to prune most unreach-
able states, as shown by regression planners. The complex-
ity of the computation of these sets grows exponentially with
the number of elements in the set. Thus, only mutexes be-
tween pairs of propositions will be computed, as such sets
can be computed in reasonable time using the h2 (Haslum
and Geffner 2000) heuristic. h2 gives a lower bound of the
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distance from the initial state to a state in which any two
propositions are true. If this bound is infinite, those two
propositions are a static mutex.

The basic idea of the third constraint is that when a dupli-
cated goal is generated, that goal was necessarily already
supported in the relaxed graphplan. Then, if the heuris-
tic computation did not stop at an earlier level when sup-
porting that goal, this means that it may be an unreachable
goal as no legal action was found for it so far. This can be
explained taking into account the leveled approach of the
heuristic computation. Intermediate goals are generated by
taking away the supported propositions and adding the ac-
tions preconditions. Preconditions must be satisfied at ear-
lier levels than the propositions the action supports. If the
new set of propositions that includes the preconditions of
the action was already an intermediate goal, this means that
this goal had already been satisfied in earlier levels of the
heuristic computation. This is so because the already exist-
ing intermediate goal only differs from the reached goal in
the preconditions and effects of the action, and these precon-
ditions belong to earlier levels.

Implementation Details
It is possible for a given set of goals to be legally supported
in several ways. In this case, one action must be selected.
First, a goal proposition to be supported must be chosen.
In the current implementation, propositions are heuristically
chosen by the level in which they first appear, preferring
propositions farther from the initial state. The intuition be-
hind this decision is that these propositions seem more dif-
ficult to satisfy and thus they are probably achieved in later
stages of the solution plan. This concept is loosely related
to the way actions are heuristically chosen when generating
the RP, although in a reversed way. Second, if the propo-
sition has several supporting actions, those appearing closer
to the initial state are chosen first, as their preconditions are
deemed easier to achieve. The reachability analysis is de-
scribed in Algorithm 1, while the way a legal action is sought
and chosen to generate a new intermediate goal is described
in Algorithm 2.

As depicted in Algorithm 1, it is possible for the relaxed
graphplan to level out before a supporting action is found.
This is due to the constraints on the legality of the support-
ers. In this case, the goals are unreachable and the state is
then a dead end.

Intermediate goals also affect the forward search stopping
criterion. Because of the first constraint on the legality of
the supporters, a legal path can always be built from any
intermediate goal to the original goal by tracing back the
actions used in the intermediate goal generation. Conse-
quently, once the forward search satisfies a goal, be it an
intermediate one or the original one, the search stops and
returns a valid plan. Stemming from this fact, two different
heuristic values can be extracted. Since intermediate goals
store the distance to the original goal, the value extracted in
the heuristic computation may be either the distance to the
intermediate goal, which is the length of the RP extracted
from that goal, or the distance to the original goal as the for-
mer value plus the stored computation of the distance from

Algorithm 1: Heuristic Computation with Intermediate
Goals.

Data: Current State s ⊆ S, G
Result: Intermediate Goal igoal
begin

SatisfiedPropositions ←− s
while not leveledOut(G) do

NewlySatisfied ←− ∅
foreach p ∈ SatisfiedPropositions do

foreach GoalReference ∈ p do
Unsatisfied ←− Unsatisfied − 1
if Unsatisfied = 0 then

igoal ←−
LegalGoal(GoalReference)
if igoal �= NULL then

return igoal

foreach ActionReference ∈ p do
Preconds ←− Preconds − 1
if Preconds = 0 then

addEffectstoNewlySatisfied

SatisfiedPropositions ←−
NewlySatisfied

return NULL
end

Algorithm 2: LegalGoal Function.
Data: Intermediate Goal igoal
Result: New Intermediate Igoal igoal
begin

/* Propositions are sorted by the
level they were satisfied in,
those at later levels first */

foreach Proposition ∈ igoal do
foreach SupportingAction ∈ Proposition do

newIgoal ←− igoal
take out AddEffects from newIgoal
if SupportingAction deletes newIgoal then

Continue
if IsMutex(Preconds, newIgoal) then

Continue
add Preconds to newIgoal
if newIgoal already exists then

Continue
return newIgoal;

return NULL;
end

5



the intermediate goal to the original one. If the main objec-
tive is finding a solution regardless of its quality, the distance
to the intermediate goal is good enough, as the forward state
search only has to reach an intermediate goal to build a valid
plan. If plan length is important, adding both values may
give a more accurate estimation than the regular RP heuristic
thanks to delete effects being taken into account to some de-
gree. Just like the FF heuristic, both cases can be extended to
a metric different from plan length too, being cost the most
common one.

