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Abstract

We present and implement a Weighted Partial MaxSAT solver
based on successive calls to a SAT solver. We prove the cor-
rectness of our algorithm and compare our solver with other
Weighted Partial MaxSAT solvers.

Introduction
The Weighted Partial MaxSAT problem is a generalization
of the satisfiability problem. The idea is that sometimes not
all restrictions of a problem can be satisfied, so we divide
the instance in two groups: the restrictions or clauses that
must be satisfied (hard), and the ones that may or may not
be satisfied (soft). In the last group, we may put different
weights to the clauses, where the weight is the penalty to
falsify the clause. The idea is that not all restrictions are
equally important. The addition of weights to clauses makes
the instance weighted, and the separation into hard and soft
clauses makes the instance partial. Given a weighted par-
tial MaxSAT instance, we want to find the assignment that
satisfies the hard clauses, and the sum of the weights of the
falsified clauses is minimal. Such an assignment will be op-
timal in this context.

The weighted partial MaxSAT problem is a natural com-
binatorial problem, and it can be used in several domains,
such as: combinatorial auctions, scheduling and timetabling
problems, FPGA routing, software package installation, etc.
However, state-of-the-art solvers have not yet experienced
the same success as SAT solvers for the Satisfiability prob-
lem in the industrial field. Weighted Partial MaxSAT is an
NP-hard problem, so our aim is to produce efficient solvers
to handle real/industrial problems that although generally
big in size, are not as hard as the worst case instances.

A straightforward strategy to solve a Weighted Partial
MaxSAT problem is to translate it to a Partial MaxSAT
problem where every soft clause C with weight w has
been replaced by w copies of C, and then use a Par-
tial MaxSAT solver. However, the weights can be ar-
bitrary large and therefore the size of the encoding pro-
hibitive for any solver. Therefore this approach can only
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be used in instances with relatively small weights. In-
stead, in the SAT community there are mainly two kinds
of solvers that can deal directly with weights: depth-first
branch and bound solvers WMaxSatz (Li et al. 2009),
MiniMaxSat (Heras, Larrosa, and Oliveras 2007), IncW-
MaxSatz (Lin, Su, and Li 2008), and solvers based on satis-
fiability testing: SAT4J (Berre ), WBO and Msuncore (Man-
quinho, Marques-Silva, and Planes 2009) and WPM1 (An-
sotegui, Bonet, and Levy 2009). The latest essentially make
use of successive calls to a SAT solver, and have become
very competitive for the industrial categories in the MaxSAT
evaluation (Argelich et al. 2008). In general, the branch and
bound solvers seem to be more competitive on random prob-
lems, while solvers based on calls to a SAT solver seem to
be better for industrial or real problems. This will be the
approach in our work.

To the best of our knowledge the solver we present here,
WPM2, is the first weighted version of the Partial MaxSAT
solver PM2 (Ansotegui, Bonet, and Levy 2009), that won
the industrial category of partial MaxSAT instances at the
MaxSAT evaluation. It is based on successive calls to a
sat solver and it is able to exploit the information provided
by the unsatisfiable cores to guide the next call. Also we
use just one auxiliary variable per soft clause and we do
not duplicate clauses unlike the solvers WPM1 (Ansotegui,
Bonet, and Levy 2009) and WBO, Msuncore (Manquinho,
Marques-Silva, and Planes 2009).

We tested and compared our solver using the industrial
instances available from the MaxSat Evaluation 2009 and
from the TimeTabling Competition 2007. Our solver is al-
ways competitive or better for the hardest instances than
other solvers based on calls to a SAT solver, and is always
better than branch and bound solvers.

Preliminaries
A weighted clause is a pair (C, w), where C is a
clause and w is a natural number or infinity meaning
the penalty for falsifying the clause C. A clause is
called hard if the corresponding weight is infinity, oth-
erwise the clause is called soft. A weighted partial
maxSAT formula is a multiset of weighted clauses ϕ =
{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)},
where the first m clauses are soft and the last m′ clauses
are hard. The pair (C, w) is clearly equivalent to having w

3

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



copies of clause C in our multiset (in case C is soft).
Given a formula ϕ and a truth assignment I , the cost of

the assignment I on ϕ, noted cost(ϕ, I), is the sum of the
weights of the clauses falsified by I .

