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Although, this rule is sound and (relatively) complete, it provides only apartial answer to the veri�cation problem of safety properties. For it leaves open(i) how to �nd the auxiliary predicate Q and (ii) how to prove that Q is preservedby every transition of S and satis�ed by the initial states. Problem (ii) is relatedto the problem of proving tautologies of the underlying assertion language.In this work, we describe techniques for automatically generating auxiliarypredicates. We present the following strategies:{ Generalized rea�rmed invariance: This applies to transitions for which thevalue of the guard and of the expressions occurring on the right hand sideof its assignment are not changed by the transition itself, i.e. they have thesame value before and after the transition. This is more general than the onecalled rea�rmed invariants in [15, 14].{ Propagation of invariants: This technique allows to propagate an assertionthat holds whenever control is at some �xed control location to other controllocations. We consider two instances of this technique. The most general oneallows to propagate even in the presence of loops. Again our technique isapplicable in cases not covered by the propagation techniques presented ine.g. [15, 14].{ Re�ned strengthening: One of the most used techniques for strengtheninginvariants is by calculating the weakest (liberal) precondition [6] w.r.t. theconsidered invariant and taking it as a conjunct. A drawback of this methodis that it increases the complexity of the considered predicate, and hence, afterfew steps its application leads in many cases to unmanageable predicates. Wepresent a re�ned version of this method that allows to attenuate the blow upcaused by applying this useful strengthening method.{ Combining Invariants: This method allows to combine invariants developedseparately for the components of a given network S1 k � � � k Sn of transitionsystems to an invariant of the global system.All predicates that can be generated by these strategies are proved to be invari-ant by construction. The use of these techniques for various mutual exclusionalgorithms shows that they are promising. For instance, in case of the Bakeryalgorithm [12, 15], which is an in�nite-state program, we generate an invariantthat is su�ciently strong to prove the required property.It is also important to note that these techniques are local in the sense that, inorder to apply them, they do not require the full transition system to satisfy somerestrictions, but rather subsets of control locations and variables are required tosatisfy some condition.The problem of automatically constructing invariants from program descrip-tion has been intensively investigated in the seventieth leading to results reportedin e.g. [11, 9, 3, 7]3. Here, we present results which are to our knowledge new orextensions of existing ones. Other interesting recent results are reported in [2].These techniques represent an important component of a tool which is be-ing developed to support the computer-aided veri�cation of safety properties of3 This list of references is far from being exhaustive. See [15] for other references.



reactive programs. Here, we give a brief description of this tool (See [10] for adetailed discussion). It consists of the following components:{ Front-end: The front-end takes as input a description of a transition sys-tem written as a program in a simple programming language and a predicateto be proved as invariant of the described transition system. Then, it pro-duces a PVS-theory [16] that mainly contains the veri�cation conditions tobe proved. The front-end analyses also the program and generates a �le con-taining information needed to decide, for each control location, whether someinvariant generation procedure can be applied.{ Automatic Invariant Generation: This is a module that contains pro-cedures implementing several invariant generation techniques. In this paper,we present some of these techniques.