An Example of Backwards Goal Generation
To show how the process of backwards generating goals
works, we will include an example from a challenging do-
main. The domain is the Gold-Miner from the learning track
of the International Planning Competition held in 20081.
This is a domain similar to the aforementioned grid domain.
The goal in this case is picking up the gold, which appears at
only one cell. On the grid there are rocks that block the way,
that can be either hard or soft. There is a laser and unlimited
bombs which can be used to clear the rocks. Soft rocks can
be destroyed with either one, but hard rocks require the laser.
Besides, when using a bomb it is lost and another one must
be picked up from the pile of bombs if needed. The draw-
back of the laser is that it deletes the gold proposition if used
to clear up the way in the cell where the gold is, leading to
a dead end. The difficulty of this domain lies in the fact that
since delete effects are ignored, using the laser has no draw-
backs when solving the relaxed problem. Therefore, once
the laser is picked up (which is often mandatory to clear the
way through a hard rock) picking up a bomb to destroy the
last rock is seldom considered in the relaxed plan. This is
further aggravated if helpful actions are used, as the action
of picking the bomb up is never considered as helpful.

The first steps of the backwards generation are the follow-
ing (assume that c1 and c2 are adjacent cells):

Goal: (holds-gold)

Step 1: (pick-gold c2) -> (holds-gold)

-New goal: (robot-at c2), (gold-at c2), (arm-empty)

Step 2: (move c1 c2) -> (robot-at c2)

-New goal: (robot-at c1), (clear c2), (arm-empty),

(gold-at c2)

Step 3: (fire-laser c1 c2) -> (clear c2)

;; deletes (gold-at c2)

(detonate-bomb c1 c2) -> (clear c2), (arm-empty)

-New goal: (robot-at c1), (holds-bomb), (gold-at c2)

The original goal is G1 ={(holds-gold)}. There is only
one action that supports it with no other effect, (pick-gold
c2), so the proposition it satisfied is substituted with its pre-
conditions, generating a new set of goals, G2 ={(robot-at
c2), (gold-at c2), (arm-empty)}. After this step, there are
two sets of goal propositions: the original one, G1 and the
new one, G2. In the second step, G2 is satisfied in an earlier

1IPC 2008 website: http://ipc.informatik.uni-freiburg.de/

step when expanding the relaxed plan graph. Both (robot-at
c2) and (arm-empty) can be legally supported ((gold-at c2) is
already true in the initial state). As it was explained before,
ties among actions that legally support goal propositions are
broken choosing those that support propositions first satis-
fied at later levels. Because of this, the action (move c1 c2) is
the one chosen to generate an additional intermediate set of
goals, G3 ={(robot-at c1), (clear c2), (arm-empty), (gold-at
c2)}.

In the third step, G3 can be supported by several actions
again. In particular, to clear the way towards the goal the
robot can either fire the laser or use a bomb. Nevertheless,
since delete effects are taken into account in the backwards
goal generation (first constraint of legal support), (fire-laser
c1 c2) appears as illegal and is discarded. Thus, (detonate-
bomb c1 c2) is chosen instead. This captures the hardest
difficulty in the domain and allows easily solving the prob-
lem. Actually, if {(robot-at c1), (holds-bomb), (gold-at c2)}
was given to a planner using the RP heuristic instead of the
original goal, the instance would be most likely trivial, as
the proposition (holds-bomb) strongly bias the generation of
the RP and feeds the forward search with the right helpful
actions.

Experimentation
Both the RP heuristic and the technique presented in this
work (which we called BGG, Backwards Generated Goals)
have been implemented on top of JavaFF (Coles et al. 2008).
Because of the characteristics of BGG, it has been imple-
mented as a forward state search algorithm with a dual queue
as in FastDownward (Helmert 2006). One of the queues
uses the BGG heuristic, while the other uses the regular RP
heuristic. The reason behind this is that when computing the
BGG heuristic, extracting a RP from the original goal takes
little additional effort – the reachability analysis is already
done and the best supporters are already computed – and
may be helpful for the cases in which the BGG heuristic is
strongly guided towards an unreachable intermediate goal.

