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Abstract
Heuristic search with reachability-based
heuristics is arguably the most success-
ful paradigm in Automated Planning to
date. In its earlier stages of develop-
ment, heuristic search was proposed as
both forward and backward search. Due
to the disadvantages of backward search,
in the last decade researchers focused
mainly on forward search, and back-
ward search was abandoned for the most
part as a valid alternative. In the last
years, important advancements regarding
both the theoretical understanding and
the performance of heuristic search have
been achieved, applied mainly to forward
search planners. In this work we revisit
regression in planning with reachability-
based heuristics, trying to extrapolate to
backward search current lines of research
that were not as well understood as they
are now.

1 Introduction
Automated planning (AP) is the task of finding a sequence
of actions that, from a given initial state, reaches a set of
goals. It is one of the oldest areas of research in AI, but
only relatively recently domain-independent planners have
been able to solve non-trivial tasks. Heuristic search [Bonet
and Geffner, 2001] has become one of the most important
paradigms in the area, as shown by the results of the most re-
cent International Planning Competition (IPC)1 and the much
higher number of publications in AP about heuristic search
compared to publications about other successful approaches
like local-search [Gerevini and Serina, 2002] or SAT-based
planning [Kautz and Selman, 1999].

Search can be done either advancing from the initial state
towards a goal state, called forward search or progression, or
from a goal state to the initial state, called backward search
or regression. In heuristic search most works use combina-
torial domains as benchmarks. Combinatorial domains are

1http://ipc.icaps-conference.org/

in most cases trivially invertible and have a single goal state.
Therefore, often forward and backward search are analogous
and the same techniques and conclusions are relevant to both
cases. However, this is not true in AP. While the initial state is
completely defined due to the closed-world assumption, goals
are defined as partial states. Thus, the value of propositions
not included in the goal set are unknown and multiple goal
states are possible. As a consequence, backward search rea-
sons over sets of facts and not complete states, making the
search more akin to state-set search [Pang and Holte, 2011]
than to traditional heuristic search.

Due to these differences backward search planners have
several drawbacks: the techniques developed for forward
search may not be applicable, duplicate detection is more
complex due to partial states, and spurious states (partial
states containing a set of facts that is unreachable from
the initial state) may be generated. Early research on
heuristic search in AP studied both forward and backward
search [Bonet and Geffner, 2001], but these drawbacks lead
to a worse performance of regression planners compared to
progression planners. For this reason, research on backward
search in AP was discontinued in many cases.

Over the last decade important works shed light on both
the formal properties of forward search, like the relation-
ship between different heuristics [Helmert and Geffner, 2008;
Helmert and Domshlak, 2009], and the empirical impact of
widely used techniques, like preferred operators and deferred
heuristic evaluation [Richter and Helmert, 2009]. Neverthe-
less and despite the strong relationship between forward and
backward search, this has not been exploited to improve over
the results of previous backward search planners. In particu-
lar, some techniques that may address the shortcomings of
regression in satisficing planning, like preferred operators,
seem to have potential. In this work we analyze how effi-
cient techniques commonly used in progression can be ex-
trapolated to backward search. We define some new con-
cepts related with regression and propose several novel tech-
niques implemented in a new regression planner, based on
Fast Downward [Helmert, 2006], called FDR (Fast Down-
ward Regression). In particular, the concepts and techniques
are the following: formalization of regression in SAS+; dis-
ambiguation of states and action preconditions; action prun-
ing using e-deletion; improvements on the computation of
the applicable actions; novel definition of reasonable orders
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in regression; computation of reachability heuristics and pre-
ferred operators in regression; usage of Pm formulations of
the planning task to infer more informed heuristics in regres-
sion; and computation of strong precedences related to the
context-enhanced additive heuristic in regression.

2 Formalization
In this section we will present the current two main formaliza-
tions of the planning tasks: propositional and multi-valued.
Additionally, regression in both formalizations is described.

