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Abstract

Dynamic Programming provides a convenient and unified
framework for studying many state models used in Al but no
algorithms for handling large spaces. Heuristic-search meth-
ods, on the other hand, can handle large spaces but lack a
common foundation. In this work, we combine the bene-
fits of a general dynamic programming formulation with the
power of heuristic-search techniques for developing an algo-
rithmic framework, that we call Learning Depth-First Search,
that aims to be both general and effective. LDFS is a sim-
ple piece of code that performs iterated depth-first searches
enhanced with learning. For deterministic actions and mono-
tone value functions, LDFS reduces to IDA* with transposi-
tion tables, while for Game Trees, to the state-of-the-art iter-
ated Alpha-Beta search algorithm with Null Windows known
as MTD. For other models, like AND/OR graphs and MDPs,
LDFS yields new, simple, and competitive algorithms. We
show this here for MDPs.

Introduction

Dynamic Programming provides a convenient and unified
framework for studying many state models used in Al (Bell-
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updated to make them consistent with the values of their suc-
cessorsLDFs shows that the key idea underlying several ex-
isting heuristic-search algorithms over various settingsds
use of iterated depth-first searches with memory for improv-
ing the heuristics over certain relevant states until they be-
come optimalAlso, by generalizing these algorithmsFs
carries this idea to other settings where it results in a novel
and effective approach.

LDFs grows from recent work on MDPs that combines
DP updates with the use of lower bounds and knowledge of
the initial state for computingartial optimal policies over
the relevant states efficiently (Barto, Bradtke, & Singh 1995;
Hansen & Zilberstein 2001; Bonet & Geffner 2003b; 2003a;
McMabhan, Likhachev, & Gordon 2005). However, rather
than focusing on the development of another heuristic-
search MDP algorithm, we make use of these notions to lay
out a general framework covering a wide range of models
which we intend to be general, transparent, and useful. This
generality pays off in a number of ways; for example, by
showing that a given MDP algorithm reduces to IDA* when
all probabilities ard or 1, it becomes clear that the MDP al-
gorithm is doing certain things right and is not missing key

man 1957; Bertsekas 1995) but no algorithms for handling features. This is important as heuristic-search algorithms for
large spaces. Heuristic-search methods, on the other hand,MDPs are not as well established and mature as heuristic-
can handle large spaces effectively, butlack a common foun- search algorithms for deterministic problems. Similarly, we

dation: algorithms likeiDA* aim at deterministic models
(Korf 1985),A0* at AND/OR graphs (Martelli & Montanari
1973), Alpha-Beta at Game Trees (Newell, Shaw, & Simon
1963), and so on (Nilsson 1980; Pearl 1983). In this work,
we aim to combine the benefits of a general dynamic pro-
gramming formulation with the effectiveness of heuristic-
search techniques for developing an algorithmic framework,
that we callLearning Depth-First SearcfLDFs) that aims
to be both general and effective. For some modaiss re-
duces to well-known algorithms, like@A* with transposi-
tion tables for Deterministic Models (Reinefeld & Marsland
1994) andvTD for Game Trees (Plaat al. 1996), while
for other models, like AND/OR Graphs and Markov Deci-
sion Processes, it yields new and competitive algorithms.
The LDFs framework is built around two simple notions:
depth-first search anlgarning in the sense of (Korf 1990)
and (Barto, Bradtke, & Singh 1995), where state values are
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will be able to explain the weaknesses of some MDP al-
gorithms in terms of well-known weaknesses of IDA*; for
example, the potential blow up in the number of iterations
when action costs are real numbers rather than integers (Wah
& Shang 1994).

While Hansen and Zilberstein offer a generalization of
AO* to MDPs based on the general notiorbafst-first search
(Hansen & Zilberstein 2001),DFS provides a generaliza-
tion of IDA* based on the notions oflepth-first search
andlearning that covers deterministic problems, AND/OR
graphs (cyclic or not), MDPs, and that at the same time ex-
tends to Game Trees where it provides a clear and explicit
correspondence betweera * and the state-of-the-amMTD
algorithm (Plaatt al. 1996).

The paper is organized as follows. We deal first with a
common formulation of the various models and a simple
common algorithmic schema, Find-and-Revise, that solves
them all. We then introducedrs as an efficient instance of
this schema for models that have acyclic solutions. We then



move to MDPs, where thebrs algorithm is extended and
evaluated.

Models

All the state models that we consider can be defined in terms
of the following elements:

a discrete and finite state spéte

an initial statesg € S,

a non-empty set of terminal statég C 5,

actionsA(s) C A applicable in each non-terminal state,
a function mapping non-terminal stateand actions: €
A(s) into setsof statesF'(a, s) C S,

action costs(a, s) for non-terminal states, and

7. terminal costsr(s) for terminal states.

We assume that botA(s) and F'(a, s) are non-empty. The
various models correspond to:

e Deterministic Models (DET){F'(a, s)| = 1,

« Non-Deterministic Models (NON-DET)F(a, s)| > 1,

e Markov Decision Processes (MDPs): with probabilities
Py(s']s) for s" € F(a,s) S.t. 3 pa,s) Pal(s]s) = 1.

In addition, for DET, NON-DET, and MDPs

e action costg:(a, s) are all positive, and
e terminal costg:r(s) are non-negative.

When terminal costs are all zero, terminal states are
called goals AND/OR graphs can be modeled as non-
deterministic state models, while Game Trees (GT) corre-
spond to non-deterministic state models with zero action
costs and arbitrary terminal costs.

