
Act Local, Think Global: Width Notions for Tractable Planning

Hubie Chen
Dept. of Information and Communication Technologies

Universitat Pompeu Fabra
Passeig de Circumval·lació, 8

08003 Barcelona, Spain
hubie.chen@upf.edu

Omer Giménez
Dept. of Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
Jordi Girona, 1-3

08034 Barcelona, Spain
omer.gimenez@upc.edu

Abstract

Many of the benchmark domains in AI planning are
tractable on an individual basis. In this paper, we seek
a theoretical, domain-independent explanation for their
tractability. We present a family of structural conditions
that both imply tractability and capture some of the es-
tablished benchmark domains. These structural condi-
tions are, roughly speaking, based on measures of how
many variables need to be changed in order to move a
state closer to a goal state.

Introduction
Background and motivations. Many of the benchmark
domains in AI planning such as Blocksworld, Gripper, and
Logistics are structurally simple when looked at individu-
ally. For these domains, the problem of plan generation–
generate a (non-optimal) plan if one exists–is not only
polynomial-time tractable, but can be solved by extremely
simple and efficient algorithms. Interestingly, in addition
to being individually tractable with respect to polynomial-
time computation, several benchmark domains can be effec-
tively handled simultaneously by domain-independent plan-
ners (Hoffmann & Nebel 2001). As a result strongly evi-
dencing this latter claim, we name the recent work of (Vidal
& Geffner 2005) giving a planning algorithm which, by use
of inference, solves instances of a number of benchmark do-
mains in a backtrack-free manner.

The empirically observed domain-independent tractabil-
ity of many common benchmark domains naturally calls for
a theoretical explanation: are there tractable classes of plan-
ning problems that simultaneously capture a number of the
benchmark domains? Here, by a theoretical explanation,
we mean that one that is mathematical and rooted in the
theory of computational complexity: by a tractable class,
we mean a set of problem instances which can be solved
in polynomial time and is delimited by a formal, mathe-
matical definition, and we are interested in demonstrations
that a tractable class contains a domain, that are given by
mathematical proof. There is certainly a literature that has
studied theoretically tractable classes in planning. How-
ever, to the best of our knowledge this literature has lim-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ited coverage of benchmark domains, and has instead fo-
cused, for example, on syntactic restrictions on the oper-
ator set, as in (Bylander 1994; Bäckström & Nebel 1995;
Erol, Nau, & Subrahmanian 1995), or restrictions on causal
graph structure, as in (Brafman & Domshlak 2003; 2006;
Helmert 2006). There is related work in (Helmert 2004;
2006; Haslum 2007) which we contrast with our work later
in this section.

Now, what would constitute a satisfactory theoretical ac-
count for the domain-independent tractability of benchmark
domains? As we have already mentioned, the benchmark
domains of interest are already known to be tractable on an
individual basis. What we propose is worth searching for,
then, is a uniform explanation for the tractability of bench-
mark domains. Since we are searching for tractable classes
that are given by formal definitions, from the viewpoint of
favoring uniformity, we are interested in definitions that are
as simple as possible, and are preferrably based on a single
concept (or very few concepts). In other words, we believe
that one would like to identify (via a formal definition) a
generic structural property that accounts for the tractability
for the benchmark domains.

A related property that we believe is desirable for the def-
inition of tractable classes is mathematical tangibility, by
which we mean that it should be relatively easy to prove
both inclusion results (“domain D is contained in tractable
class C”) as well as non-inclusion results. Clearly, tangi-
bility is closely tied to simplicity, and may be viewed as
evidence for simplicity. In addition, mathematical tangibil-
ity of a tractable class yields human understanding of the
class and its boundaries; understanding why a problem does
not belong to a class–that is, understanding a proof of non-
inclusion–can yield human insight into domain structure in
the same way that understanding an inclusion result can. Put
differently, tangibility may allow us to classify domains ac-
cording to their structural properties.

Contributions. Guided by these questions and motiva-
tions, in this paper we identify a family of simple structural
conditions that both imply tractability and apply to multiple
benchmark domains–including Gripper and Logistics. Not
only are our introduced conditions simple to understand and
handle theoretically, but the corresponding algorithms which
demonstrate tractability are also conceptually simple.