2.1 Propositional Planning
The propositional formalization of a planning task is defined
as a tuple P=(S,A,I,G), where S is a set of atomic proposi-
tions (also known as facts), A is the set of grounded actions
derived from the operators of the domain, I ⊆ S is the initial
state and G ⊆ S the set of goal propositions. Each action a ∈
A is defined as a triple (pre(a), add(a), del(a)) (preconditions,
add effects and delete effects) where pre(a), add(a), del(a) ⊆
S. Actions can have non-unitary costs. A distinction must be
made between satisficing planning, that tries to find a plan
preferring those of better quality with respect to a given met-
ric, and optimal planning, where the best plan must be found.
In this work we focus on satisficing planning.

2.2 Multi-Valued Formalizations of Planning
The two most common multi-valued formalizations are
SAS+ [Bäckström and Nebel, 1995] and the Finite-Domain
Representation proposed by Helmert [2006], based on SAS+.
In this work we will refer only to SAS+. A planning task
in SAS+ is defined as a tuple Π=(V ,s0,s?,O). V is a set of
state variables, and every variable v ∈ V has an associated
extended domain D+

v = Dv ∪ {u} composed of the regular
domain of each variable, Dv , and the undefined value u. The
total state space is defined as S+

v = D+
v0 × . . .×D

+
vn and the

value of a variable v ∈ V in a given state s, also known as
fluent, is defined as s[v]. Partial states are states in which at
least a fluent s[vi] = u. s0 is the initial state, defined over V
such that s0[vi] 6= u ∀vi ∈ V . s? is the partial state that de-
fines the goals. O is a set of operators (actions), where each
operator is a tuple o = (pre(o), post(o), prev(o)), where
pre(o), post(o), prev(o) ∈ S+

v represent the pre-, post- and
prevail-conditions respectively. An action o ∈ O is appli-
cable in a state s if ∀vi ∈ V : (prev(o)[vi] = s[vi] ∨
pre(o)[vi] = s[vi]) ∧ (pre(o)[vi] = u ∨ pre(o)[vi] = s[vi]).
The resulting state s′ from the application of o in s is equal
to s except that ∀vi ∈ V s.t. post(o)[vi] 6= u : s′[vi] =
post(o)[vi].

Fluents in SAS+ are extrapolable to propositions in a
propositional representation. For instance, regarding actions,
preconditions in SAS+ are preconditions deleted by the ac-
tion, postconditions are positive effects and prevail conditions
are preconditions not deleted by the action. In this work we
assume that every concept described in terms of fluents is also
relevant to propositions.

2.3 Planning Formalizations in Regression
Regression search in planning starts from the goals and ap-
plies the actions backwards to find a path from the goals to

the initial state. Action preconditions are partial definitions
of the states in which the actions can be applied. Thus, the
states generated by regression are partial states. In a proposi-
tional representation in regression, the closed world assump-
tion cannot be enforced due to the existence of undefined val-
ues unless undefined propositions are represented explicitly.

Given a propositional planning task P=(S,A,I,G), the defi-
nition of P for regression is a tuple P’=(S,A,I’,SG) where I’=
G is the initial (partial) state; SG is the set of goal states, com-
posed by all the sets of propositions (partial states) s ⊆ S for
which s ⊆ I, SG = {s | s ⊆ S, s ⊆ I}. The applicability
of actions is redefined as follows: a ∈ A is applicable in a
partial state s ⊆ S if it is relevant (add(a) ∩ s 6= ∅) and con-
sistent (del(a) ∩ s = ∅). The resulting state sr ⊆ S obtained
from regressing a in s is sr = (s \ add(a)) ∪ pre(a). This
can also be seen as a reversed action a′ in which add(a) is a
set of disjunctive preconditions of a′, del(a) are negative pre-
conditions of a′ and pre(a) are the adds of a′. Progression
and regression in planning are not symmetric as each state in
the regression state space may represent a set of states of the
progression state space.