{ Proof Manager: The user can try to prove that P is an invariant fullyautomatically. In this case, the system tries to prove that P is inductive, thatis, P is preserved by each transition of the program. In case of success, thisis reported to the user. Otherwise, the system tries to prove the invariance ofP using predicates which are obtained by calling some invariant generatingprocedures. These predicates are guaranteed to be invariant by construction.In case the system is unable to prove the invariance of P , it may either dosome strengthening or enter the interactive modus and requires the user'sguidance. This choice is made by the user.{ PVS is the theorem prover developed at SRI [16]. It is used during theautomatic- as well as interactive proof procedure to discharge the veri�cationconditions.2 Transition Systems and Invariance PropertiesWe assume an underlying assertion language A that includes �rst-order predicatelogic and interpreted symbols for expressing the standard operations and relationsover some concrete domains. We assume to have the set of integers among thesedomains. Assertions (we also say predicates) in A are interpreted in states thatassign values to the variables of A. Let � denote the set of states. Given a states and a predicate P , we use the notation s j= P to denote that s satis�es P , anduse [[P ]] to denote the set of states that satisfy P . Henceforth, we identify P andits characteristic set [[P ]].De�nition1. A transition system is a structure S = hX; pc : DC; T; Initi, where{ X is a �nite set fx1 : D1; : : : ; xn : Dng of typed data variables. Each variablexi ranges over data domain Di. We assume that the variables in X form asubset of those in A.{ pc is a control variable (or program instruction counter). It ranges over the�nite domain DC. We assume that pc 62 X.{ T is a �nite set of transitions. A transition t is characterized by a quadruple(pc = d; g(Y);Z0 = e(U); pc0 = d0)4, where Y;Z;U � X. The variables in4 Z0 can be empty; this is the case when no variable is a�ected



Z are called the variables a�ected by transition t, and we denote by sour(t)(resp. tar(t)) the value d (resp. d0). These de�nitions are easily generalized tosets of transitions. Given a transition t = (pc = d; g(Y);Z0 = e(U); pc0 = d0),and states s and s0, s0 is called t-successor of s, denoted by s !t s0, if thefollowing conditions are satis�ed: 1.) s satis�es the enabledness conditionpc = d ^ g(Y) of transition t and 2.) s0 satis�es s0(zi) = ei(s(U)), for eachzi 2 Z, s0(x) = s(x), for each x with x 62 Z, and s0(pc) = d0.{ Init is of the form I(X) ^ pc = d0. The conjunct I(X) speci�es the initialcondition on data variables, whereas pc = d0 speci�es the initial value of thecontrol variable. We call I the initial predicate of S and d0 its initial controllocation.A transition system generates a set of sequences of states. Since we are onlyinterested in invariance properties, we only consider �nite sequences. A �nitesequence � = s0; � � � ; sn of states is called computation of S, if s0 satis�es Initand, for every i 2 f0; : : : ; n� 1g, there exists a transition t in T with si !t si+1.To de�ne the semantics of the parallel construct, we de�ne the product of twotransition systems. Let Si = hXi; pci : DCi; Ti; Initii, for i = 1; 2, be transitionsystems. The product of S1 and S2, denoted S1NS2, is a transition systemhX; pc : DC; T; Initi, where{ X = X1 [X2 is the set of program variables.{ pc ranges over DC = DC1 �DC2.{ A transition (pc = (d1; d2); g(Y);Z0 = e(U); pc = (d01; d02)) is in T i� either� (pc1 = d1; g(Y);Z0 = e(U); pc01 = d01) 2 T1 and d02 = d2 or� (pc2 = d2; g(Y);Z0 = e(U); pc02 = d02) 2 T2 and d01 = d1.{ Init = I1 ^ I2 ^ pc = (d1;0; d2;0), where Initi = Ii ^ pci = di;0, for i = 1; 2.Then, the set of computations of S1 k S2 is de�ned to be that of S1NS2.Invariance Properties We consider a class of properties, named invariance prop-erties (cf. [15]). Intuitively, a property P is an invariant of a transition system S,if in each state of the system S this property holds. In other words, each statethat is reached during a computation of S satis�es P .De�nition2. A state s is called reachable (accessible) in the transition systemS, if there exists a computation s0; � � � ; sn of S such that sn = s. We denote theset of reachable states by Reach(S). A predicate P is called invariance propertyof S (or invariant of S) i� Reach(S) � [[P ]]. For d 2 DC, we say that P is aninvariant of S at d, if P _ :(pc = d) is an invariant of S.Next, we briey recall the basic idea for proving invariance properties of pro-grams. This idea underlies many proof rules formulated in di�erent settings(e.g. [8, 1, 15]). To do so, we recall the de�nition of some predicate transformers.De�nition3. Given � � � � �, the predicate transformers pre[�];gpre[�]; andpost[�] are de�ned by pre[�](P ) = fs 2 � j 9s0 2 P � (s; s0) 2 �g, gpre[�](P ) =:pre[�](:P ), and post[�](P ) = fs0 2 � j 9s 2 P � (s; s0) 2 �g