For distinguishing models with and without cycles, let a
pathsg, ag, s1,a1,...,a,_1, S, D€ a sequence of states and
actions starting in the initial statg), such that each action
a; is applicable ins;, a; € A(s;), and each state; | is a
possible successor of given actiona;, s;+1 € F(a;, s;).
Then a model icyclic if it can give rise tocyclic paths
namely, pathsg, ao, s1,a1,...,an-1, 8, With s; = s; for
1 # j. Otherwise, a model igcyclic We write aNON-DET
and aMDPs to refer to the subclass of acyclic NON-DET
and MDPs models. For example, the type of problems in the
scope of theno* algorithm corresponds to those in aNON-
DET. It is useful to note that only MDPs can have cyclic
solutions; all the other models, whether cyclic or not, can
only have solutions without cycles. More about this below.

agprpwhE
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Solutions

The solutions to the various models can be expressed in
terms of the so-called Bellman equation that characterizes
the optimal cost function (Bellman 1957; Bertsekas 1995):

Ve {

where theQy (a, s) values express the cost-to-go and are
short-handfor:

cla,s) +V(s'), s' € F(a,s) for DET,

c(a, 8) + maxycp(a,s) V(s') for NON-DET-Max,

if s terminal
otherwise

cr(s)
MiNge A(s) Qv(a,s)

1)

c(a,s) + 3 g cra,s V(s) for NON-DET-Add,
c(a,8) + 2y er(a,s Fals'[s)V(s") for MDPs, and
maxy e p(q,s) V(') for Game Trees.

We will refer to the models (NON-DET-Max and GT) whose
Q-values are defined with Max as Max models, and to the
rest of the models, defined with Sums, as Additive models.
Under some conditions, there is a unique value function
V*(s), the optimal cost function, that solves the Bellman
equation, and the optimal solutions to all the models can
be expressed in terms of the policieshat aregreedywith
respect toV*(s). A policy 7 is a function mapping states
s € Sinto actionsa € A(s), and a policyry is greedy with
respect to a value functio¥i(s), or simply greedy i/, iff
my is the best policy assuming that the cost-to-go is given
by V(s);i.e.

argmin Qv (a, s) . (2)
aEA(s)

Often, however, these conditions are not met, and the set
of |S| Bellman equations have no solution. This happens
for example in the presence dead-endswhether or not
such dead-end states can be avoided on the way to the goal.
The absence of dead-ends is a common requirement in DP
methods and algorithms like LRTA* (Korf 1990) and RTDP
(Barto, Bradtke, & Singh 1995) that demand the goal to be
reachable (with some positive probability) from every state.
Here, we drop this requirement by focusingmartial poli-
ciesthat map a subcollection of states into actions. We say
that a partial policyr is closed(relative tosy) if © prescribes
the action to be done in all the (non-terminsiites reach-
able byx from sq. In particular, closed policies for deter-
ministic models correspond to action sequences, for game
trees, to actual trees, and so on.

Any closed policyr relative to a state has a cost ™ (s)
that expresses the cost of solving the problem following
starting froms. The costsV™(s) are given by the solu-
tion of (1) but with the operatomin,c 4(,) removed and
the actiona replaced byr(s). These costs are well-defined
when the resulting equations have a solutwer the subset
of states reachable by from sy,. Moreover, for all mod-
els above, except MDPs, it can be shown that (closed) poli-
ciesw have a well-defined finite co$t™ (sy) when they are
acyclic and for MDPs, when they angroper. Otherwise
V7 (sp) = co. A (closed) policyr is cyclicif it gives rise to
cyclic pathssg, ag, s1,a1, - .., an_1, S, Wherea; = m(s;),
and it isproper if a terminal state is reachable with some
probability from every state reachable byr from s (Bert-
sekas 1995).

For all models except for MDPs, since solutionsare
acyclic, the costd/™(s¢) can be defined also recursively,
starting with the terminal states for which V™ (s’)
cr(s’), and up to the non-terminal statesfor which
V™(s) = Qv~(n(s),s). In all cases, we are interested in
computing a solutionr that minimizest/™(sy). The result-
ing value is the optimal problem coBt* (so).

mv(s)

Computing Solutions

We assume throughout the paper that we have an initial value
function (or heuristic)’ that is amonotone lower bound



i.e,V(s) < V*(s)andV(s) < min,ea(s) Qv(a,s). Also starting with an admissibl&’

for simplicity, we assumé/(s) = cr(s) for all terminal repeat
states. We summarize these conditions by simply saying that FIND s reachable fronso andmy with Resy (s) > €
V is admissible. This value function is then modified by UpdateV (s) to minge a(s) Qv (a, s)

learningin the sense of (Korf 1990) and (Barto, Bradtke, & until no such state is found
Singh 1995), where the values of selected states are made return V

consistent with the values of successor states; an operation
that takes the form of a Bellmarpdate

V(s) == min Qulas). 3)

Figure 1: TheriIND-andREVISE sSchema

If the initial value function is admissible, it remains so after be reachable by an optimal policy frosg. Since the Find
one or more updates. Methods likelue iterationperform procedure can be implemented by a simple DFS procedure
the iterationV(s) := min,e (. Qv (a,s) over all states  that keeps track of visited states in tirg¥|.5|), it follows

until the difference between right and left does not exceed that the time complexity ofIND-andREVISE over those

somee > 0. The differenceminge 4(5) Qv (a,s) — V(s), models can be bounded by this expression timgs|). For
which is non-negative for monotone value functions, is MDPs, the convergence efND-andREVISEWith € = 0 is
called theresidualof V' over s, denotedResy (s). Clearly, asymptotic and cannot be bounded in this way. However, for

a value function is a solution to Bellman equation and is ~ anye > 0, the convergence is bounded by the same expres-
thus equal td/* if it has zero residuals over all states. Given ~ sion divided bye.
a fixed initial statesy, however, it is not actually necessary

to eliminate all residuals for ensuring optimality: LDFS

Proposition 1 Let V be an admissible value function and  All the models considered above admit a common formula-

let = be a policy greedy ifi/. Thens minimizesV™(sy) tion and a common alglorlth.rTIEIND-andREVISE. ThIS. al-

and hence is optimal iResy (s) = 0 over all the states gonthm, while not practical, is useful for understandmg and

reachable fromso and . proving the correctness of other, more effective approaches.