Similarly, a SAS+ task in regression is a tuple
Π′=(V ,s′0,S′?,O), where s′0 = s? and S′? is the set of par-
tial states subsumed by s0, following the next definition of
subsumption.

Definition 1 (Subsumption of states in SAS+) Given two
SAS+ states si and sj , si subsumes sj (si v sj) when for
every v ∈ V , si[v] = sj [v] or si[v] = u.

An action o ∈ O is applicable in a partial state s in regres-
sion if ∀vi ∈ V : s[vi] = u ∨ s[vi] = post(o)[vi] ∨ s[vi] =
prev(o)[vi] and ∃vi ∈ V : s[vi] = post(o)[vi] ∧ s[vi] 6= u.
The resulting state s′ obtained from applying o in s in re-
gression is equal to s except that ∀vi ∈ V s.t. pre(o)[vi] 6=
u : s′[vi] = pre(o)[vi] and ∀vi ∈ V s.t. prev(o)[vi] 6= u :
s′[vi] = prev(o)[vi]. Note that applicability of actions in
SAS+ is more restricted than in a propositional representa-
tion, as prevail preconditions must be taken into account. All
the actions applicable in a propositional representation that
are not applicable in SAS+ lead to spurious states: the result-
ing state s′ would contain s[vi] and prev(o)[vi], which are
different values of the same variable unless one of them is
undefined.

3 Common Concepts
Here we describe two important concepts used throughout the
paper. These concepts are relationships of mutual exclusion
and e-deletion. From this point on we will use SAS+ unless
otherwise stated.

3.1 Mutual Exclusivity between Facts
An important problem in backward search is the genera-
tion of spurious states (states not reachable by a forward
search). Mutual exclusivity between fluents can be used to
prune such states [Bonet and Geffner, 2001]. A set of fluents
M = {p1, . . . , pm} is a set of mutually exclusive fluents of
size m (mutex of size m) if there is no reachable state s ⊆ S
such that all elements in M are true in s.
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The use of mutexes may not detect all the spurious states
in regression, but in many domains they are able to prune a
significant amount of them. Computing mutexes is exponen-
tial on the size m, so in most cases computing mutexes of
size m > 2 is not practical. Invariant monotonicity [Helmert,
2006] and hm [Bonet and Geffner, 2001] with m = 2 are
usually used to compute mutexes of size two, although the
former finds strictly fewer mutexes than the latter.

3.2 E-deletion
The negative effects of an action are not restricted to its ex-
plicit delete effects. In particular, whether a fluent is deleted
along any path that ends with a particular action can be pre-
computed. This belongs to the more general definition of e-
deletion [Vidal and Geffner, 2005].

Definition 2 An action a e-deletes a fluent f if f must be false
in every state resulting from the execution of an ordered set of
actions whose last action is a from a state in which f is true.

There are three cases in which an action e-deletes a fluent
f : it deletes f ; it has a set of preconditions mutex with f and
does not add f ; or it adds a set of fluents mutex with f. For
instance, the action (stack b c) e-deletes (on a b) because it
adds (clear b), which is mutex with (on a b). In multi-valued
representations, deleting a fluent means changing the value of
the variable it corresponds to, which is equivalent to adding
a fluent mutex with f. Hence, the first case is a particular
instance of the third case in multi-valued representations.