The Weighted Partial MaxSAT problem for a multiset of
weighted clauses ϕ is the problem of finding an optimal as-
signment to the variables of ϕ that minimizes the cost of the
assignment on ϕ. If the cost is infinity, it means that we
must falsify a hard clause, and we say that the multiset is
unsatisfiable.

The Weighted MaxSAT problem is the Weighted Partial
MaxSAT problem when there are no hard clauses. The Par-
tial MaxSAT problem is the Weighted Partial MaxSAT prob-
lem when the weights of the soft clauses are equal to one.
The MaxSAT problem is the Partial MaxSAT problem when
there are not hard clauses. The SAT problem is the Partial
MaxSAT problem when there are not soft clauses.

SAT Based Weighted MaxSAT
In this section we describe the SAT based approach in gen-
eral. The detailed description of our algorithm appears in
the next section.

We can solve a Weighted Partial MaxSAT problem ϕ
through the resolution of a sequence of SAT instances as fol-
lows. Let ϕk be a SAT formula that is satisfiable iff ϕ has an
assignment with cost k. If the cost of the optimal assignment
to ϕ is kopt, the generated SAT problems ϕk for k ≥ kopt are
satisfiable, while for k < kopt are unsatisfiable. Therefore,
the precise location of this transition between satisfiable and
unsatisfiable corresponds to the search of the cost of the op-
timal assignment to ϕ. Moreover, the set of all satisfying
assignments of ϕkopt is the set of optimal assignments of ϕ.

One way to encode ϕk is to extend every soft clause
Ci with a fresh auxiliary variable bi, and add the con-
version to CNF of the linear pseudo-Boolean constraint∑m

i=1 wi bi = k. Then ϕk = {C1 ∨ b1, . . . , Cm ∨
bm, Cm+1, . . . , Cm+m′} ∪ CNF(

∑m
i=1 wi bi = k). No-

tice that k may range from 0 to
∑m

i=1 wi (the sum of the
weights of the soft clauses). The search for the value kopt

can be done following different strategies; searching from
k = 0 to kopt (increasing k while ϕk is unsatisfiable); from
k =

∑m
i=1 wi to some value smaller than kopt (decreasing k

while ϕk is satisfiable); or alternating unsatisfiable and sat-
isfiable ϕk until the algorithm converges to kopt. The key
point to boost the efficiency of these approaches is to know
whether we can exploit any additional information from the
execution of the SAT solver for the next runs.

The approach used by the solver SAT4J (Berre ) is to ex-
ploit the information of the satisfiable formulas ϕk. It starts
with k =

∑m
i=1 wi and decreases this value until the SAT

solver reports unsatisfiable. The value of k in the penulti-
mate step corresponds to the optimal cost. Whenever the
underlying SAT solver returns satisfiable it checks the satis-
fying assignment and sets the next k equal to the sum of the
weights of the soft clauses with auxiliary variable set to true.
In this case, the linear pseudo-Boolean constraint is of the
form

∑m
i=1 wi bi < k.

The approach used by (Ansotegui, Bonet, and Levy 2009;

Manquinho, Marques-Silva, and Planes 2009) is to ex-
ploit the information of the unsatisfiable formulas ϕk. It
is the extension of the Fu and Malik algorithm (Fu 2007;
Fu and Malik 2006)1, described originally only for Partial
MaxSAT, to the Weighted Partial MaxSAT problem. This
algorithm starts with k = 0 and increases this value un-
til ϕk is satisfiable. Whenever ϕk is unsatisfiable, the SAT
solver also returns an unsatisfiable core. It is analyzed for
adding auxiliary variables to the soft clauses belonging to
the core, and the next ϕk is constructed also by adding car-
dinality constraints on this variables, stating that exactly one
of them has to be true. This prevents the solver to find the
same unsatisfiable core in the next iteration. The value of
k is updated adding the minimum weight of the soft clauses
involved in the core. This approach is quite effective since
it allows to solve more efficiently the unsatisfiable ϕk in-
stances, due to the addition of cardinality constraints at each
iteration.