73

More precisely, we identify four related measures of com-
plexity for planning problems. The most basic one we call
width; the others are extensions of this measure. Roughly
speaking, a planning instance has width k if for every state
s, we can bring any variable u to its goal via a plan that
changes no more than k variables (assuming that a goal state
is reachable). The plan may change any variables, but upon
termination must restore all variables that were previously
in the goal state. We show that a set of planning instances
having bounded width (width bounded above by a constant)
is polynomial-time tractable, by the following algorithm,
which we simply call the width k algorithm. This algorithm,
given a planning instance, arbitrarily chooses an ordering of
the variables and, according to this ordering, tries to bring
each of them into their goal states (via plans of the men-
tioned form). Note that we prove that this algorithm, given
an instance of bounded width, solves the instance regardless
of the variable ordering chosen; that is, the algorithm be-
haves correctly on all variable orderings. As an example, we
show that the Gripper domain has bounded width.

After defining this notion of width, we define and study
two orthogonal extensions of this notion. The first is persis-
tent width; the definition of persistent width k is similar to
the definition of width k, except instead of requiring that for
every state s, every variable u can be brought to its goal, it is
merely required that for every state s, there exists a variable
u that can be brought to its goal. The second extension of
width is Hamming width; the definition of Hamming width k
is similar to the definition of width k, except when trying to
bring a variable into its goal state, we do not only consider
plans that change no more than k variables, but the more
general class of plans that stay within Hamming distance k
from the start state. In fact, each of these two extensions is
motivated by giving a domain that does not have bounded
width, but does have bounded persistent width or bounded
Hamming width.

In total, we obtain four measures of complexity for plan-
ning instances: width, persistent width, Hamming width,
and persistent Hamming width, the latter of which is the
natural unification of persistent width and Hamming width.
Again, we show that if some set of planning instances is
bounded with respect to one of these measures, then the
set is polynomial-time tractable. We remark that persistent
Hamming width is the “most powerful” of these measures
in the sense that the conditions of bounded width, bounded
persistent width, and bounded Hamming width each imply
the condition of bounded persistent Hamming width.

After introducing these measures, their corresponding al-
gorithms, and examples, we investigate the robustness of
these measures. First, we establish that our width mea-
sures exhibit action monotonicity, which roughly means that
adding actions to a planning instance does not increase the
width. Put differently, for each of our tractable classes, the
addition of actions renders an instance more likely to fall
into the tractable class. The underlying intuition here is that
our width measures are concerned with the existence of cer-
tain types of plans, and adding actions to an instance cer-
tainly preserves such existence. We would like to empha-
size that tractable classes based on the “sparseness” of the

causal graph do not exhibit action monotonicity. For ex-
ample, (Brafman & Domshlak 2006) present a tractability
result that applies when the treewidth of the causal graph
is bounded; however, adding actions to a planning problem
can only enlarge the edge set of the causal graph, which in
turn increases the treewidth. Indeed, tractable classes of this
form exhibit action non-monotonicity: the removal of ac-
tions renders an instance more likely to fall into the class.

We also define and study a notion of reformulation. We
prove–roughly speaking–that if a set of planning instances
C has bounded persistent Hamming (PH) width, then any
reformulation of this set also has bounded PH width. That
is, the concept of bounded PH width is robust with respect
to reformulation. We give a natural definition of the binary
formulation B(Π) of a multi-valued instance Π and show
that for any instance Π, the binary formulation B(Π) and
the instance Π itself are reformulations of each other, and
hence the robustness result applies.

Finally, we study two types of composition operations,
showing that, for various width measures, the set of in-
stances having width k is closed under these composition
operations.

Related work. Our notions of width can be viewed as
elaborations of the notion of subgoal serializability (Korf
1987), and we believe that it may be didactic to contrast our
notions with this one. A set of subgoals is defined to be seri-
alizable if there exists an ordering of the subgoals such that
they can be achieved sequentially without violating previous
subgoals in the ordering. In contrast, if a planning instance
has width k, this implies that for any ordering of its vari-
ables, each variable may be brought into its goal states via
a plan of a “limited form”. Here, after the plan for each
variable is executed, it must be the case that all previous
variables are also in their goal state; however, in contrast
to subgoal serializability, the plan for a variable is permit-
ted to change the state of the previous variables so long as
their goal state is restored after the plan. Also, while we
show that having bounded width (for any of our width no-
tions) implies tractability, subgoal serializability is known
not to guarantee tractability. In this vein, one might also
mention related work by Barrett and Weld (Barrett & Weld
1993) which refines Korf’s work. The present paper could
be viewed as a quantitative elaboration of the ideas in these
works which allows one to assign a complexity measure to
a given planning domain.