Greedy best-first search has been used as the search al-
gorithm. Greedy best-first search expands in every step the
most promising node determined by the function f(n) = h(n)
in which h(n) is the heuristic function of the node. The use
of intermediate goals requires some modifications, though.
For every evaluated node, an intermediate goal is obtained.
States with bad heuristic values are less likely to be on the
path of a possible solution plan. Hence, they may yield in-
termediate goals that may mislead the search. To avoid this,
intermediate goals are associated with the state along with
its heuristic value in the open list instead of being added to
the goal list. When a state is expanded its intermediate goal
is added to the list. This way, all the goals are generated
from the best state at every iteration.

Helpful actions for the BGG heuristic are the union of the
sets of helpful actions obtained using the BGG RP and the
regular RP from the original goal. Helpful action pruning
has been enabled, but no restarts with the full set of succes-
sors have been done for the cases in which the planner was
not able to find a solution with helpful action pruning under
the time limit. This is done in order to analyze the impact of
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the extra helpful actions provided by the more informed RPs
from intermediate goals.

The focus of the experimentation is the coverage (percent-
age of solved problems out of the total number of problems)
of the proposed technique. Consequently, we have avoided
some benchmark domains in which state-of-the-art planners
are able to solve most problems in little time. In particu-
lar, the selected domains were Gold-Miner, Matching-BW,
N-Puzzle and Sokoban from the learning track of IPC-6
and Storage, Peg-Solitaire, Scananalyzer and Transportation
from the deterministic track of the same competition. For the
sake of completeness, two other older domains were chosen
as well, the well-known Driverlog Domain from IPC-3 and
the Pipesworld domain from IPC-4.

Experiments have been done on a Dual Core Intel Pen-
tium D at 3.40 Ghz running under Linux. The maximum
available memory for the planner was set to 1GB, and the
time limit was 1800 seconds. The heuristic value of BGG is
the distance to the closest intermediate goal without adding
the distance from that goal to the original one. No parame-
ter setting is necessary. Table 1 shows the results for these
domains in terms of percentage of solved problems. Geo-
metric mean and median of the ratio between states evalu-
ated by BGG and RP are also displayed, with values above
one meaning that BGG evaluates fewer nodes. Overall, the
coverage improves for BGG, but there is a notable trend:
the harder a domain is, the greater the difference is between
both techniques. Not taking into account Gold-Miner, which
has a very hard constraint close to the goal and hence is the
ideal case for BGG, domains in which BGG performs bet-
ter have dead-ends and strong order interactions (Matching-
BW, Sokoban) whereas in those without them there is no im-
provement. Regarding the number of evaluated nodes, BGG
shows a similar behavior. Also, as the size of the problem in-
creases, BGG tends to expand fewer nodes compared to the
regular RP heuristic in spite of having a higher branching
factor because of the additional helpful actions. This means
that BGG is consistently more informed on the long run due
to the increasing number of intermediate goals.

To better understand the differences between both ap-
proaches, some features of the domains that affect the per-
formance of BGG can be highlighted. Matching-BW has nu-
merous dead-ends which can be pruned earlier thanks to the
constraints on the legality of the supporting actions; besides,
towers of blocks impose order restrictions that can be found
more easily using regression. Sokoban is characterized by
having tunnels, which are implicitly exploited by the back-
wards goal generation, leading to a significant decrease in
the depth of the search. Storage and Scananalyzer have simi-
lar characteristics to Matching-BW, but in Storage the search
does not benefit from BGG as much as expected, probably
because the correct goal ordering needs longer sequences of
actions to be found when doing goal regression. N-Puzzle
has no particularities that BGG may benefit from, and so
coverage is not improved, but for those problems solved by
both approaches BGG expands fewer nodes. Pipesworld,
Driverlog and Transportation are domains in which the RP
heuristic is relatively well informed, and hence the margin
of improvement for BGG is small. Peg-Solitaire seems to be

a similar case to N-Puzzle, although in this domain coverage
decreases significantly for BGG.