However, this approach has two weak points. First, a soft
clause can be extended with more than one auxiliary vari-
able (if it belongs to more than one core). This can hamper
the efficiency of the SAT solver. Second, whenever an unsat-
isfiable core is found, every involved soft clause is replaced
by two copies: one extended with an additional auxiliary
variable, and weight equal to the minimum weight of the
core; and an unextended one with weight equal to the orig-
inal weight minus the minimum weight of the core. This
duplication of the soft clauses increase the size of the work-
ing formula.

Our work presents an algorithm for solving the Weighted
MaxSAT problem based on satisfiability testing that uses
just one auxiliary variable for every soft clause, and that does
not require to duplicate them. It is inspired on the solver
PM2, described originally for the Partial MaxSAT problem.

The WPM2 Algorithm
The WPM2 algorithm computes the optimal cost Kopt of a
Weighted Partial MaxSAT instance ϕ. It is based on unsatis-
fiable calls to a SAT solver, where in every iteration it works
with a SAT formula ϕK that is satisfiable iff ϕ has an as-
signment with cost K. Starting from K = 0, to K = Kopt,
it increases K while the SAT solver reports unsatisfiable.

Like in PM2 (Ansotegui, Bonet, and Levy 2009), we ex-
tend every soft clause Ci with a unique fresh auxiliary block-
ing variable bi. The algorithm works with a set AL of at-
least linear pseudo-boolean constraints on the variables bi,
and a similar set AM of at-most constraints, that are modi-
fied at every iteration of the algorithm. The formula ϕK sent
to the SAT solver is ϕK = ϕe ∪ CNF(AL ∪ AM), where
ϕe = {C1 ∨ b1, . . . , Cm ∨ bm, Cm+1, . . . , Cm+m′}, and the
linear constraints have been encoded as CNF formulas. In
order to understand the purpose of AL and AM , we intro-
duce the notion of partial solution.

Definition 1 (Partial Solution and Cost) An assignment
I : {b1, . . . , bm} → {0, 1} is called a partial solution

1The first known implementation of the Fu and Malik algorithm
for Partial MaxSAT is the solver msu1.2 (Marques-Silva and Man-
quinho 2008; Marques-Silva and Planes 2007).
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if I(ϕe) = {Ci | I(bi) = 0} ∪ {Cm+1, . . . , Cm+m′} is
satisfiable.

The cost of a partial solution I : {b1, . . . , bm} → {0, 1}
is cost(I) =

∑m
i=1 wi I(bi).

The at-least constraints AL exclude assignments to bi’s
that are not partial solutions. The at-most constraints AM
enforce that all solutions of the set of constraints AL∪AM
are the solutions of AL of minimal cost, if AL has any solu-
tion. This ensures that any solution of ϕe∪CNF(AL∪AM),
if there is any, is a solution of ϕe of minimal cost, hence a
MaxSAT solution of ϕ.

The pseudo-code of WPM2 is described in Figure 1. The
algorithm starts with AL = ∅ and the corresponding AM :=
{w1 b1 ≤ 0, . . . , wm bm ≤ 0} that ensures that the unique
solution of AL ∪AM is b1 = · · · = bm = 0 with cost 0.

At every iteration, the algorithm calls a SAT solver with
ϕe ∪ CNF(AL ∪ AM). If it returns satisfiable, then the
assignment is a Max-SAT solution of ϕ. If it returns unsatis-
fiable, then we use the information of the unsatisfiable core
obtained by the SAT solver to enlarge the set AL, excluding
more interpretations on the bi’s that are not partial solutions.
We update AM conveniently, to ensure that solutions to the
new constraints AL∪AM are still minimal solutions of the
new AL constraint set. Notice that AM depends on AL,
and it is modified accordingly when AL is extended. More-
over, in every iteration, the set of solutions of {b1, . . . , bm}
defined by AL is decreased, whereas the set of solutions of
AM is increased. The constraints of AL are of the form∑

i∈B wi bi ≥ k. Therefore, they are characterized by a set
of indexes B ⊆ {1, . . . ,m}, called its base, and a value
k ∈ N, called its bound. Similarly, the inequalities of AM
are of the form

∑
i∈B wi bi ≤ k.