We will say that an iterative algorithm is instancerofiD-
andREVISE, if each iteration of the algorithm terminates,
either identifying and updating a state reachable fsgrand
my with residualResy (s) > e, or proving that no such state

This suggests a simple and general schema for solving all
the models, that avoids the strong assumptions required by
standard DP methods and yields partial optimal policies. It

is actually sufficient to search for a stateeachable from  gyiqt5 and hence, that the model is solved. Such algorithms
so andry with residualResy (s) > ¢ and update the state,  jj| inherit the correctness afinp-andREVISE, but by per-
keeping this loop until there are no such states left.#f 0 forming more updates per iteration will converge faster.

and the initial value functiorV' is admissible, then the re- We focus first on the models whoselutionsare neces-
sulting (closed) greedy polies is optimal. ThisFIND-and- sarily acyclic, excluding thus MDPs but not acyclic MDPs
REVISEschema, shown in Fig. 1 and introduced in (Bonet & (aMDPs). We are not excludimgodelswith cycles though:
Geffner 2003a) for solving MDPs, can be used to solve all o)y models whossolutionsmay be cyclic. Hence the re-
the models without having to compute complete polidies: quirements are weaker than those of algorithms Aike.

Proposition 2 Starting with an admissible value function We will say that a state is consistentelative to a value
V, the FIND-andREVISE schema fore = 0, solves all the function V' if the residual ofV over s is no greater than
models (DET, NON-DET, GT, MDPs) provided they have so- €. Unless mentioned otherwise, we tak¢o be0. The
lution. first practical instance ofFIND-andREVISE that we con-
sider, LDFs, implements the Find operation as a DFS that
starts insg and recursively descends into the successor states
s’ € F(a,s) iff ais an applicable action is and the value
function V' is such thatQy (a,s) < V(s). SinceV is as-
sumed to be monotone, and therefdpe (a,s) > V(s),
one such actiom exists if and only ifs is consistent. Thus,

if there is no such action at s, s is inconsistent, and the

For the non-probabilistic models withtegeraction and ter-
minal costs, the number of iterations efN\D-andREVISE

with e = 0 can actually be bounded By o[V*(s)—V (s)]
when there are no dead-ends (states Witlls) = o), as

the updates increase the value function by a positive integer
in some states and decrease it at none, preserving its admis
sibility. In the presence of dead-ends, the bound can be set . - : : )
103" o[min(V*(s), MazV)—V ()] whereMazV stands L_Oorzs algorithm backtracks o, updatings and its ances

for any upper bound on the optimal co$ts(s) of the states The code forLDFs is shown in Fig. 2. The Depth-First
with finite cost as states with values abo¢axV will not Search is achieved by means of two loops: one over the

We assume that the initial value functidn (which may be actionsa € A(s), and the other, nested, over the possi-

the zero function) is represented intensionally and that the updated bl_e successors’ € F(a,s). The recursion occurs when
values are stored in a hash table. Also, since there may be many @ IS such thaQy (a, s) # V(s), which given that/’ is as-
policies greedy inV, we usery to refer to the unique greedy ~ Sumed to be a monotone function, is exactly whkes con-
policy obtained by selecting in each state the action greedy in  Sistent and: is a greedy action is. The tip nodes in the
that is minimal according to some fixed ordering on actions. search are the inconsistent stat€s/here for all the actions



LDFS-DRIVER(s0)

begin

repeat solved := LDFS(so) until solved
return (V,m)

end

LDFS(s)

begin

if sis SOLVED or terminalthen
if sisterminalthen V'(s) := cr(s)
Mark s as solvedeturn true

flag := false
foreacha € A(s) do
if Qv (a,s) > V(s) then continue
flag := true
foreachs’ € F(a, s) do
| flag := LDFS(s") & flag
| if flag then break

% Recursion

if flagthen
w(s) :=a
| Mark s assOLVED % Labeling
else
| V(s) := mingeacs) Qv(a,s) % Update

return flag

end

Figure 2: Learning DFS AlgorithmLOFs)

Qv (a,s) > V(s)), the terminal states, and the states that
are labeled as solved. A statés labeled as solved when the
search beneathdoes not find an inconsistent state. This is
captured by the booleafiag. If s is consistent, andlag is
true after searching beneath the successogsF(a, s) of a
greedy actioru at states, thens is labeled as solveds/(s)

is set toa, and no more actions are triedsatOtherwise, the
next action is tried, and if no one is left,is updated, and

false is returned. Solved states are not explored again and verses a pattsg, ag, s1, a1, - -

become tip nodes in the search.

LDFsis called iteratively oves, from a driver routine that
terminates wheny is solved, returning a value functidn
and a greedy policy that satisfies Proposition 1, and hence
is optimal. We show this by proving thabrsis an instance
of FIND-andREVISE. First, since no model other than MDPs
can accommodatg cycle of consistent statese get that:

Proposition 3 For DET, NON-DET, GT, and aMDPs, a call
to LDFS cannot enter into a loop and thus terminates.

Then, provided with the same ordering on actionsiam-
andREVISE, it is simple to show that the first statghat is
updated byLDFs is inconsistent and reachable fragand
v, and if there is not such statepFs terminates with the

policy 7y .

Proposition 4 Provided an initial admissible value func-
tion, LDFS is an instance ofFIND-andREVISEe = 0], and
hence, it terminates with a closed partial poligythat is
optimal for DET, NON-DET, GT, and aMDPs.