Thus, pre[�](P ) is the set of predecessors of P by �, post[�](P ) is the set of succes-sors of P , andgpre[�](P ) is the set of states which either do not have successors by� or all their successors are in P . Note that thegpre[�] and post[�] are the weakestliberal precondition and strongest postcondition predicate transformers [6].The main principle used in the literature for proving that a predicate P is aninvariant of a system S, consists on �nding an auxiliary predicate Q such that 1.)Q is stronger than P , 2.) every initial state satis�es Q, and 3.) Q is inductive,i.e. for all transitions t 2 T , we have [[Q]] �gpre[!t](Q), or equivalently, post[!t](Q) � [[Q]].This proof rule is unsatisfactory because it does not tell us how to �nd theauxiliary predicate Q. Finding Q is often the hard part in the proof of invarianceproperties.In the next section, we present a set of techniques that, given a transitionsystem S and a predicate P , automatically generate an auxiliary predicate thatis by construction an invariant. In some cases, the generated predicate is strongenough to prove that P is an invariant.3 Automatic Generation of Auxiliary PredicatesIn this section we present some of the strategies for deriving auxiliary predi-cates we implemented in our tool. We concentrate on strategies which are to ourknowledge new or extensions of strategies presented in other works (e.g. [9, 11,15, 14, 2]). The auxiliary predicates derived using our strategies are proved to beinvariant by construction.Generalized Rea�rmed Invariance without Cycles We begin with a strategy thatcan be applied to a control location d to derive an invariant under the assumptionthat all transitions that lead to d satisfy some restrictions we de�ne below. Thisis a generalization of the rea�rmed invariance strategy presented in [15, 14].Let S = hX; pc : DC; T; I^pc = d0i be given. For � � DC, let L(�) denote theset of transitions t with tar(t) 2 �. Thus, L(�) is the set of transitions changingthe value of the control variable to a value in �. We write L(d) instead of L(fdg).Consider a transition t = (pc = d1; g(Y);Z0 = e(U); pc0 = d), with Z\U = ;.Then, for every states s and s0, if s !t s0, then s0(Z) = e(s0(U)) and s0(U) =s(U). This suggests to take the predicate Z = e as invariant at d.To formulate the general case, given a transition t as above, we denote bya�(t) the predicate Z = e(U) and by gu(t), the guard g(Y). Let, for d 2 DC,AssS (d) = Wt2L(d)(gu(t)^ a�(t)), if d 6= d0; and I _ Wt2L(d)(gu(t)^ a�(t)), if d = d0,where I is the initial predicate of S and d0 its initial control location.Lemma4. Let S be a given transition system with Init = I ^ pc = d0 andlet D � DC be such that for each d 2 D and transition (pc = d1; g(Y);Z0 =e(U); pc0 = d) in L(d) we have Z \ (Y [U) = ;. Then, for each d 2 D, thepredicate AssS (d) is an invariant of S at d.We can actually formulate a strategy that generalizes the one above by relaxingthe condition Z\ (Y [U) = ;. Let Ass0S (d) be de�ned as in Figure 1. Then, foreach d 2 DC, Ass0S (d) is an invariant of S at d. Henceforth, let a�-indep denote