Before describing the algorithm in detail, it is convenient
to introduce the notion of cover.

Definition 2 (Cover) Given a set of cores L, where any
A ∈ L, A ⊆ {1, . . . ,m}, its set of covers, noted SC(L),
is defined as the minimal partition of {1, . . . ,m} such that
for every A ∈ L and B ∈ SC(L), if A∩B 6= ∅, then A ⊆ B.

At every iteration of the algorithm, the bases of the at-
most constraints AM are the set of covers SC. Moreover,
the cost K is equal to the sum of the bounds of the at-most
constraints, K =

∑{
k
∣∣ (∑i∈B wi bi ≤ k) ∈ AM

}
.

When an unsatisfiable core ϕc is found by the SAT solver,
we compute the set A ⊆ {1, . . . ,m} of indexes of soft
clauses contained in ϕc. We also call this set a core. Then,
we compute the set of covers that intersect with A, i.e.
RC = {B′ ∈ SC | B′ ∩ A 6= ∅}, and their union B =⋃

B′∈RC B′. The new set of covers is SC = SC\RC∪{B}.
The set of at-least constraints AL is augmented with a
new constraint

∑
i∈B wi bi ≥ newbound(AL, B). The set

AM is updated conveniently by removing all constraints of
the form

∑
i∈B wi bi ≤ k where B ∈ RC, and adding∑

i∈B wi bi ≤ newbound(AL, B). The key point is how
to calculate this value newbound(AL, B), which must be
greater that the sum of the bounds of the removed at-most
constraints. In fact its is the minimal value greater than this
sum and ensuring that the new AL∪AM has some solution.

Later, we will describe how to compute this new bound in
practice. In the following example we show the execution of
our algorithm and describe some problems that arise when
trying to compute the new bound.

Example 3 Suppose that we have the following MaxSAT
formula ϕ =

{
(C1, 10), (C2, 4), (C3, 8), (C4, 2)

}
. The

extended formula is ϕe = {(C1 ∨ b1, C2 ∨ b2, C3 ∨ b3, C4 ∨
b4}. Suppose that we get the cores A1 = {1, 2} and later
A2 = {3, 4}. The constraints are AL = {10 b1 + 4 b2 ≥
4, 8 b3 + 2 b4 ≥ 2} and AM = {10 b1 + 4 b2 ≤ 4, 8 b3 +
2 b4 ≤ 2}. And the set of covers is SC =

{
{1, 2}, {3, 4}

}
.

Now, suppose that, in the third iteration, the SAT solver
gives us the core A3 = {2, 3}. Notice that, eventhough
b2 must be true, this core A3 may be obtained because we
assume that the SAT solver does not have to return mini-
mal cores. A3 intersects with the two old covers, therefore
we will have a unique new cover B = {1, 2, 3, 4}. Notice
that from AL, and the existence of a new core, we can infer
10 b1 +4 b2 +8 b3 +2 b4 > 6, where 6 is the sum of the two
bounds in the removed at-most constraints. However, AL
has no model I satisfying I(10 b1 + 4 b2 + 8 b3 + 2 b4) = 7.
Therefore, we can improve the inequality by finding the
smallest value k > 6 such that there exist a model I of the
new AL ∪ {10 b1 + 4 b2 + 8 b3 + 2 b4 ≥ k}. This value is
k = 12, which we obtain setting I(b1) = I(b4) = 0 and
I(b2) = I(b3) = 1.

Correctness of the WPM2 Algorithm
Next we state some basic properties of covers.

Recall that, since SC(L) is a partition of {1, . . . ,m}, for
any i = 1, . . . ,m, there exists one and only one set in SC(L)
containing i, and for any A ∈ L, there exists one and only
one set in SC(L) containing A.
Lemma 4 For any two sets of cores L1 and L2, if L1 ⊆ L2

then any cover B ∈ SC(L2) satisfies B =
⋃

A∈SC(L1)
A⊆B

A.
PROOF: Notice that, if L1 ⊆ L2, then for any A ∈ SC(L1)
there exists one and only one set B ∈ SC(L2) such that A ⊆
B. Therefore, for any A ∈ SC(L1) and any B ∈ SC(L2), if
B ∩A 6= ∅ then A ⊆ B, and the lemma follows.