We now describe related work on tractability. Many of
the early tractability results on planning focused on syn-
tactic restrictions on the set of operators; see for exam-
ple (Bylander 1994; Bäckström & Nebel 1995; Erol, Nau,
& Subrahmanian 1995). Jonsson and Bäckström (1994b;
1994a) presented complexity results based on restrictions on
the domain-transition graph for each variable.

Planning with unary operators was considered by (Braf-
man & Domshlak 2003), who gave a number of tractability
and complexity results based on the structure of the causal
graph. As already mentioned, (Brafman & Domshlak 2006)
gave a tractability result based on the treewidth of a causal

74

graph; their work followed (Amir & Engelhardt 2003) which
investigated a notion of factoring.

(Helmert 2004; 2006) also presents a tractability result
based on the causal graph structure. (Haslum 2007) (im-
plicitly) defines a tractable class using a set of multiple sim-
plification rules. In contrast, here we aim to define tractable
classes via single structural conditions. Evaluation in these
papers is focused on empirical results.

We want to emphasize that we believe that the tractable
classes of the present paper offer a new perspective on the
benchmark domains that is different from that given in the
mentioned papers, and reveals a shared structural property
among the studied domains that has not previously been
identified in its form here. We would also like to add that,
to the best of our knowledge, previously presented tractable
classes have not been demonstrated to be closed under the
transformations considered here, such as reformulation.

Note: due to space restrictions, some of the proofs have
been omitted.

Preliminaries
An instance of the planning problem is a tuple Π =
(V, init, goal, A) whose components are described as fol-
lows.

• V is a finite set of variables, where each variable v ∈ V
has an associated finite domain D(v). Note that variables
are not necessarily propositional, that is, D(v) may have
any finite size. A state is a mapping s defined on the vari-
ables V such that s(v) ∈ D(v) for all v ∈ V . A partial
state is a mapping p defined on a subset vars(p) of the
variables V such that for all v ∈ vars(p), it holds that
p(v) ∈ D(v).

• init is a state called the initial state.

• goal is a partial state.

• A is a set of operators; each operator a ∈ A consists of a
precondition pre(a), which is a partial state, as well as a
postcondition post(a), also a partial state. We sometimes
denote an operator a by 〈pre(a); post(a)〉.

Note that when s is a state or partial state, and W is a subset
of the variable set V , we will use (s � W) to denote the
partial state resulting from restricting s to W . We say that a
state s is a goal state if (s � vars(goal)) = goal.

We define a plan (for an instance Π) to be a sequence of
operators P = a1, . . . , an. Starting from a state s, we define
the state resulting from s by applying a plan P , denoted by
s[P], inductively as follows. For the empty plan P = ε,
we define s[ε] = s. For non-empty plans P , denoting P =
P ′, a, we define s[P ′, a] as follows.

• If (s[P ′] � vars(pre(a))) �= pre(a) (that is, the precondi-
tion of a does not hold in s[P ′]) then s[P ′, a] = s[P ′].

• Otherwise, s[P ′, a] is the state equal to post(a) on vari-
ables v ∈ vars(post(a)), and equal to s[P ′] on variables
v ∈ V \ vars(post(a)).

We say that a state s is reachable (in an instance Π) if there
exists a plan P such that s = init[P]. We are concerned
with the problem of plan generation: given an instance Π =

(V, init, goal, A) obtain a plan P that solves it, that is, a plan
P such that init[P] is a goal state.

Width
In this section, we define the notion of width. First, some
definitions are required. Let Π = (V, init, goal, A) be an
instance. We say that a plan P improves variable u in state s
if:

• for all v ∈ V , if v ∈ vars(goal) and s(v) = goal(v), then
(s[P])(v) = goal(v); and,

• if u ∈ vars(goal), then (s[P])(u) = goal(u).
That is, after P is executed, all variables that had values as
in the goal state still have values as in the goal state, and in
addition, the variable u is in the goal state.

Now, let W be a subset of V . We say that a plan P uses
only the variables W if for every operator a in P , it holds
that vars(post(a)) ⊆ W . We say that a variable u is k-
improvable in state s if there exists a plan P and a subset
W ⊆ V of size |W | ≤ k such that P uses only the variables
W and improves u in s. In general, we will use k to denote
an integer greater than or equal to 1.

For any state s, we define wrong(s) = {v ∈ vars(goal) :
s(v) �= goal(v)}. The set wrong(s) is the set of variables on
which s differs from the goal.

Definition 1 A planning instance has width k if no plan
solving it exists, or for every reachable state s that is not
a goal state, every variable u ∈ wrong(s) is k-improvable
in s.1

We define the width k algorithm as follows. The algo-
rithm is given an instance Π.