In addition, for the models that aeglditive it can be shown

that all the updates performed hpFs areeffective in the
sense that they are all done on states that are inconsistent,
and which as a result, strictly increase their values. More
precisely:

Proposition 5 Every recursive call.DFs(s) over thead-
ditive modelsDET, NON-DET-Add, and aMDPs either in-
creases the value afor labelss as solved.

An immediate consequence of this is that for DET and
NON-DET-Add models with integer action and terminal
costs, the number of iterations can be bounde®'bis,) —
V(s0) as all value increases must be integer too. This bound
is tighter than the one fanND-andREVISEand corresponds
exactly to the maximum number of iterationsibn * under

the same conditions. Actually, provided thatrs andIDA*

(with transposition tables, Reinefeld & Marsland 1994) con-
sider the actions in the same order, it can be shown that they
will both traverse the same paths, and maintain the same
value (heuristic) function in memory:

Proposition 6 (LDFS & IDA*) Provided an admissible
(and monotone) value functidn, and that actions are ap-
plied in the same order in every statepFs is equivalent
to IDA* with Transposition Tables (Reinefeld & Marsland
1994) over the class of deterministic models (DET).

This result may seem puzzling at first because the code for
LDFs, while more general thama* with transposition ta-
bles, is also simpler. In particular, unlikea*, LDFs does
not need to carry an explicit bound as argument. This simpli-
fication however follows from the assumption that the value
function V' is monotone. In such a case, and provided that
transposition tables and cost revision are used as in (Reine-
feld & Marsland 1994), the conditiofi(s) = g(s)+V (s) >
Bound for pruning a node inbA*, where g(s) is the ac-
cumulated cost andt'(s) is the estimated cost to the goal,
becomes simply thatis inconsistent.

In order to get an intuition for this, notice thabFrs tra-
., Sk, ar only whens; . is
a successor ofi; in s; and Qv (a;, s;) < V(s;), where
Qv (a;, s;) for DET isc(a;, s;)+V (s;+1). Now, for a mono-
toneV, c(a;, s;) + V(si+1) < V(s;) holds iff the equality
clai, s;) + V(si+1) = V(s;) holds, which if applied iter-
atively, yields that the path is traversed onlylif(sq) =
g(s;) + V(s;) fori = 0,...,k, whereg(s;) is the accu-
mulated cost frons, to s; along the path. For a monotone
V, this condition is equivalent t& (sg) > g(s;) + V(s;),
which is the exact complement of the pruning condition
g(si) + V(s;) > Bound in IDA* when Bound = V(so),
something that is true imbA* when V' is monotone and
transposition tables are used.

Actually, if we consider a binary tree where the nodes are
statess that admit two deterministic actions mappin@nto
its two sons respectively, we can get a simple characteriza-
tion of the workings of both.DFs and IDA* with transposi-
tion tables. Let us assumé(s) = 0 for all states, and that
the goals are the leaves at depth Then in the first trial,
LDFs finds thats, is an inconsistent state (accordingit)
and thus prunes the search benegtand update$(sg) to



1. This update makes, consistent, and hence, in the sec-
ond trial, the tip nodes of the search become the states at
depth1 whose values are inconsistent, and which are made
consistent by updating them fo At the same time, upon
backtracking, the consistency &f is restored, updating its
value to2. The algorithms keeps working in this way, and by
the time the iteration is finished, with0 < i < n, the value
function V' is consistent over all the states at deptkC i.
Namely, at that time, nodes at depthave valuel, nodes

at depthi — 1 have value2, and so on, while the single root
nodes, at depth0 has valuel/(sq) = i. The same result
holds foribAa* with transposition tables.

LDFS generalizes the key idea underlyimma* to other
models, which enter into thebrs algorithm through the
Qv (a, s) term whose form depends on the model. Indeed,
for all Additive Models, the behavior afbFs can be char-
acterized as follows:

Proposition 7 Over the Additive Models DET, Non-DET-
Add, and aMDPs|.DFs tests whether there is a solutien
with costV™(sg) < V(sg) for an initial admissible value
functionV. If a solution exists, one such solution is found
and reported; elséd/(s¢) is increased, and the test is run
again, til a solution is found. Sinc& remains a lower
bound, the solution found is optimal.

This is the key idea underlying not onipA* but also the
Memory-enhanced Test Driver algorithm ard (—oc) for
Game Trees (Plaatt al. 1996). Both algorithms work as
‘Test and Revise’ loops; namely, lower bounds are used as
upper bounds, and if no solution is found, the lower bounds
are increased accordingly, and the loop is resumed.

Interestingly, whileLDFs solves Game Trees and Max
AND/OR Graphs, it does not exhibit this ‘Test and Revise’
pattern there: the reason is that over Max models, unsuc-
cessfulLDFs(s) calls do not necessarily result in an increase
of the value ofs. For example, ifs admits a single action
a, andV(s) = Qv (a,s) = max[V(s1), V(s2)], then an in-
crease ifl/(s;) does not lead to an increasélitts) if V(sz)
remains lower thaV'(s;). This happens because the Max
operator, unlike the Sum operator of Additive models, is not
strictly monotone over all its arguments. A proposition anal-
ogous to Proposition 7, however, can be obtained for Max
models provided thatDFs is extended with an extrBound
parameter, resulting in a BoundedFs variant that reduces
to IDA* with transposition tables even when the value func-
tion is not monotone. More interestingly, for Game Trees,
Bounded.DFs reduces to the1Td (—oo) algorithm: an iter-
ative Alpha-Beta search algorithm with Null Windows, that
iteration after iteration, moves the evaluation window from
—oo up til the correct Game Tree value is found (Plaat
al. 1996). This BoundedDFs variant is formulated and
compared with AO* over Max AND/OR graphs in (Bonet
& Geffner 2005). In this paper we focus on a different ex-
tension of the basicDFs procedure that yields the ability to
handle additive models like MDPs where solutions can be
cyclic.