Domain RP BGG Mean-S Median-S
Driverlog 70 80 0.89 0.84

Gold-Miner 50 100 5.59 4.27
Matching-BW 3 33 9.72 9.72

N-Puzzle 10 13 4.13 4.25
Peg-Solitaire 97 80 1.67 1.71
Pipesworld 28 22 0.94 0.62

Scananalyzer 33 67 1.47 1.09
Sokoban 13 17 5.52 7.22
Storage 53 60 1.91 0.49

Transportation 63 70 0.7 0.68
Average 42 57.5 3.25 3.09

Table 1: Comparison between the RP heuristic and the
BGG heuristic in terms of coverage and number of eval-
uated nodes (geometric mean and median of the ratio be-
tween evaluated states). Instances that were solved by both
approaches expanding fewer than 100 nodes have not been
considered.

Regarding quality, in those domains in which BGG im-
proves the number of evaluated nodes it tends to improve
plan quality as well, as seen in Table 2. In domains in
which the number of evaluated nodes is similar, plan quality
is worse for BGG, although on average BGG finds slightly
better plans. Analyzing the solution plans, it can be ob-
served that the sequence of actions traced back from the
reached intermediate goal tends to be of better quality than
the part derived from the nodes expanded in the forward
search. This was to be expected: taking delete effects into
account yields a more accurate heuristic value and in the
beginning of the search there are no backwards generated
goals which may improve the quality of RPs. Still, experi-
mentation has been done without adding the distance from
the reached goal to the original one to the heuristic value of
the evaluated nodes, which may prove useful when aiming
for better quality plans.

Also, theoretically, the higher the average length of the
part of the solution plan traced back from the reached inter-
mediate goals is, the more relevant the backwards generation
of goals is. Therefore, this can be considered a measure of
how appropriate BGG is for some domains. Table 2 shows
that this holds for most domains with the exceptions of N-
Puzzle and Transportation. On average, around a fifth of the
plan is retrieved from the reached intermediate goal. This
also explains why BGG expands fewer nodes: the search
space that must be explored to find a solution is potentially
much smaller due to the reduced depth.

Timewise, the increasing number of intermediate goals
makes the heuristic more expensive to compute. A priori,
since the number of goals grows exponentially, so should
do the time needed to compute the heuristic. In practice,
however, the time needed increases linearly because inter-
mediate goals tend to appear at earlier levels as the search
progresses and those at later levels are not checked. In gen-
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Domain Mean-Q Median-Q Ratio-BGG
Driverlog 1.08 1.08 0.17

Gold-Miner 2.35 2.76 0.27
Matching-BW 1.26 1.26 0.24

N-Puzzle 1.25 1.25 0.01
Peg-Solitaire 0.98 1 0.32
Pipesworld 1.04 1.04 0.14

Scananalyzer 0.94 0.85 0.25
Sokoban 1.09 1.11 0.19
Storage 0.93 0.93 0.21

Transportation 0.99 1 0.04
Average 1.19 1.24 0.18

Table 2: Comparison between the RP heuristic and the BGG
heuristic in terms of quality. Again, geometric mean and
median of the ratio between evaluated states has been used.
Ratio-BGG is the percentage of the length of the solution
part that belongs to the sequence of actions traced back from
the reached intermediate goal.

eral, in those domains in which the number of expanded
nodes decreases when using BGG, it tends to find the so-
lution in a similar time than when using the RP heuristic;
in domains in which BGG does not improve the number of
nodes, planning time may increase up to an order of mag-
nitude. Figure 2 shows the time needed to compute the
heuristic as the number of intermediate goals increases in
the eleventh problem of the Pipesworld domain. As it can
be observed, the main tendency shows that time increases
linearly and only slightly, going from around 5 milliseconds
at the beginning to around 25 milliseconds when 4000 in-
termediate goals have been generated. Still, there are two
important factors that make BGG more costly in terms of
time: first, the number and magnitude of outliers increase
as intermediate nodes are generated; and second, heuristic
computation accounts for most of the time spent by forward
search heuristic planners, so even small increases in time in
the heuristic computation have a great impact on the overall
performance.