• Pick an arbitrary ordering v1, . . . , vn of the variables.

• Set s to be the initial state init.

• Set Q to be the empty plan ε.

• Loop from i = 1, . . . , n:
if vi ∈ wrong(s), try to find a plan P using at most k
variables that improves vi in s. If such a plan P is found,
replace s with s[P], and append P to Q. If no plan is
found, output “?” and halt.

• Output Q.

Theorem 2 Let C be a set of planning instances having
width k. The plan generation problem for C is solvable
in polynomial time via the width k algorithm, in time
O(nk+1dka). Here, n denotes the number of variables, d
denotes the maximum size of a domain, and a denotes the
number of actions.

Note that we say that an algorithm solves the plan gener-
ation problem for C if on every instance Π from C, a plan
solving Π is output by the algorithm if and only if a goal
state is reachable.

1In this definition, one can drop the requirement that s not be
a goal state, since in the case that s is a goal state, wrong(s) is
empty. We elected the given definition because it reflects our usage
of the defined concept and for symmetry with the definitions of the
other width notions.

75

Proof. Clearly, if the algorithm outputs a plan, it is correct.
Assume that a plan exists for an instance Π of C.

We prove by induction that, before the ith iteration of the
loop, none of the variables v1, . . . , vi−1 are in wrong(si).
Here, si denotes the state s before the ith iteration. The base
case i = 1 is trivial. For the induction, we observe that since
Π has width k and a plan exists, the variable vi is either not
in wrong(si) or k-improvable. In the first case, the algorithm
does nothing in the ith iteration and thus vi /∈ wrong(si+1),
and in the second case, the algorithm finds a plan improving
vi in si.

To search for a plan improving vi, we do the following.
For every choice of k variables W , we create a graph that
has as vertices the at most dk states that differ from si at
only variables in W . There is an edge from vertex s to
vertex s′ if there exists an action a such that s[a] = s′.
We perform a search to check if some vertex s such that
wrong(s) ∩ {v1, . . . , vi} = ∅ is reachable from si. This
search can be performed in time O(|X| + |E|), where |X|
is the number of vertices and |E| is the number of edges.
We have |X| ≤ dk and |E| = dka, so this search can be
performed in time O(dka). Note that creating the graph can
also be performed in time O(dka).

Since there are
(
n
k

)
choices for W , and we potentially

improve n variables, the total running time is bounded by
O(nk+1dka). �

As an example, we show that all instances of the Gripper
domain have bounded width. For simplicity, we consider
a variation of the Gripper domain where there is only one
hand. It is to easy that the same proof with the same width
bounds applies no matter the number of holding devices the
robot has.

Domain 3 (Gripper domain) In the Gripper domain, we
have a robot with a hand that can pick up and drop balls, and
move them from one location to another. The hand can hold
one ball at a time. Formally, in an instance (V, init, goal, A)
of the Gripper domain, there is a set of balls B, and a set of
locations L. The variable set V is defined as B∪{pos, hand}
where D(pos) = L, D(hand) = B ∪ {empty}, and for all
b ∈ B, D(b) = L ∪ {hand}.

There are three kinds of actions.

• ∀l, l′ ∈ L, movel,l′ = 〈pos = l; pos = l′〉
• ∀l ∈ L, b ∈ B, dropl,b = 〈pos = l, hand = b; hand =

empty, b = l〉
• ∀l ∈ L, b ∈ B, pickl,b = 〈pos = l, hand = empty, b =

l; hand = b, b = hand〉
We remark that we consider only instances of the Gripper

domain that have a consistent initial state, by which we mean
that (init(hand) = b ⇔ init(b) = hand) holds. �
Theorem 4 All instances of Gripper have width 4.

Proof (Sketch). The proof is not hard, but there are sev-
eral details that need to be addressed in a case by case basis
(after all, the proof must depend on the precise definition of
the actions of the Gripper domain). We briefly explain the
reason why Gripper has bounded, small width.

Let s be a reachable, non-goal state of a Gripper instance,
and let u be a variable to improve in s. To improve it, start
by dropping whatever ball the robot may hold, so that the
arm becomes free, and then bring the variable u to its goal
value, by moving the robot and using the arm if necessary.
Finally, to guarantee that no variable that had in state s the
same value as in the goal state has now a wrong value, we
make the robot hold the ball goal(hand), if not empty, and
move to goal(pos), if it is not already there. Clearly this plan
only changes the values of variables pos, hand and 3 balls,
so that Gripper has width 5. With a bit more care we see
that, in fact, we do not need to change the values of more
than 2 balls, so that Gripper has width 4. �

Corollary 5 The plan generation problem for all instances
of Gripper is solvable in polynomial time via the width 4
algorithm.