Ass0S(d) =8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: Wt2L(d)(gu(t) ^ a�(t)) ; if d 6= d0 and Z \ (Y [U) = ;I _ Wt2L(d)(gu(t) ^ a�(t)) ; if d = d0 and Z \ (Y [U) = ;Wt2L(d) a�(t) ; if d 6= d0; Z \U = ; and Z \Y 6= ;I _ Wt2L(d) a�(t) ; if d = d0; Z \U = ; and Z \Y 6= ;Wt2L(d) gu(t) ; if d 6= d0; Z \Y = ; and Z \U 6= ;I _ Wt2L(d) gu(t) ; if d = d0; Z \Y = ; and Z \U 6= ;true ; otherwiseFig. 1. De�nition of Ass0S(d)the function that for a given transition system S returns as result the predicateVd2D pc = d)Ass0S (d).Generalized Rea�rmed Invariance with Cycles Consider the situation describedin Figure 2. Then, function a�-indep yields the predicate x = 2 _ y = 1 asinvariant at d. It is easy to see, however, that the stronger predicate x = 2 is alsoinvariant at d. We develop a technique that extends the previous one and coverssituations similar to that of Figure 2.����d0 -����d0 -����dx := 2 ��� y := 1Fig. 2. Generalized Rea�rmed InvarianceA path from d to d0 in S is a sequence d1; t1; � � � ; tn�1; dn with n � 2, d1 = d,and dn = d. We say that a path d1; t1; � � � ; tn�1; dn from d to d0 goes through d00,if di = d00, for some i 2 f1; � � � ; ng.De�nition5. Given a transition system S, a control location d of S, and a set� of control locations of S with d 2 �. We say that � is guarded by d, if thefollowing conditions are satis�ed:{ The initial control location of S is not in � or it is d.{ For every transition t 2 L(�) n fdg, sour(t) 2 �.{ Each path from d to d0 2 � goes only through control locations in �.Let Tr(S; �; d) denote the set L(�) n ft j t 2 L(d); sour(t) 62 �g.Example 1. Consider the system S given in Figure 3, where d0 is the initial con-trol location. Then, �1 = fd1; d2; d3; d4; d5g and �2 = fd1; d4; d5g are guarded byd1, while �3 = fd1; d2; d4; d5g and �4 = fd1; d2; d3g are not because the second re-spectively third condition are violated.We haveTr(S; �1; d1) = ft1; t2; t3; t4; t5; t6gand Tr(S; �2; d1) = ft4; t5; t6g.De�nition6. Given a transition system S and d 2 DC. We say that d is safewith respect to a set V of variables and a set � of control locations, if � is guardedby d and for every t 2 Tr(S; �; d), t does not a�ect any variable in V .



���d0?t0���d1� t1���d2���d3?t2 @@@@Rt3 -t4 ���d4���d56t5���	 t6Fig. 3.Then we have the following lemma.Lemma7. Consider a transition system S, a control location d, a set � of controllocations, and a set V of variables such that d is safe w.r.t. V and �. Let S0 denotethe transition system obtained from S by removing the transitions in Tr(S; �; d).For every predicate Q with free variables V , if Q is an invariant of S0 at d, thenQ is an invariant of S at every d0 2 �.The lemma above suggests a procedure to derive an invariant a�-cyc(S) from thedescription of the transition system S: For each d 2 DC, determine a maximal set� of control locations for which d is safe with respect to the variables a�ected bytransitions in ft j t 2 L(d); sour(t) 62 �g; in case d is the initial control location,we have to check also w.r.t. the free variables of I. If this is the case, recordAss0S0 (d), where S0 is as above, as an invariant of S at d0 for each d0 2 �,otherwise, record Ass0S (d) as an invariant of S at d.Remark. 1. A possible variant of the algorithm a�-cyc concerns the case wherethe initial control location is considered. Instead of requiring that d is safew.r.t. the free variables of I, we hide those which could be a�ected by sometransition in Tr(S; �; d) by existential quanti�cation.2. Clearly, determining the maximal set � which is guarded by d and then check-ing whether d is safe w.r.t. this set and the variables a�ected by transitionsin ft j t 2 L(d); sour(t) 62 �g does not always allow to derive the strongestpossible predicate. One can, however, have a procedure which depends onsome given set V of variables and which computes the maximal set � suchthat d is safe w.r.t. V and �.3. Until now we considered a single transition system S and a�-cyc has beenformulated for this case. When n transition systems S1 k � � � k Sn in parallelare considered, we have to strengthen the notion of d being safe w.r.t. a set Vof variables and a set � of control locations; and require that all variables in Vare only written by the system Si to which d belongs. Henceforth, wheneverwe refer to a�-cyc when a parallel program is considered, we mean thealgorithm obtained by strengthening this notion and taking into account thevariation suggested in 1.Next, we present a technique that allows to propagate predicates that have beenproved to be invariant at some control points of the system, i.e. for some valueof pc. We �rst start with the basic idea.Propagation without cycles Given a transition system S, a predicate Q with Vas free variables and a transition t of S, we say that transition t does not a�ectQ, if Z \V = ;, where Z are the variables a�ected by t.