Definition 5 (Bound) For any set of at-least constraints
AL, and set B ⊆ {1, . . . ,m}, we define its bound as

bound(AL, B) = max
{

k ∈ N
∣∣∣ AL `

∑
i∈B

wi bi ≥ k
}

where AL ` C means that all assignments to bi’s satisfying
the constraints AL also satisfy the constraint C.

For instance, for the set at-least constraints AL of Exam-
ple 3, we have bound(AL, {1, 2, 3, 4}) = 6.

The following lemma basically rephrases the definition of
bound in a more convenient way.
Lemma 6 For any set of constraints AL, and set B ⊆
{1, . . . ,m}, bound(AL, B) = k iff

1. the bound is probable: AL `
∑

i∈B wi bi ≥ k, and
2. feasible: AL 6`

∑
i∈B wi bi > k, i.e. exists an interpreta-

tion I : {b1, . . . , bm} → {0, 1} such that I(AL) = true
and I(AL `

∑
i∈B wi bi = k) = true.
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input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
ϕe := {C1 ∨ b1, . . . , Cm ∨ bm, Cm+1, . . . , Cm+m′} Protect all soft clauses
SC := {{1}, {2}, . . . , {m}} Set of Covers
AL := ∅ Set of at least constraints
AM := {w1 b1 ≤ 0, . . . , wm bm ≤ 0} Set of at most constraints
while true do

(st, ϕc) := SAT (ϕe ∪ CNF(AL ∪AM)) Call to the SAT solver
if st = SAT then return

∑
{k′ |

∑
i∈B′ wi bi ≤ k′ ∈ AM}

remove the hard clauses from ϕc

if ϕc = ∅ then return UNSAT
A := ∅ Blocking variables of the core
for each C = Ci ∨ bi ∈ ϕc do

A := A ∪ {i}
RC := {B ∈ SC | B ∩A 6= ∅} Covers to be removed
B :=

⋃
B′∈RC B′ New cover

k := newbound(AL, B) New bound
SC := SC \RC ∪ {B} New set of Covers
AL := AL ∪ {

∑
i∈B wi bi ≥ k} Add new at-least cardinality constraint

AM := AM \ {
∑

i∈B′ wi bi ≤ k′ | B′ ∈ RC} ∪ {
∑

i∈B wi bi ≤ k} Actualize at-most constraints

Figure 1: The pseudo-code of the WPM2 algorithm. The code of function newbound is in a forthcoming section.

As we said in the previous section, the set of at-most con-
straints AM depends on the set AL.
Definition 7 Given a set of at-least constraints AL, the set
of at-most constraints AM associated to AL is

AM =
{∑

i∈B

wi bi ≤ bound(AL, B)
∣∣ B ∈ SC(L)

}
where L =

{
A
∣∣ (∑i∈A wi bi ≥ k) ∈ AL

}
.

Lemma 8 For any set of at-least constraints AL and any
subset of covers {B1, · · · , Bs} ⊆ SC(L), where L is the set
of bases of AL, we have

bound(AL,
s⋃

i=1

Bi) =
s∑

i=1

bound(AL, Bi)

Hence, the bound of
⋃s

i=1 Bi is the sum of the bounds of the
constraints

∑
j∈Bi

wj bj ≤ ki ∈ AM associated to AL.

PROOF: The inequality bound(AL,
⋃s

i=1 Bi) ≥∑s
i=1 bound(AL, Bi) is trivial, and holds for any set

{B1, . . . , Bs} of pairwise disjoint sets, even if they are not
covers. However the opposite inequality is more difficult to
prove.