4 Regression and Backward Heuristic Search:
HSPr

In satisficing planning, HSPr [Bonet and Geffner, 2001], one
of the best known backward search planners, uses a proposi-
tional formalization, a weighted A* algorithm and the addi-
tive heuristic, hadd. hadd is the sum of the accumulated cost
of achieving every goal proposition in a delete-free version of
the problem. The main difference with HSP, its forward ver-
sion, is that it caches the estimation of the cost from I to every
proposition. It uses mutexes found with h2 to prune spuri-
ous states. As heuristic search planners spend most of their
time computing the heuristic, caching hadd allows HSPr to
generate states at a much higher rate. However, doing regres-
sion has several important drawbacks. First, mutexes may
not suffice to prune spurious states in some domains. Second,
when using a propositional representation, detection of dupli-
cate states requires modifications in the algorithm due to the
presence of propositions whose value may be unknown. Fur-
thermore, duplicate detection is unable to detect subsumption
of states. Finally, hadd is heavily affected by partial states:
if the value of a proposition is undefined, its cost is not ac-
counted for, so hadd may differ greatly depending on the num-
ber of unknown propositions. For these reasons HSPr per-
formed overall worse than HSP. These problems combined
with the success of some techniques introduced by other for-
ward heuristic planners, like Fast Forward [Hoffmann and
Nebel, 2001] and Fast Downward [Helmert, 2006], made re-
searchers abandon for the most part backward search in plan-
ning.

5 Revisiting Regression in Planning
In this section we revisit some important concepts originally
defined for forward search, adapting them to their use in re-
gression planners. Each of the subsections describes the set
of techniques, proposes a novel implementation in regression
and defines them formally if needed.

5.1 SAS+, Invariant Groups and Disambiguation
Partial states require the definition of the undefined value u.
SAS+ allows it by adding it to the domain of all the variables
in a preprocessing step. Hence, any SAS+ planner can do re-
gression with no changes in their search algorithm apart from
changing the applicability and effects of actions. Identical
partial states are detected as duplicates, but subsumption of
states is not. For example, given two states s0 and s1 such
that ∀vi ∈ V : s0[vi] = s1[vi], they are detected as duplicate.
However, if this is true except for some vj ∈ V such that
s0[vj ] = u and s1[vj ] 6= u, s0 v s1 is not detected.

Planners that use SAS+ transform a planning task ex-
pressed in the Planning Domain Definition Language (PDDL)
into SAS+ by computing invariant groups.

Definition 3 An invariant group is a set of fluents θ such that
every fluent fi ∈ θ is mutex with every other fluent fj ∈ θ
and fj 6= fi. Exactly one fluent fi ∈ θ must be true in every
non-spurious complete state.

In partial states the value of some variables may be un-
known.2 Nevertheless, the value of other known variables
may reduce the domain of the unknown variables. We call
disambiguation to the process of reducing the valid domains
of the unknown variables of a partial state. There are three
relevant cases for any given invariant group θ: (1) only one
fluent f ∈ θ can be true in the partial state; (2) no fluent
f ∈ θ can be true; and (3) more than one fluent f ∈ θ can
be true. The first case means that f must be true in the state
and thus the variable f corresponds to is no longer unknown.
The second case means the partial state is spurious, as it is
not possible for exactly one fluent f ∈ θ to be true. And in
the third case, no additional information can be inferred.

For example, given V = {v0,v1,v2} and Dv0 = {a, b, c},
if in a given partial state s : s[v0] = u, s[v1] is mutex with
v0 = a and s[v2] is mutex with v0 = b, then we can infer
that s[v0] = c; it is the only possible value for v0. If addition-
ally s[v1] or s[v2] are mutex with s[v0] = c, then v0 has no
possible value and the state is spurious.

Disambiguation of partial states fulfills two purposes:
adding information to partial states by reducing the number
of unknown variables upon generation, and pruning spuri-
ous states undetectable by only using binary static mutexes.
Having fewer unknown variables impacts the performance in
two ways. First, heuristics tend to be more accurate, as the
cost of fluents that otherwise would be ignored is accounted
for. Second, it reduces the number of cases in which there
is subsumption of expanded states thanks to cases in which
si, sj ⊆ S, si v sj before disambiguation and si = sj after
disambiguation. Figure 1 shows an example of pruning by
disambiguation in the floortile domain.

2Note that every variable in SAS+ corresponds to an invariant
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Figure 1: Pruning a spurious state in floortile by disambigua-
tion. The second robot in the state at the right has no valid
location because all cells are clear or occupied.