Figure 3: Labeling states in the presence of cyclic solutions
in MDPs: the graph shows a cyclic poliay where alinki —

J means that state; is a possible successor of stajavhen
actionr(s;) is done ins;. The states, ands, are terminal
states.LDFS(MDP) labels a state as solved only when all
the states’ that are reachable fromare consistent. For this,

it uses Tarjan’s bookkeeping mechanism for identifying the
strongly-connected componen§ of the graph: when all
the states in a compone@t are consistent, all of them are
labeled as solved.

LDFS for MDPs

The LDFs algorithm solves all the models we have consid-
ered except MDPs. The reason is that in MDPs, there may
be CyC"C path$i, Ay Sit1y Aty -+ o5 Sidky, Qitk, Si with all
the states along the path being consistent. This cannot hap-
pen in the other models. In such a casefs would enter
an infinite loop. For dealing with MDPs, however, it is not
enough to detect and avoid such loops; the labeling mecha-
nism that marks states as solved needs to be revised as well.
In problems with cyclic solutions it is not enough to label a
states as solved when for some actiarapplicable ins, we
have bothQy (a, s) < V(s) and all successors € F'(a, s)
solved. This is because the statéself can be one of its
own successors or a descendant of them. Also, a practical
problem arising from the use abFs for MDPs has to do
with the size of the residuals > 0 allowed in the target
value function. A value functio™* is optimal if its residu-
alsminge 4(5) Qv (a, s) — V(s), that are non-negative for a
monotonéd/, are all zero. However, achieving zero residuals
is costly and not strictly necessary: the number of updates
for reducing the residuals to zero is not bounded, and non-
zero residuals, if sufficiently small, do not to hurt optimality.
In light of these issues,DFS(MDP) adds two features to
the basia.DFs algorithm: are > 0 bound on the size of the
residuals allowed, and a bookkeeping mechanism for avoid-
ing loops and recognizing states that are solved. To illustrate
the subtleties involved in the latter task, let us assume that
there is a single action(s) applicable in each state. By per-
forming a single depth-first pass over the descendants of
keeping track of visited states for not visiting them twice,
we want to know when a statecan be labeled as solved.
Due to the presence of cycles, it is not correct to label a
states as solved when the variabféag indicates that all de-
scendants of are consistent (i.e., have residuals no greater
thane), as there may be ancestors ©that are reachable
from s but have not been yet explored. Even in such cases,
however, there must be statesn the DFS tree spanned



by LDFs(MDP) (recall that no states are visited twice) such
that the states that are reachable frerand 7 are allbe-
neaths, and for those states, it rrectto label them as
solved whenflag is true. Moreover, the labeling scheme is
alsocompletdf at that point not onlys is labeled as solved LDFS(MDP)-DRIVER(s0)
but also its descendants. The question of course is how to  pegin

recognize such ‘top’ elements in the state graph during the while s0 is notSOLVED do

depth-first search. The answer is given by Tarjan’s strongly LDFS(MDP)(s0, €, 0, stack)

connected components algorithm. Tarjan’s algorithm (Tar- ClearAcTIVE bit on all visited states

jan 1972) identifies the strongly connected components of a return (V, )

directed graph by means of a depth-first traversal that keeps o4

track of a pair of indices.low and s.idx for each of the )

states visited. The indices are equal only for to the top’ ele- EDF.S(MDP)(S’ €, indez, stack)

ments of each strongly connected component. For example, egli?s is SOLVED or terminalthen

in the g_raph shoyvn in Fig. 3, where a link— j means that if s is terminalthen V(s) := cr(s)

states; is a possible successor of stajgwhen actionr (s;) Mark s as solvedeturn #rue

is done ins;), the components a€;, Cs, C3, andCy. The if s is ACTIVE then return false % Update

LDFS(MDP) algorithm labels all the state$in a component .

C as solved, when upon leaving the component, the value Pushs into stack

of the flag variable indicates that no inconsistency has been side = s-low := index

found. indexr := inder + 1
The resulting algorithm for MDP$,DFS(MDP), is shown % V(s) 1= minaeasQv(a, ) *

in Fig. 4. LDFS(MDP) is simply LDFs plus two additional flag := false

features: non-zere-residuals and a labeling scheme based foreacha € A(s) do _

on Tarjan’s strongly connected components algorithm. The if Qv (a,s) —V(s) > ethen continue

correctness of DFS(MDP) follows directly from the Find- Mark s asACTIVE

and-Revise schema and the correctness of the Tarjan’s algo- {lag = true

. . oreachs’ € F(a,s) do

rithm: if s’.idz = oo then

Proposition 8 LDFS(MDP) is an instance ofFIND-and- L flag := LDFS(s', €, index, stack) & flag

REVISE[e] and hence for a sufficiently smallsolves MDPs s.low := min{s.low, s".low}

provided they have a solution with finite (expected) cost. else ifs’ is ACTIVE then

Since in every iteratiorFIND-and-REVISE]e] either termi- L sdow:=min{s.low, s"idr}

nates or increases the value function of a greedy state by at % flag == flag & [Qv(a,s) — V(s) < €] *

leaste, the number of trials of botRiIND-andREVISE[¢] and if flag then break

LDFS(MDP) is bounded by} _g[min(V*(s), MazV) — while stack.top.idz > s.idx do

V (s)]/e, where MaxV stands for any finite upper bound L stack.top.ide := stack.top.low := oo

on the optimal costs of the states that are not dead-ends. B

LDFS(MDP) works even in the presence of dead-eadsro- if = flag then

vided that some policy exists that avoids such dead-ends V(s) := mingea(s) Qv(a, 5) % Update

and reaches the goal with probability The ability to han- “(izl) —a low —

dle spaces that contains dead-ends is rather novel and does ‘;,'é xt'*]f' ow =00

not extend to the standard algorithms, and algorithms like = pstac )