Consider a transition system S and a control location d 2 DC which is notthe initial one. Let fd1; � � � ; dng = sour(L(d)) and assume that, for each i 2f1; � � � ; ng,Qi(Vi) is an invariant of S at di. If for each t 2 L(d) and i 2 f1; � � � ; ng,with sour(t) = di, t does not a�ect Vi, then Wni=1Q(Vi) is an invariant at d.For the case where d is the initial control location, Wni=1Q(Vi) _ I, where I isthe initial predicate, is an invariant at d. The correctness of this observation isguaranteed by the following lemma.Lemma8. Consider a transition system S and a predicate P that is an invariantof S. Let d 2 DC be a control location of S with L(d) = ft1; � � � ; tmg and di =sour(ti). Let also Q1; � � � ; Qm be predicates such that P ^ pc = di implies Qi,with i = 1; � � � ;m. If d is not the initial control location of S, then the predicateP ^ (l = d) Wmi=1 post[!ti](Qi)) is an invariant of S, otherwise P ^ (l = d )(Wmi=1 post[!ti](Qi) _ I)) is an invariant of S.Note that in case that transition t does not a�ect Q, we have post[!t](Q)) Q,and therefore, the correctness of our technique is implied by the lemma aboveand the fact that if P 0 is an invariant of S and P 0 implies Q0, then Q0 is also aninvariant of S.The implementation of this technique is a function, denoted propg, that takesas input a transition system S and a predicate P of the form Vd2DC pc = d )Qd(V0d). Then, computes for each control location d, the set of variables a�ectedby any transition in L(d). Let Vd denote the intersection of this set with V0d. Asresult, this function yields, for each control location d, as a local invariant at dthe predicate Qd(V0d) ^ 9Vd � Wd02L(d)Qd0(V0d0) .Propagation with cycles Consider now the situation described in Figure 4. Anapplication of the simple propagation technique does not allow to strengthen thepredicate Vmi=1 pc = di ) x = i. For, we would add as a conjunct the predicatepc = d ) true _ Wmi=1 x = i, which is equivalent to true. Yet, it is clear thatWmi=1 x = i is an invariant at d. We develop the next technique which capturessimilar situations. x = 1����d1x =m����dm ����d ��� y := e����1PPPPqy := e1y := em...Fig. 4. Propagation with cyclesConsider a control location d and a set � of control locations which is guardedby d. Let fd1; � � � ; dmg = sour(L(d)) n �. Then, if for each i = 1; � � � ;m, Qi(Vi)is an invariant of S at di and if d is safe w.r.t. Smi=1Vi and �, we can concludeby Lemma 7 and Lemma 8 that Wmi=1Qi(Vi) is an invariant at each d0 2 �.Mixing generalized rea�rmed invariance and propagation Until now we consid-ered propagation and rea�rmed invariance separately. Whereas propagation as-sumes a given invariant P and propagates local invariants from control locations



to others, rea�rmed invariance does not assume such a predicate. We now presenta technique that combines propagation and rea�rmed invariance.Consider a transition system S and an invariant P of S. Let d be a controllocation of S such that ft1; � � � tmg = L(d) and di = sour(ti), for i = 1; � � � ;m.Suppose that for each i = 1; � � � ;m, P ^ pc = di implies Qi(Vi). If, for eachtransition ti and each j with dj = sour(ti), Qi(Vi) implies e(Ui) = Ci andZi \Vj = ;, where Zi0 = e(Ui) is a�(ti) and C is a list of constants, then wecan conclude that Wmi=1(Qi(Vi) ^ Zi = Ci) is invariant at d. Correctness of thisobservation is again a consequence of Lemma 8 and Lemma 8.Re�ned Strengthening Suppose we are given a proposed invariant P for transitionsystem S with transitions T . Suppose also that the proof of P ) gpre[!t](P )fails for t1; � � � ; tm. The method of strengthening invariants (e.g. [15]) proposesto try as next invariant P1 = P ^ Vmi=1gpre[!ti](P ). Thus, one has to try toprove for each transition t the implication P ^ Q ) gpre[!t](P ^ Q), whereQ = Vmi=1gpre[!ti](P ). The main drawback of this method is that, in general,each strengthening step increases the size of the considered invariant which insome cases leads to unreadable predicates.We propose a variant of this method that is theoretically equivalent, i.e. itleads to logically equivalent veri�cation conditions, but which allows to reducethe number of applications ofgpre and to save redoing proofs.Suppose that the attempt of proving 8t 2 T � (P )gpre[!t](P )) fails for thetransitions t1; � � � ; tm, and that one gets subgoals Q1; � � � ; Qm, which are logicallyequivalent to P )gpre[!ti](P ), i = 1; � � � ;m. We propose to take in the next stepthe predicate P 01 = P ^Vmi=1Qi instead of P1. The next lemma implies soundnessof our method but also proves that if P1 is inductive, then also P 01.Lemma9. Let P1 = P^Vmi=1gpre[!ti](P ), Qi be equivalent to P )gpre[!ti](P ),and let P 01 = P ^Vmi=1Qi. Then, P1 and P 01 are equivalent.It is worth to note that soundness of our method does not depend on the factthat Qi is equivalent to P )gpre[!ti](P ) but it su�ces, if it is stronger.To see that our method indeed avoids the blow-up of the considered pred-icates which is due to the repeated application of the predicate transformergpre, let us look at the predicates to be considered at step i when each of thestrengthening and re�ned strengthening methods are applied in turn. In caseof the strengthening method, one has to consider at step i the predicate Pi =P0 ^gpre(P0) ^ � � �gprei(Pi�1) and to prove Pi )gpre(Pi). In case of the re�nedstrengthening method, however, one has to consider the predicate Qi which isobtained as a subgoal in step i, and then, to prove Q0 ^ � � � ^ Qi ) gpre(Qi).Thus, in the re�ned strengthening method, at each step gpre has to be appliedonly once. Another advantage of this method is that Qi is usually of the formpc = d ) Q which can be explained by the fact that Qi is the predicate that isobtained when the proof of Q0^� � �^Qi�1 )gpre(Qi�1) for some �xed transitionwith pc = d as part of the enabling condition has been attempted. Now, when apredicate Q of the form pc = d ) Q0 is considered in order to prove that Q ispreserved by all transitions, it su�ces to consider only those in L(d).



Combining Invariants Consider a network S = S1 k � � � k Sn of transition sys-tems. Given a predicate P , in order to prove that P is an invariant of S, one cancalculate the product S1N � � �NSn and then prove that P is an invariant of theresulting sequential transition system. This method is, however, not applicablefor large transition systems because of the big size of the obtained system. In-deed, the resulting transition system mainly codes all possible interleaving of thetransition steps in the network S. In this section, we present techniques we use toprove invariance properties of networks without calculating the product. Thesetechniques have been successfully applied to many mutual exclusion algorithms,e.g. the Bakery mutual exclusion algorithm [12, 15] in three di�erent versions andSzymanski's mutual exclusion algorithm [18, 19] both parameterized and for twoprocesses.De�nition10. Given a transition system S, a predicate P is called history-independent assertion at d 2 DC, if post[t](true) � [[P ]] holds for each t 2 L(d),and moreover, if d is the initial control location of S, then Init implies P .An history-independent assertion at d is true whenever computation reaches dindependently on how this happens, in particular it does not dependent on thestate in which the transition is taken.Consider transition systems S1 and S2 with Si = hXi; pci : DCi; Ti; Ii ^ pci =di;0i, for i = 1; 2. Moreover, consider predicates Qi, for i = 1; 2, and (d1; d2) 2DC1 �DC2. Assume we know that Qi is an