Problems in floortile consist of two or more robots that
have to paint the cells of a grid. The initial state contains
the locations where the robots are. The goal contains the
painted cells. It is possible to find a plan doing regression
in which a single robot traverses and paints the whole grid.
This means that there may be a partial state in which all the
cells are either painted, clear or occupied by the first robot.
When disambiguating the state, we can see that there are no
legal values for the variables that represent the position of the
other robots, as a robot cannot be at a painted cell, a clear
cell or a cell occupied by another robot. Such a state can be
safely pruned. Binary mutexes with no disambiguation are
ineffective to detect this case in regression.

Disambiguation can also be done over the preconditions
of actions after grounding, as the set of preconditions define
a partial state. More preconditions lead to fewer unknown
variables in partial states. Also, operators whose set of pre-
conditions is spurious can be discarded.

5.2 Enhanced Applicability in Regression and
Decision Trees for Successor Generation

HSPr evaluates states at a faster rate than HSP. However,
many of those states are spurious and are pruned using mu-
texes anyway, so often no performance gain is achieved. Con-
sider for example the blocksworld domain: if there is a tower
of blocks and (arm-empty) is true in the partial state in regres-
sion, half of the actions of the domain are aplicable because
they add (arm-empty), whereas only one (stacking the upper
block) leads to a non-spurious state. The other applicable ac-
tions produce states that contain mutexes. For example, if (on
a b) and (on b c) are true and (stack b c) is applied in regres-
sion, the generated state would contain the mutex {(on a b),
(holding b)}, as (holding b) is a precondition of (stack b c).

This is due to the current definition of applicability of ac-
tions in regression. In fact, the current definition makes plan-
ners knowingly generate spurious states that will be pruned
using mutexes. This is a waste of effort that can be avoided
using e-deletion instead of just regular deletes. The appli-
cability of an action in regression can be modified to reflect
this.

Definition 4 If e-del(a) is the set of fluents e-deleted by ac-
tion a, a is consistent with partial state s if e-del(a) ∩ s = ∅.

Using e-deletion causes the actions to have a bigger num-
ber of negative preconditions (i.e., a regular move operator
e-deletes the moving agent at every location other than the
destination). Also, regular adds are disjuntive preconditions

group.

in regression, which imposes an additional complexity when
checking applicability. This may cause an important over-
head during search. A solution is to use precomputed deci-
sion trees as successor generators [Helmert, 2006].

Forward search uses decision trees (similar to RETE net-
works used for matching rule-based systems [Forgy, 1982]) to
avoid checking the applicability of all the actions of the prob-
lem. Every inner node represents a variable v ∈ V and has an
edge for each d ∈ Dv plus the don’t care value. Leaf nodes
contain the sets of actions that are applicable on that node.
Each edge leads to another inner node representing the next
variable or to a leaf node. When building the leaf (action)
nodes, an action a is propagated at every inner node down the
edge that corresponds to v = d if v = d ∈ pre(a) ∨ v =
d ∈ prev(a). If v = d 6∈ pre(a) ∧ v = d 6∈ prev(a) then
a is propagated down the don’t care edge. So, the path from
the root to the leaf node represents the preconditions of the
action. Every action occurs in at most one leaf node, so the
number of leaf nodes is bounded by the number of actions
of the problem. When computing the applicable actions of a
state s, at every inner node the algorithm follows the don’t
care edge and the edge that corresponds to s[v]. The union
of the sets of actions of the visited leaf nodes is the set of
applicable actions.

The main difference with the decision trees used by Fast
Downward is that FDR must deal with disjunctive precondi-
tions, negative preconditions and unknown variables. To take
this into account, the inner nodes represent fluents (values of
variables) instead of variables. They have three edges for the
cases >, ⊥ and don’t care through which actions that add,
e-delete and do not change the variable of the fluent are re-
spectively propagated. If the fluent is unknown in a partial
state, all the three children must be explored, as opposed to
either > or ⊥ and don’t care. This combines the efficiency of
decision trees in progression and the greater expressiveness
required in regression.