LRTA* and RTDP that presume that the goal is reachable else ifs.low = s.idv then

from every state or, equivalently, that a proper policy exists. Wh"&;ﬁﬁ*gggf&% 8.4dz do % Labelin
The use of Tarjan’s algorithm for labeling states in MDPs stackiop.idx = stack.top.low ::O o 9

is borrowed from thedDP algorithm in (Bonet & Geffner Popstack

2003a). The two algorithms, however, are not equivalent. L

In particular, for deterministic actionspFs(MDP) reduces return flag

to IDA* with transposition tables, whileiDP does not. Ac- end

tually in such a caseyppP performs a sequence of 'greedy’

searches where in every consistent stattarting withsg

only one action a with Qv (a,s) = V(s) is considered. Figure 4: LDFs for MDPs. The commented lines marked

LDFS, on the other hand, like IDA* but unlikeTpp, con- with x are not part of. DFS(MDP) but of theLDFs+ variant

siders all such actions in depth-first fashion. The result is discussed in the text.
that in certain cases, the number of iterationsibP can be
exponentially larger than inDFS(MDP).
Actually, LDFS, HDP, andRTDP can all be understood in
terms of the choice of the subgraph considered in each it-



eration ofFIND-andREVISE: namely, whether a single best
action is considered in each state or all of them, whether a

line, V(s) := min,c a(s) Qv (a, s), is an update that makes
the states consistent before the recursion, so thds al-

single successor state is considered after each action or allways explored. A consequence of this modification is that
of them, and whether inconsistent states are regarded as tipthe conditionflag = true upon return from the recursion

nodes in the search or not. The choices rFs are moti-
vated by the goal of accounting for existing state-of-the-art
algorithms such thabA* and MTD. The choices iIrRTDP

and HDP are somehow more ad-hoc, although, as we will
see in the next section, not necessarily less effective. What
works best in one model does not necessarily work best in
other models, although having a general picture will turn out
to be useful too.

Experimental Results

We evaluate the performance abrFs(MDP) by comparing

it with Value Iteration and other heuristic-search algorithms
for MDPs. The heuristic-search algorithms chosen for com-
parison are Labelea@TDP (Bonet & Geffner 2003b)HDP
(Bonet & Geffner 2003a) and Improved LAO* (Hansen &
Zilberstein 2001). Value lteration is included as a useful
baseline.

The experiments were performed on Linux machines run-
ning at 2.8GHz with 2Gb of memory with a time bound of
10 minutes per experiment. Unless otherwise said, the pa-
rametere is set to10~*.

The first domain considered is the deterministic, stan-
dard version of the well known 8-puzzle game. We tested
the algorithms with the sum-of-manhattan-distances heuris-
tic over an instance with(sg) = 12 andV*(sg) = 20.
LDFS(MDP), which is exactly IDA* with a transposition ta-
ble for this problem, takes 0.001 seconds to find an opti-
mal path. The time for the other algorithms are 0.004 for
HDP, 0.012 foriLao, 0.117 forLRTDP, and 9.235 seconds
for Value Iteration. We then tried a noisy version of the 8-
puzzle where each operator works as intended with proba-
bility p = 0.9 but has no effect with probability — p. This
is a simplembP where the only loops in the optimal pol-
icy are self-loops. For the resulting problem, the times for
LDFS(MDP) degrade a lot. Indeed,DFS(MDP) takes then
0.295 seconds, becoming almost 300 times slower than in
the deterministic case. On the other harrifDP andiLAO
run 4 times slower then, andbp 100 times slower. See
Table 1 for more details.

The performance degradationipFs(MDP) when noise
is added to the problem is related to a well known short-
coming of IDA* algorithms that arises when action costs
are real numbers rather than integers (Wah & Shang 1994).
In such a case, each iteration iofa* may end up explor-
ing very few new nodes so that an exponential number of
iterations may be needed for convergence. Indeed, while
LDFS(MDP) requires 9 iterations and 590 updates to con-
verge in the deterministic setting, it requirés, 261 iter-
ations andl17,204 updates whermnp is changed froml to
p = 0.9. While this problem does not have an accepted
solution, we have found that much better results can be ob-
tained if two small changes are introducedLibFS(MDP).

These changes, that do not affect the correctness of the al-

gorithm, correspond to adding the two lines of code that
are marked with a and commented in Fig. 4. The first

no longer guarantees thatis consistentafter the recur-
sion. Revising the value oflag to reflect this condition

is the role of the second line of code added b&s(MDP):
flag := flag & [Qv (a,s) —V(s) < €]. These two changes
make the searches deeper, partially overcoming the problem
arising in IDA* in the presence of real edge-costs, resulting
in general in a better performance. We will refer to ver-
sion of theLDFs(MDP) algorithm with these two additional
lines of code, asDFs+. Table 1 shows the performance of
LDFs+ over the 8-puzzle. As it can be seebpFs+ does not

do as well as.DFS(MDP) in the deterministic case (where
it comes second right afteDFs(MDP)), but improves over
LDFS(MDP) in the stochastic setting (where it comes second
right afteriLAO).