On one hand, by Lemma 6, we have AL `∑
j∈Bi

wj bj ≥ bound(AL, Bi). Since Bi’s are
pairwise disjoint, adding these inequalities we get
AL `

∑s
i=1

∑
j∈Bi

wj bj =
∑

j∈ s
i=1 Bi

wj bj ≥∑s
i=1 bound(AL, Bi).
On the other hand, again by Lemma 6, for every i =

1, . . . s we have an interpretation Ii such that Ii(AL) = true
and Ii(

∑
j∈Bi

wj bj ≤ bound(AL, Bi)) = true. Now,
construct a new interpretation I defined as I(x) = Ii(x),
if x ∈ Bi; and I(x) = I1(x), if x 6∈

⋃s
i=1 Bi. No-

tice that all constraints of AL have all their variables in-
side one of the sets Bi. Therefore, I(AL) = true.
Notice also that I(

∑
j∈Bi

wj bj) = Ii(
∑

j∈Bi
wj bj) =

bound(AL, Bi). Therefore, I(
∑s

i=1

∑
j∈Bi

wj bj) =∑s
i=1 bound(AL, Bi).
These two facts, by Lemma 6, prove that statement of the

Lemma.

The following lemma allows us to strengthen the set of
at-least constraints. For any set of indexes B, we always
have ϕ `

∑
i∈B wi bi ≥ bound(AL, B). The lemma states

that, whenever we find a core A, we can improve this in-
equality for B being the union of covers intersecting with
A, i.e. the cover of SC({A1, . . . , Ar, A}) that contains
A. Therefore, we can enlarge AL getting AL′ = AL ∪
{
∑

i∈B wi bi ≥ bound(AL, B)+1)}. However, it could be
the case that AL′ had no models satisfying

∑
i∈B wi bi =

bound(AL, B) + 1 (see Example 3). In this case, we en-
large AL with

∑
i∈B wi bi = newbound(AL, B), where

newbound(AL, B) is the minimum integer greater than
bound(AL, B) + 1 such that AL′ has a model with satis-
fying

∑
i∈B wi bi = newbound(AL, B).

Lemma 9 Let ϕe = {C1 ∨ b1, . . . , Cm ∨ bm,Cm+1, . . . , Cm+m′}
be an extended formula and AL be a set of at-least con-
straints. Let AM be the set of at-most constraints associated
to AL.

If, for some core A ⊆ {1, . . . ,m}, we have

1. {Ci ∨ bi}i∈A ∪ {Cm+1, . . . , Cm+m′} ∪AL∪AM is un-
satisfiable

2. ϕe ` AL

then
ϕe `

∑
i∈B

wi bi ≥ bound(AL, B) + 1

where B ∈ SC(L ∪ {A}), L is the set of bases of AL, and
A ⊆ B.
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Moreover,
ϕe `

∑
i∈B

wi bi ≥ newbound(AL, B)

where
newbound(AL, B) = bound(AL′, B)
AL′ = AL ∪

{∑
i∈B wi bi ≥ bound(AL, B) + 1

}
PROOF: Suppose that ϕe 6`

∑
i∈A wi bi ≥

bound(AL, B) + 1. This means that there ex-
ists an assignment I such that I(ϕe) = true and
I
(∑

i∈B wi bi ≥ bound(AL, B) + 1
)

= false. We
have I

(∑
i∈B wi bi ≤ bound(AL, B)

)
= true. Since

ϕe ` AL, I(AL) = true. By definition of bound, we have

I
(∑

i∈B

wi bi = bound(AL, B)
)

= true (1)

Since I(AL) = true, by definition of bound, we have

I
( ∑

i∈B′

wi bi ≥ bound(AL, B′)
)

= true (2)

for any B′ ∈ SC(L). On the other side, since B ∈ SC(L ∪
{A}), by Lemmas 4 and 8

B =
⋃

B′∈SC(L)
B′⊆B

B′

bound(AL, B) =
∑

B′∈SC(L)
B′⊆B

bound(AL, B′)
(3)

From (1), (2) and (3) we have

I
( ∑

i∈B′

wi bi ≤ bound(AL, B′)
)

= true

for any B′ ∈ SC(L) satisfying B′ ⊆ B. Hence, I satisfies
all the at-most constraints of AM that makes reference to
the covers B′ included in B. We have to modify the inter-
pretation I to get an interpretation that also satisfies the con-
straints of AM that make reference to covers not included
in B.