history-independent assertion at di.Then, we can conclude that Q1 _ Q2 is an invariant of S1 k S2 at (d1; d2). Thisleads to the following heuristic formulated in the next lemma.Lemma11. Let Si = hXi; pci : DCi; Ti; Ii^pci = di;0i, for i = 1; 2, be transitionsystems and let Qi be predicates. Then, for each (d1; d2) 2 DC1�DC2 such thatQi is an history-independent assertion of Si at di, for i = 1; 2, the predicateQ1 _Q2 is an invariant of S1 k S2 at (d1; d2).If the predicates Q1 and Q2 constraint only variables which are a�ected onlyin S1, respectively, S2, then we can even conclude that the stronger predicateQ1 ^Q2 is an invariant at (d1; d2).The implementation of both observations above is realized by a single functioncomp which takes as arguments the transition systems S1 and S2 as well astwo predicates P1 and P2 for S1 and S2, respectively, which are of the formVdj2DCi pc = dj ) Pi(dj), i = 1; 2. The result of the application of this functionis a predicate of the form Vd2DC pc = d) Q(d), where DC = DC1 �DC2 and ford = (d1; d2), Q(d) is de�ned in Figure 3.Remark. It is worth to note that each invariant Q obtained by applying thefunction a�-indep is history-independent.In a concrete implementation, the predicate obtained by an application of thefunction comp, can be encoded by adding to each local invariant Pi(di) at di twobits. The �rst one encodes whether Pi(di) is history-independent and the secondwhether it refers to a variable a�ected in Sj with j 6= i.



Q(d) =8>>>>>><>>>>>>:P1(d1) _ P2(d2) ; if for i = 1; 2; Pi is an history-independent assertion atdiand one of the predicates P1 or P2 refers to a variablea�ected in S2 respectively S1P1(d1) ^ P2(d2) ; if for i = 1; 2; Pi is an history-independent assertion at diand predicate P1 respec. P2 does not refer to any variablea�ected in S2 respec. S1true ; otherwiseFig. 5. De�nition of compThe next lemma shows how given d0i 2 DCi and a predicate Q that is history-independent at d0i, we can deduce a predicate Q0 which is also history-independentat d0i and which does not refer to variables a�ected in Sj with j 6= i.Lemma12. Let S1 and S2 be transition systems and let d1 2 DC1 (resp. d2 2DC2) be a control location of S1 (resp. S2). If Q is a history-independent assertionat d and Y are the variables occurring in Q which are a�ected in S2 (resp, S1),then 9Y �Q is a history-independent assertion at d.Clearly, the predicate 9Y : D � Q does not refer to variables a�ected in Sj . Letabst be a function that takes as arguments two transition systems S1 and S2 anda predicate P for S1, and returns a predicate Q for S1 such that Q is obtainedfrom P by applying the observation above.Next we present the tactic we apply to synthesize an invariant from a givennetwork S1 k S2. This is presented by an algorithm written in pseudo-code andwhich uses the heuristics presented above.Input: S1 k S2Output: An invariant1. Pi := a�-indep(Si), for i = 1; 22. P := comp(S1; S2; P1; P2)3. Q1 := abst(S1; S2; P1); Q2 := abst(S2; S1; P2)4. Qi := Qi ^ propg(Si;Qi), for i = 1; 25. return P ^Q1 ^Q24 ExampleThe example we consider is the Bakery mutual exclusion algorithm [12, 15]. Twoprocesses are competing to enter their respective critical sections represented bylocation 4. Thus, the invariant we are going to prove is given by the predicateINV = :(pc1 = 4 ^ pc2 = 4).It can easily be checked that this invariant is not inductive. Moreover, cal-culating the set of reachable states using the post operator does not terminate(no �x-point can be reached in a �nite number of steps). Calculating the weak-est invariance property that is contained in INV does terminate after 8 steps(cf. [14]). We can automatically generate by our techniques an invariant that isinductive and that allows to prove that INV is indeed an invariant.