6 Reachability Heuristics in Regression
In this section, we describe how to compute recent state-of-
the-art heuristics in regression, exploiting advantages of re-
gression like caching schemes. We use a propositional for-
malization of the task as it is the de facto implementation
even in planners that use a multi-valued formalization, like
FD.

6.1 Best Supporter Caching
Most forward planners use heuristics based on a delete-
relaxation of the problem. There are several heuristics of this
kind [Keyder and Geffner, 2009], but HSPr is limited to hadd.
Delete-relaxation and critical path heuristics belong to the
same family of heuristics. They differ mainly in the functions
used to (1) select the best supporter of propositions, (2) ag-
gregate the supporters of preconditions (subgoals) and goals,
and (3) compute a cost estimation from a set of aggregated
supporters [Fuentetaja et al., 2009]. Supporters and costs
are derived from a forward reachability analysis that depends
exclusively on the source state. If the source state does not
change, all the necessary information can be cached. This al-

2257



lows planners to compute these heuristics in regression with-
out performing additional reachability analysis, which greatly
speeds up their computation. In practice, we cache the best
supporters determined by Equation 1, which defines how to
select the best supporter ap of a proposition p among the set
of actions A(p) that add p.3

ap ∈ argmin
a∈A(p)

(cost(a) + h
max

(pre(a), I))) (1)

Caching the best supporters allows computing the FF
heuristic [Hoffmann and Nebel, 2001]: the cost of a plan that
reaches a partial state from the initial state in a delete-free ver-
sion of the problem. Figure 2 shows the difference between
caching in HSPr and best supporter caching. In this problem
an agent must go from I to K to pick up a key and then carry it
to G. hadd adds the distance from I to K to the distance from
I to G and to the cost of picking up the key. So, if the cost of
all actions is one, hadd = 9. FF computes a relaxed plan by
tracing back from the fluents of the partial state to the initial
state using best supporters. Moving from I to K and G with
no deletes requires 5 actions, so hFF = 6. In either case if the
partial state changes no new reachability analysis is needed;
both heuristics can be computed with the cached information.

Figure 2: Caching costs (left) and best supporters (right);
dashed arrows are part of the relaxed plan.

Additional information can be extracted by caching sup-
porters. To compute preferred operators [Helmert, 2006], a
technique that improves the performance in progression sig-
nificantly [Richter and Helmert, 2009], an aggregated set of
actions is required. We redefine preferred operators in regres-
sion as the applicable actions in regression that appear in the
relaxed plan. In the former example moving to G from the
left is the only preferred operator.

6.2 Computing Heuristics in Pm

Reachability heuristics are usually computed by ignoring
the delete effects of actions. These effects can be partially
included by using the alternative version of the problem
Pm [Haslum, 2009]. Pm is a redefinition of the planning
task in which every fluent in Pm is a set of fluents of size
m. hmax in Pm is equivalent to hm in P1; this is not exclusive
to hmax, any other reachability heuristic can be computed in
Pm. Computing such heuristics is exponential on m, so in
practice it is not viable to use them in progression, as it would
require an expensive reachability analysis per evaluated state.
New developments regarding semi-relaxed plans in progres-
sion [Keyder et al., 2012] have been proposed, although they
require complex implementations and are not as informative

3Ties in Equation 1 are broken arbitrarily.

as the heuristics computed in Pm. Nevertheless, in regression
only one reachability analysis is needed, which makes their
computation tractable thanks to caching.