By definition of bound, there exists an interpretation I ′

such that I ′(AL) = true and I ′(AM) = true. Let I ′′

be another interpretation defined as I ′′(x) = I(x) if x is
a variables of {C1, . . . , Cm+m′} or {bi}i∈B , and I ′′(x) =
I ′(x), otherwise. Notice that all clauses of AL∪AM∪{Ci∨
bi}i∈A ∪ {Cm+1, . . . , Cm+m′} either contain variables of
one subset or from the other. Therefore, I ′′ satisfies all these
clauses. This contradicts the first assumption of the lemma.

Example 10 Suppose that we have the situation described in
Example 3. The list of cores is L = {{1, 2}, {3, 4}}, and
the constraints

AL = {10 b1 + 4 b2 ≥ 4, 8 b3 + 2 b4 ≥ 2}
AM = {10 b1 + 4 b2 ≤ 4, 8 b3 + 2 b4 ≤ 2}

The third core A = {2, 3} generates a new
cover B = {1, 2, 3, 4} that belongs to the set
of covers of {{1, 2}, {3, 4}, {2, 3}}. We have
bound(AL, {1, 2, 3, 4}) = 6. The first part of Lemma 9
allows us to conclude that ϕe ` 10 b1 + 4 b2 + 8 b3 +
2 b4 ≥ 7. After adding this constraint we get AL′ =

AL ∪ {10 b1 + 4 b2 + 8 b3 + 2 b4 ≥ 7}, using the sec-
ond part of the lemma, we get bound(AL′, {1, 2, 3, 4}) =
newbound(AL, {1, 2, 3, 4}) = 12 and ϕe ` 10 b1 + 4 b2 +
8 b3 + 2 b4 ≥ 12.

Theorem 11 Given a Weighted Partial MaxSAT problem,
the algorithm WPM2 computes an optimal assignment of
minimal cost.

PROOF: Once the algorithm finds a satisfying assign-
ment I for ϕe ∪ CNF(AL ∪ AM), it returns K =∑
{k′ |

∑
i∈B′ wi bi ≤ k′ ∈ AM}. Since the bases of

at-most constraints are a partition of {1, . . . ,m} and I sat-
isfies AM , the cost of I is bounded by K. By Lemma 8,
K = bound(AL, {1, . . . ,m}), and by Lemma 6, AL `∑m

i=1 wi bi ≥ K. Lemma 9 ensures that the new at-least
constraint added to AL in each iteration does not exclude
partial solutions: ϕe ` AL i.e. it only excludes values of the
bi’s such thatϕe is unsatisfiable. Therefore, the cost K of I
is smaller than the cost of any partial solution of ϕe, hence
of the minimal cost of ϕ. Termination of the algorithm is
ensured by the fact that the value of

∑
{k′ |

∑
i∈B′ wi bi ≤

k′ ∈ AM} is increased in every iteration, and it is bounded
by the minimal cost of ϕ.

Computation of the New Bound
The value of bound(AL, B) can be computed easily using
the at-most constraints as
bound(AL, B) =

∑
{k′ |

∑
i∈B′

wi bi ≤ k′ ∈ AM∧B′ ⊆ B}

However, the computation of newbound(AL, B) is not
so simple. Recall the definition:
newbound(AL, B) = bound(AL′, B)
where AL′ = AL ∪

{∑
i∈B wi bi ≥ bound(AL, B) + 1

}
Given AL and B, the calculation of newbound(AL, B)

is an NP-complete optimization problem. This can be seen
by a reduction from the following version of the subset sum
problem: given {w1, . . . , wn} and k, minimize

∑n
j=1 wj xj

subject to
∑n

j=1 wj xj > k and xj ∈ {0, 1}. This is equiv-
alent to computing newbound(AL, B), where the weights
are wj , B = {1, . . . , n} and AL = {

∑n
j=1 wj xj ≥ k}.