The second domain considered in the evaluation is the
racetrack benchmark introduced in (Barto, Bradtke, & Singh
1995) and used since then in a number of works. An in-
stance in this domain is characterized by a racetrack divided
into cells, and the task is to find the control for driving a car
from a set of initial states to a set of goal states, minimizing
the number of time steps. The states are tuples, dz, dy)
that represent the position and speed of the car in theli-
mensions, and the actions are pairs (az, ay) of instanta-
neous accelerations whete, ay € {—1,0,1}. Uncertainty
comes from assuming that the road is 'slippery’ and as a re-
sult, the car may fail to change acceleration with probability
1—pregardless of the action taken. When the car hits a wall,
its velocity is set to zero but its position is left intact (this is
different than in (Barto, Bradtke, & Singh 1995) where the
car is moved to the start position).

We tried the various algorithms over the two instances
in (Barto, Bradtke, & Singh 1995), the larger instance in
(Hansen & Zilberstein 2001), and 6 ring- and 4 square-
shaped tracks of our own. The algorithms are evaluated with
the heuristicgq = 0 andhmin-min; the latter reflecting the cost
of a relaxation where non-deterministic effects are deemed
as controllable (Bonet & Geffner 2003b).

The results for the first set of instances are shown in Ta-
ble 2. The runtimes do not include the time to compute
the heuristic values as we are interested in evaluating how
well the various algorithms exploit the heuristic information,
rather than in evaluating heuristics or their computation. As
it can be seen from Table 2pFs+ dominates all algorithms
on these instances with both heuristics, exceptifay-1
with h = 0 whereLRTDP is best. The situation is slightly
different on the square racetracks, shown in Fig. 5, where
LDFS+ is beaten closely bybp andLRTDP.

The third domain considered for evaluation is a square
navigation grid in which some cells are wet and thus slip-
pery. The number of wet cells is controlled with a parameter
p such that each cell is chosen independently as wet with
probability p. The amount of water on a cell determines the
effects of the actions and their probabilities. In our setting, a
wet cell can have two levels of water which are selected with



VI LRTDP ILAO HDP LDFS(MDP) LDFS+

8-puzzle time updates| time | updates| time | updates| time | updates| time | updates| time | updates
p=1.0 9.236 | 3,991,680| 0.117 | 51,395| 0.012 4,146 | 0.004 1,985 | 0.001 590 | 0.004 1,492
p=0.9 | 14.733| 6,168,960| 0.449 | 169,960 | 0.046 9,373 | 0.427 | 156,049| 0.295| 117,204 | 0.096 | 50,317

Table 1: Comparison over standard and noisy version of the 8-puzzle where each operator achieves its intended effect with
probability p and has no effect with probability — p. In both cases, the sum-of-manhattan-distances heuristic is used, while
for p < 1, the bound on residuals is= 10~*. Forp = 1, the optimal cost and heuristics for the initial state &rés,) = 20

andh(sg) = 12.

[ algorithm [small | big [ bigger [ring-1 [ring-2 [ring-3 [ring-4 [ring-5 [ring-6 |
[S] 9,394 | 22,532 51,941 429 1,301 5,949 33,243 94,396 | 352,150
V*(s0) 14.459 | 26.134| 50.570 7.498 10.636| 13.093| 18.530| 24.949| 31.142
Bmin-min(S0) 11 18 37 6 9 11 15 20 25

V1 (Amin-min) 1.080| 3.824 14.761 0.022 0.105 0.611 5.198 23.168 | 197.964
LRTDP(hmin-min) 0.369 | 3.169 12.492 0.006 0.027 0.138 2.173 15.361| 243.130
ILAO (Amin-min) 0.813| 4.739 20.190 0.008 0.034 0.463 11.428 37.598 —

HDP(umin-min) 0.468 | 5.357 30.174 0.007 0.034 0.180 2.159 11.473| 153.150
(

LDFS+ hm.n min 0.196 | 1.077 4.542 0.003 0.014 0.083 1.022 4.892 80.068

1.501| 5.289 21.701 0.027 0.124 0.774 7.281 34501 | 354.917

;
LRTDP(h 0) 0.880 | 6.232 29.836 0.012 0.109 0.356 6.005| 171.829 —
ILAO (h = 0) 2.430 | 14.200 54.208 0.024 0.109 0.908 11.863 71.103 —
HDP(h = 0) 2.440| 30.955| 174.698 0.032 0.149 0.927 11.957 96.398 —
LDFS+(h = 0) 0.792 | 3.417 16.080 0.013 0.057 0.353 4.390 24,732 | 310.019

Table 2: Data for various racetrack instances and convergence times in seconds for the different algorithms with the heuristics
h = 0 andhmin-min. ReSUIts are foe = 10~ andp = 0.7. Faster times are shown in bold. A dash means the algorithm didn’t
finish within the 10 minutes time bound.

uniform probability once the cell has been chosen as wet. model is completed by specifying how the probabilityde-

The cells that aren’t wet have zero level of water. There are pends on the nodewhere the actions are taken. Each node
four operators to move along the four axis of the grid. Ondry of the tree can be represented with a binary string of Os and
cells, the operators have deterministic effects, while on wet 1s that trace theniquepath from the root node up to that
cells the level of non-determinism depends on the level of node; e.g. the root node is associated with the empty string,
water. In our case, we deal with non-deterministic operators the leftmost leaf of the tree with the stringoD’s, the right-

that can result in up to 4 different successor states. We tried most leaf with the string of 1's, etc. If we let#s denote
grids of different sizes witlp = 0.4. For each size of the the number of 1's in the string for, thenp, is defined as
grid, we tried a number of random instances with different p#* wherep is a fixed parameter of the problem. Thus, as
initial and goal positions. The curves in Fig. 6 display the we move towards the rightmost leaf of the tree, the operators
average times until convergence. Roughly, we see that for become less reliable at an exponential rate; e.g. an operator
h = 0 the algorithms can be ordered from best to worst as at the father of the rightmost leaf will have its intended effect
ILAO, LRTDP, LDFS+, VI andHDP, while for A = hmin-min @S with probability p»~!. We tried different tree depths with
ILAO, LRTDP andLDFs+, HDP andVi. Interestingly,ILAO, the parameters = 0.7 andr = 0.4 (i.e., roughly 40% of
that didn’t do well in the racetracks, does pretty well in this nodes in the tree are noisy). The results are shown in Fig. 7.
domain. The plots shown are logscale, so small differences As it can be seen,bDFs+ andILAO are the best algorithms

in the plot may indicate a large difference on runtimes. in this domain withLDFs+ running a bit faster.