We propose a general definition of best supporters in P1

that takes into account sets of propositions of sizem based on
Equation 1. Best supporters are now determined by Equation
2, that defines the best supporter aP of a set of propositions
P with size |P | ≤ m.

aP ∈ argmin
a∈A(P )

(cost(a) + h
m
(Reg(P, a), I)) (2)

A(P ) is the set of actions that generate at least a proposi-
tion in P without deleting any other:

A(P ) = {a ∈ A | add(a) ∩ P 6= ∅ ∧ del(a) ∩ P = ∅} (3)

Reg(P, a) is the result of regressing P through a: Reg(P, a) =

P \add(a)∪pre(a). The cost of reaching the partial state s from
the initial state I is defined as:

h(s, I) =
∑

a∈π(s,I)

cost(a) (4)

where

π(P, I) =


∅ if P ⊆ I
π(aP , P, I) if P * I, |P | ≤ m⋃
Pm

π(Pm, I) if P * I, |P | > m
(5)

and
π(a, P, I) = {a} ∪ π(Reg(P, a), I) (6)

In our implementation we cache best supporters for atom
pairs when computing h2 to find mutexes. This allows com-
puting a relaxed plan in P2 (essentially a FF2 version of the
original FF heuristic). For partial state swe compute the atom
pairs Pi ∈ s. The best supporter aPi of each atom pair Pi is
added to the relaxed plan and the atom pairs obtained from
Reg(Pi, aPi) that are not true in I are added as open precon-
ditions. This is repeated until no open preconditions remain.

6.3 Reasonable Orders, Contexts and Paths
through Invariants

Reasonable orders between goal propositions were first pro-
posed to create a goal agenda [Koehler and Hoffmann, 2000]
and later on extended to landmarks and arbitrary pairs of
facts [Hoffmann et al., 2004]. e-deletion allows us a simple
and general way to extend the definition to sets of facts.

Definition 5 A fact f is reasonably ordered before a set of
fluents Fr (f <r Fr) if all the supporters of f are e-deleters
of some fact f ′ ∈ Fr.
Reasonable orders were deemed “unsound” in progression,
because it is not true that, if f <r f ′, then f must be achieved
first in every solution plan. Nevertheless, some sound infor-
mation can be derived: if f <r f

′ and both fluents must be
true until the end of the plan, then f ′ must be achieved last. In
progression this can only be proved for top level goals. But,
in regression, this holds for every f <r f ′ if f and f ′ are true
in a partial state, as partial states in regression can be treated
as top level goals. In this case, the supporters of f can be
pruned because f ′ must be supported first.

If consistency is defined as in Definition 4 no additional
pruning is obtained. However, reasonable orders in regres-
sion also allow us inferring stronger precedence constraints.
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The context-enhanced additive heuristic, hcea [Helmert and
Geffner, 2008], is a variation of hadd. Several contexts or
pivots are selected during the heuristic computation and the
cost of some goals is computed from a state that results from
achieving the pivots. In Figure 2 the most informative con-
text is agent-at=K, in which case hcea would add the distance
from I to K to the distance from K to G and to the cost of
picking up the key, yielding hadd = 7, the cost of the optimal
solution. Choosing the right context is still an open question.
Reasonable orders were proposed as a way of computing con-
texts [Cai et al., 2009], although in progression they may be
misleading. In regression, though, if f <r f

′ and f and f ′
are true at the same time, f ′ must be supported after having
achieved f . This hints from which context f ′ is achieved in
most solution plans. A likely context is the conflicting flu-
ents that cause the e-deletion of f ′ by the best supporter of
f [Nguyen and Kambhampati, 2001]. In Figure 2, the best
supporter of have-key=> is pick-key(K), whose precondition
agent-at=K is the cause of the e-deletion of agent-at=G. This
suggests that agent-at=K is indeed a useful context.

Best supporter caching is also possible in hcea. If the con-
flicting fluents belong to the same invariant group θ, the best
supporters can be cached when a fluent f is used as context.
For this, a Dijsktra algorithm in the Domain Transition Graph
(DTG) defined by θ is done with f as the source. This allows
computing relaxed plans and preferred operators in DTGs.
In our implementation relaxed plans are computed instead of
adding costs.