In our implementation we use the following function to
compute newbound.

function newbound(AL, B)
k := bound(AL, B)
repeat

k = subsetsum({wi | i ∈ B}, k)
until SAT (CNF(AL ∪ {

∑
i∈B wi bi = k}))

return k

Notice that the satisfiability check of AL ∪
{
∑

i∈B wi bi = k} is necessary for soundness (see
Example 10). Also notice that the subset sum problem,
even though it is NP-complete, in practical situations can
be computed very efficiently. As many other numerical
problems, it is pseudo-polynomial. Our algorithm could
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MaxSat Evaluation 2009 (median time in seconds)
Weighted Partial MaxSAT (Industrial)

set # WMSz IncWMSz MiniM SAT4J MCore WBO WPM1 WPM2
10 20 1963 10 22 21 15 26 25 47
20 20 2977 11 22 22 17 29 28 52
30 20 - 13 22 22 18 32 31 57
40 20 - 14 22 22 19 35 33 61

TimeTabling Competition 2007 (time in seconds)
instance WMSz IncWMSz MiniM SAT4J MCore WBO WPM1 WPM2
comp04 - - - - - 43 - 108
comp08 - - - - - - - 156
comp10 - - - - 92 - 95 108
comp13 - - - - - - - 1333
comp14 - - - - - - - 244
comp16 - - - - 1041 - - 114
comp19 - - - - - - - 142
comp20 - - - - 690 - - -

Table 1: Timeout of 1 hour. # stands for number of instances
of the benchmark. ’-’ means that either the solver run out of
memory or the timeout expired.

be implemented on top of a Pseudo-Boolean solver with
support for core extraction to circumvent the size issue of
translation to SAT.

Experimental Results
In order to know if our approach is promising, we im-
plemented the WPM2 algorithm and compared it with
other Weighted Partial MaxSat Solvers on Weighted
Partial MaxSAT instances from the MaxSAT09 evalua-
tion (Argelich et al. 2008) and the International TimeTabling
Competition (ITC 2007)2.

The WPM2 solver is built on top of the PM2 solver (An-
sotegui, Bonet, and Levy 2009). The PM2 solver is imple-
mented on top of the SAT solver picosat846 (Biere 2008).
In order to translate into SAT the at-least and at-most linear
pseudo-Boolean constraints that WPM2 generates, we used
part of the code of minisat+ (Eén and Sörensson 2006) as a
translator.

The Weighted Partial MaxSAT solvers we have compared
ours with are: MiniMaxSat (MiniM) (Heras, Larrosa, and
Oliveras 2007), Msuncore (MCore) (Manquinho, Marques-
Silva, and Planes 2009), SAT4J (Berre ), WBO (Manquinho,
Marques-Silva, and Planes 2009), WPM1 (Ansotegui,
Bonet, and Levy 2009), WPM2, WMaxSatz (WMSz) (Li
et al. 2009) and IncWMaxSatz (IncWMSz) (Lin, Su, and Li
2008).

Our experiments have been run on machines with the
following specifications. Operating System: Rocks Clus-
ter 4.0.0 Linux 2.6.9. Processor: AMD Opteron 248 Proces-
sor, 2 GHz. Memory: 0.5 GB. Compiler: GCC 3.4.3.

Table 1 shows the results of the experimental investiga-
tion. We discarded those instances which are satisfiable. We

2The Translation to Weighted Partial MaxSAT instances was
provided by Roberto Asin from the BarceLogic Team at the UPC
University:
http://www.lsi.upc.edu/∼rasin/timetabling.html.

used a cutoff of 1 hour.
For the instances at the MaxSAT evaluation we show the

median time of each set. As we can see these instances
are solvable by all solvers. WPM2 performs worse than
the other solvers based on satisfiability testing. Our solver
makes system calls to minisat+ to translate the Pseudo-
Boolean constraints into SAT and interchanges the data
through files. This causes an overhead in the computation
time that partly explains why our solver performs worse on
these instances. In particular, as in the case of these in-
stances, this is important when the solver needs to perform
many iterations where each call to the SAT solver has a low
cost.

For the instances from the TimeTabling Competition 2007
(track 3) we show the running time in seconds. There are
a total of 20 instances. We only show results on those in-
stances that were solved by at least one solver. These in-
stances are much harder, and as we can see now WPM2 is
clearly the best performing solver.

Since the weights of the timetabling instances are small,
we also solve them with PM2 with duplication of weighted
clauses. We find that WPM2 is faster than PM2 with dupli-
cation.
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