Related Work
A conceptually close idea, RRT-Plan (Burfoot, Pineau, and
Dudek 2006), relies on generating intermediate states by
incrementally choosing subsets of the goal and satisfying
them. Thus, the intermediate goals generation is completely
different, being a random selection of subsets of the origi-
nal goal set in each iteration in their case. Interestingly, the
authors proposed implementing a bidirectional search algo-
rithm as future work, but this idea has not been developed
further.

A field under intense study, landmarks for automated
planning (J. Hoffmann 2004; Richter, Helmert, and West-
phal 2008) also has some similarities with this work. Al-
though being computed in a preprocessing step, landmarks
are intermediate goals themselves and thus provide some
valuable information to the search. In particular, they cap-
ture some constraints in the problem as well as orders among

Figure 2: Time needed to compute the heuristic in millisec-
onds as the number of goals increase.

propositions, in a similar fashion to what backwards gener-
ated goals do in areas close to the original goal.

From a procedural point of view, a recent work on low-
conflict RPs (Baier and Botea 2009) shares important as-
pects with this approach. In their work, they take into ac-
count delete effects and pairs of mutually exclusive propo-
sitions in the backwards search done to retrieve a RP from
the reachability analysis to provide more accurate RPs. Fur-
thermore, they expand additional levels in the computation
of the heuristic, being the main difference that the number of
extra levels are expanded based on a preliminary estimation
whereas the expansion of levels in this work is systematic.

Conclusions and Future Work
The main contribution of this work consists on understand-
ing the relation of the last actions in RPs to potential solution
plans, and how this idea can be used to improve search per-
formance.

We have presented a new approach that combines forward
state search and backwards goal generation with reachabil-
ity heuristics and relaxed plans as the common core. BGG
presents several advantages: it reduces the depth in both the
relaxed graph used in the heuristic computation and the state
space search; it detects constraints close to the goal, which
also provides an advantage for the forward state search by
generating more informed RPs; and it uses additional infor-
mation, such as delete effects and mutually exclusive pair of
propositions, to enrich the reachability analysis.

There are some disadvantages inherently derived from the
use of intermediate goals: the heuristic must take into ac-
count an increasing number of goals, which is exponential in
the worst case (though this effect has not been found in the
experiments); and the distance to an intermediate goal used
as the heuristic value by the nodes in the open list becomes
obsolete as new intermediate goals are generated. Summa-
rizing the results of the experiments, it usually pays off to
generate intermediate goals during search. Out of the ten
domains used, it improves the coverage in all but two of
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them. Besides, it is competitive in terms of time and quality
as well. It also seems to work better in domains traditionally
hard for regular reachability heuristics, allowing planners to
scale not only in size but also in complexity of the problems.

Future work can be: on a further analysis of the impact
of the techniques developed in this work; and implement-
ing other known techniques to improve the performance. It
is still unclear how much every technique helps to improve
the traditional RP heuristic. An insightful example of this
is the aforementioned work on low-conflict plans (Baier and
Botea 2009), which uses a similar approach by taking into
account delete effects and mutexes, but in a less ambitious
way. This way, ideas like forcing the reachability analysis to
legally support every proposition instead of only one might
greatly affect the performance, which requires a deeper un-
derstanding.

On the other hand, some known techniques intuitively
seem to be well suited to the backwards generation of goals.
Look-ahead techniques are a prominent example, which are
known to work well in many domains with forward state
planners. The twist in this case is to combine actions from
the last part of the RP to generate intermediate goals more
than one step farther from the reached goal. Another tech-
nique that offers a great potential is the combination of
this work with that of landmarks. Or, similarly, the work
on reasonable orders, such as the one that creates a goal
agenda (Hoffmann 2001) or to add precedence constraints in
heuristic computations (Cai, Hoffmann, and Helmert 2009).
In this case, they can be used to impose additional con-
straints in the backwards goal generation, taking advantage
of the strong order interactions among goals.

It would also be interesting to analyze the potential
links between backwards goal generation and bidirec-
tional/perimeter search (Dillenburg and Nelson 1994). In
fact, this approach can be seen as a sort of imbalanced bidi-
rectional algorithm in which the backwards search uses the
last actions of the RPs as a guide and the forward search es-
timates the distance to the frontier of the backwards search
instead of to the original goal.
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