7 Experimentation
The proposed techniques were implemented on top of Fast
Downward (FD). We used the benchmark suite from IPC2011
and compared FDR against HSPr, FD with greedy best-first
search (GBFS), hFF and delayed evaluation and Mp [Rin-
tanen, 2010]. Mp was included because it includes several
modifications that make the SAT solver prefer actions that
support open goals and preconditions like in regression. Four
configurations were tested: FDrFF , FDradd, FDrcea, FDr2,
which use hFF , hadd, hcea and hFF in P2 respectively. FDr’s
search algorithm is GBFS with regular evaluation. Since the
focus of the experimentation is coverage, action costs were
ignored. Time score was omitted for lack of space.

Preferred operators were not used. Although promising a
priori, they were not helpful. This may seem counterintuitive,
as the reduced branching factor and the additional heuristic
guidance should help, but in partial states they often commit
strongly to unpromising areas of the search space. When en-
abled, FDrFF only solved one more problem in woodworking
while losing coverage in parcprinter, transport and visitall.

As seen in Table 1, FDrFF solves consistently more prob-
lems than HSPr and is close to Mp in coverage. FDr2 per-
formed worse except in parcprinter, in which it solved the
whole set of problems. The overhead of hcea does not pay
off, surpassing other heuristics only in two domains. No re-
gression planner was able to solve any instance in barman due
to spurious states that could not be detected (i.e. due to some
imprecisions in the domain formulation h2 cannot detect mu-
texes like a shaker being clean and containing an ingredient at

Domain FD rFF radd rcea r2 HSPr Mp
barman 18 0 0 0 0 0 6

elevators 18 16 16 10 0 20 17
floortile 3 20 20 20 20 18 20

nomystery 9 6 6 7 5 4 17
openstacks 20 0 0 0 1 0 0
parcprinter 11 12 12 12 20 11 0

parking 19 5 0 4 0 3 0
pegsol 20 14 11 15 11 10 20

scanalyzer 17 20 20 17 19 20 17
sokoban 19 3 2 3 2 3 2
tidybot 14 1 0 0 0 0 17

transport 0 5 0 2 0 0 0
visitall 4 5 17 3 7 5 0

woodworking 19 19 19 11 16 17 20
Total 191 126 128 104 101 111 136

Table 1: Coverage in IPC11. r stands for FDR.

the same time). The regression planners fare worse than FD
in total coverage, although this varies among domains. FDR
is superior to FD in floortile, as this domain contains a high
number of dead ends in progression that are difficult to detect.
FDradd also solves many more problems in visitall, a domain
in which heuristics like FF are affected by big plateaus. open-
stacks and sokoban are the opposite case: problems trivial for
FD are hard for all the regression planners. As hypothesized,
Mp seems to behave similarly to regression planners, with the
exceptions of nomystery and pegsol. This confirms the impact
of directionality in planning [Massey, 1999].

An ablation study was also done disabling disambiguation
and decision trees as successor generators. 8 fewer prob-
lems were solved using FDradd after disabling disambigua-
tion. The number of expansions increased by an order of
magnitude in parcprinter and woodworking, staying the same
or very similar in other domains. When disabling decision
trees, 5 fewer problems were solved. The impact was propor-
tional to the number of grounded actions and the number of
effects of those actions, increasing search time by an order of
magnitude in domains like floortile and woodworking.

8 Conclusions
In this work we analyzed several state-of-the-art techniques
in forward search and explored their potential in regression.
Some novel definitions were also proposed. We implemented
a new regression planner, FDR, which performed consis-
tently better than its predecessor HSPr. Overall performance
seems to depend greatly on the topography of the search
space, which means that one should not rule out regression
in domain-independent planning. This also implies that there
may be a high synergy between FD and FDr, potentially lead-
ing to a bidirectional planner better than the combination of
the individual planners in a portfolio. The implementation of
such a planner remains as future work along with the use of
other state-of-the-art techniques which are simple to employ
in regression, like landmarks [Richter and Westphal, 2010]
and multiple queues [Röger and Helmert, 2010].
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