Transition system S1 j Transition system S2pc1 = 1 �! pc01 = 2 j pc2 = 1 �! pc02 = 2pc1 = 2 �! y01 = y2 + 1; pc01 = 3 j pc2 = 2 �! y02 = y1 + 1; pc02 = 3pc1 = 3 ^ (y2 = 0 _ y1 � y2)! pc01 = 4 j pc2 = 3 ^ (y1 = 0 _ y2 < y1)! pc02 = 4pc1 = 4 �! pc01 = 5 j pc2 = 4 �! pc02 = 5pc1 = 5 �! y01 = 0; pc01 = 1 j pc2 = 5 �! y02 = 0; pc02 = 1Init = (y1 = y2 = 0 ^ pc1 = pc2 = 1)Applying generalized rea�rmed invariance without cycles for S1 (resp. S2) yieldsthe predicate P1 (resp. P2) with:P1 = (pc1 = 1) y1 = 0 _ y1 = 0 ^ y2 = 0) ^ (pc1 = 3) y1 = y2 + 1)^(pc1 = 4) y2 = 0 _ y1 � y2)P2 = (pc2 = 1) y2 = 0 _ y1 = 0 ^ y2 = 0) ^ (pc2 = 3) y2 = y1 + 1)^(pc2 = 4) y1 = 0 _ y2 < y1)Combining the predicates P1 and P2 according to function comp results in apredicate equivalent toP = (pc = (1; 1)) y1 = 0 _ y2 = 0) ^ (pc = (1; 3)) y1 = 0 _ y2 = y1 + 1)^(pc = (1; 4)) y1 = 0 _ y2 < y1) ^ (pc(3; 1)) y1 = y2 + 1 _ y2 = 0)^(pc = (3; 3)) y1 = y2 + 1 _ y2 = y1 + 1) ^ (pc = (3; 4)) y1 = 0 _ y2 < y1)^(pc = (4; 1)) y2 = 0 _ y1 � y2) ^ (pc = (4; 3)) y2 = 0 _ y2 < y1)In the sequel, we write pc1 = d1 ^ pc2 = d2 for pc = (d1; d2).Next, we apply the abstraction function abst on P1 and P2 to obtain:Q1 = (pc1 = 1) y1 = 0) ^ (pc1 = 3) y1 � 1)Q2 = (pc2 = 1) y2 = 0) ^ (pc2 = 3) y2 � 1)Then, we apply our propagation technique without cycles. It can easily bechecked that we can propagate from control location 1 to 2, from 3 to 4, andfrom 4 to 5, which yields the following predicates:Q01 = (pc1 = 1 _ pc1 = 2) y1 = 0) ^ (pc1 = 3 _ pc1 = 4 _ pc1 = 5) y1 � 1)Q02 = (pc2 = 1 _ pc2 = 1) y2 = 0) ^ (pc2 = 3 _ pc2 = 4 _ pc2 = 5) y2 � 1)Then, we can show P ^Q01^Q02^ INV )gpre[!t](INV ), for each transitiont of S1 k S2.5 Discussion and Future WorkThis paper provides a set of techniques for the automatic generation of auxiliarypredicates to prove invariants of programs. The use of these heuristics for the ver-i�cation of various mutual exclusion algorithms shows that they are promising.They have been applied to di�erent versions of the Bakery, Dekker, Peterson, andSzymanski algorithms (see [15] for a recent presentation of many of these algo-rithms and for references). Concerning Szymanski's mutual exclusion algorithm,we veri�ed the parameterized as well as the unparameterized case. We intend tocombine our techniques with others as abstract interpretation [5] to discover re-lationships between program variables that can be used to derive invariants andto investigate heuristics and strategies for the decomposition of large programs.AcknowledgementsWe thank J. Sifakis who continuously encouraged and sup-ported this work. Many interesting discussions with S. Graf and A. Pnueli helpedclarifying and �xing our ideas. We also thank the anonymous referees for jude-cious comments.
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