The last domain involves a navigation task on a complete .
binary tree of depth extended with loops. The initial state Summary and Conclusions
of the problem is the root node of the tree and the goal nodes LDFs combines the benefits of a general dynamic program-
are the2” leaves of the tree at depth There are two prob- ming formulation with the effectiveness of heuristic-search
abilistic actions, ‘left’ and ‘right’, for moving to the leftand  techniques in a simple piece of code that performs iterated
right son of a node. Such actions achieve their intended ef- depth-first searches enhanced with learnibgrs reduces
fect with a probabilityp, that depends on the stat@nd fail to well-known state-of-the-art algorithms over some models,
with probability1 —p,. Failure here means going back to the but yields novel and effective approaches for other models
parent node. In addition, some of the nodes in the tree are like AND/OR graphs or MDPs.
labeled as 'noisy’ with (independent) probability= 0.4. TheLDFs framework is useful both for understanding ex-
In such nodes, the actions behave differently: both actions isting heuristic-search algorithms over various settings in a
‘left’ and 'right’ move with probabilityp, /2 to each of the unified manner, and for devising new effective algorithms in
two sons, and with probability—p, to the parent node. The  other settings. In this paper, we considered also the formu-
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lation of anLDFs algorithm for MDPs, and its evaluation
in comparison with current state-of-the-art algorithms. Con-
ceptually,LDFs shows that the key idea underlying several
existing heuristic-search algorithms over various settings

can be reduced to the use of iterated depth-first searches with

memory for improving the heuristics over certain relevant
states until they become optimal. From a practical point of
view, the empirical results show that this idea leads to new
algorithms that are competitive with current ones.

In order to improve.DFs further in the MDP setting, there

are two concrete issues that we need to understand better.

First, in (Bonet & Geffner 2005), it is mentioned thatFs

is much faster thano* over Max AND/OR graphs, but not
over Additive AND/OR graphs. Second, it is known that the
performance oibA* suffers when costs are real numbers
and not integers, as the number of iterations can blow up.
Both of these observations are relevant for solving MDPs
that are additive models with real costs. The simple im-
provement of theLbFs for MDPs discussed in the previ-

Korf, R. 1985. Depth-first iterative-depeening: An optimal
admissible tree searchArtificial Intelligence 27(1):97—
109.

Korf, R. 1990. Real-time heuristic searchrtificial Intel-
ligence42(2-3):189-211.

Martelli, A., and Montanari, U. 1973. Additive AND/OR
graphs. In Nilsson, N., edBroc. 3rd International Joint
Conf. on Artificial Intelligence 1-11. Palo Alto, CA:
William Kaufmann.

McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
De Raedt, L., and Wrobel, S., ed®roc. 22nd Interna-
tional Conf. on Machine Learning

Newell, A.; Shaw, J. C.; and Simon, H. 1963. Chess-
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Feigenbaum, E., and Feldman, J., ed3omputers and
Thought McGraw Hill. 109-133.

ous section addresses these problems, but we expect that a Njisson, N. 1980. Principles of Artificial Intelligence

deeper understanding of these issues may lead to further im-
provements. It is worth pointing out that these observations

are not about MDPs per se, yet they are rendered relevant for
MDPs thanks to the framework that connects these various
models and algorithms.

Acknowledgements: We thank A. Frangi and A. Sanz
for the use of the Hermes Computing Resource at the
Aragon Inst. of Engr. Research (I3A), U. of Zaragoza.
H. Geffner is partially supported by grant TIC2002-04470-
C03-02 from MCyT/Spain and B. Bonet by grant from
DID/USB/Venezuela,

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programmingytificial Intel-
ligence72:81-138.

Bellman, R. 1957Dynamic ProgrammingPrinceton Uni-
versity Press.

Bertsekas, D. 1995Dynamic Programming and Optimal
Control, (2 Vols) Athena Scientific.

Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Gottlob, G., ed.Proc. 18th International Joint Conf.
on Artificial Intelligence 1233-1238. Acapulco, Mexico:
Morgan Kaufmann.

Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Im-
proving the convergence of real-time dynamic program-
ming. In Giunchiglia, E.; Muscettola, N.; and Nau, D.,

eds.,Proc. 13th International Conf. on Automated Plan-

ning and Schedulingl2—21. Trento, Italy: AAAI Press.

Bonet, B., and Geffner, H. 2005. An algorithm better than
AO*? In Veloso, M., and Kambhampati, S., edBrpc. 20
National Conf. on Artificial Intelligencel 343—1348. Pitts-
burgh, PA: AAAI Press / MIT Press.

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with looghtificial
Intelligencel29:35-62.

Tioga.

Pearl, J. 1983Heuristics Morgan Kaufmann.

Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996.
Best-first fixed-depth minimax algorithméurtificial Intel-
ligence87(1-2):255-293.

Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening searchlEEE Trans. on Pattern Analysis and
Machine Intelligencd 6(7):701-710.

Tarjan, R. E. 1972. Depth first search and linear graph
algorithms.SIAM Journal on Computiniy(2):146—-160.

Wah, B., and Shang, Y. 1994. A comparative study of
IDA*-style searches. IrProc. 6th International Conf. on
Tools with Artificial Intelligence 290-296. IEEE Com-
puter Society.