Proof. Immediate from Theorems 2 and 4. �

Persistent width
In this section, we present the notion of persistent width.
As a motivating example, we consider the Unlock domain,
which we show does not have bounded width, but does have
bounded persistent width.

Domain 6 (Unlock domain) This domain is based on the
benchmark Grid domain; the differences are that here we
permit movement in an arbitrary graph as opposed to a grid
graph, and we require that all locations are unlocked in the
goal state. For simplicity we consider only domains where
each key opens a single location, although the same result
applies for any arbitrary relation between keys and locations
they open.

In the Unlock domain, we have a robot that moves among
a set of locations. Each location is either locked or un-
locked. To unlock a location, the robot has to pick up a
key for that location and unlock the location from an ad-
jacent location. Formally, in an instance of this domain,
there is a set of locations L, a set of keys K, a function
f : K → L, and an undirected graph G with vertex set
L. The variable set V is defined as L ∪ K ∪ {pos, hand}.
For each l ∈ L, D(l) = {locked, unlocked}. For each
t ∈ K, D(t) = L ∪ {hand}. In addition, D(pos) = L
and D(hand) = K ∪ {empty}. The actions are as follows.

• ∀{l, l′} ∈ E(G) movel,l′ = 〈l = unlocked, l′ =
unlocked, pos = l; pos = l′〉

• ∀l ∈ L, ∀t ∈ K, dropl,t = 〈pos = l, t = hand; t =
l, hand = empty〉

• ∀l ∈ L, ∀t ∈ K, pickl,t = 〈pos = l, hand = empty, t =
l; t = hand, hand = t〉

• ∀t ∈ K, ∀l ∈ L such that {f(t), l} ∈ E(G), unlockl,t =
〈pos = l, hand = t; f(t) = unlocked〉
Note that we consider only initial states where

(init(hand) = t ⇔ init(t) = hand), and we assume that
the goal state specifies that all locations are unlocked. �
Theorem 7 For each k ≥ 1, there exists an instance Πk of
the Unlock domain such that Πk does not have width k.

76

Proof. We show such an instance Πk. Let L = K =
{1, . . . , k}, let f be f(t) = t for all t ∈ K, and let G be
the graph with edges {i, i+1} for all i in [1, k−1]. Initially,
the instance Πk has all keys and the robot at location 1, and
all locations are locked. The instance does not have width k
because, starting at the initial state, there exists a variable u
(the one corresponding to the k-th location) that cannot be
improved without unlocking all intermediate locations. �
Definition 8 A planning instance has persistent width k if
no plan exists, or for every reachable state s that is not a
goal state, there exists a variable u ∈ wrong(s) such that u
is k-improvable in s.

Notice that if an instance Π has width k, it also has per-
sistent width k.

The corresponding persistent width k algorithm closely
resembles the width k algorithm, except that the algo-
rithm does not initially create a pre-established ordering
v1, . . . , vn of the variables, but an ordering is created dur-
ing the execution of the algorithm. In the ith iteration vari-
ables v1, . . . , vi−1 have already been defined, and the algo-
rithm tries to find a k-improvable variable among the re-
maining ones. If one is found, that one becomes vi; oth-
erwise, the algorithm outputs “?” and halts. To find such a
k-improvable variable v, we perform the following subrou-
tine that can be carried out in time O(nkdka). For every
choice of k variables W , we create a graph as in the width
k algorithm, but our search looks for a vertex s such that
wrong(s) ∩ {v1, . . . , vi−1, v} = ∅ for some variable v out-
side of v1, . . . , vi−1.

Theorem 9 Let C be a set of planning instances having per-
sistent width k. The plan generation problem for C is solv-
able in polynomial time via the persistent width k algorithm
in time O(nk+1dka).

Theorem 10 All instances of the Unlock domain have per-
sistent width 5.

Proof. Let Π be an instance of the Unlock domain. We
assume Π is solvable (otherwise it has persistent width 5 by
definition). Any plan P̃ that solves Π induces an ordering
on the locations of Π: say l < l′ if location l was unlocked
before location l′ during the course of the plan P̃ .

Let s be a reachable state of Π that is not a goal state. Let
l be the smallest locations in l such that s(l) = locked. We
show that it is possible to 5-improve the variable u = l by
means of the following plan P .

• Drop the key s(hand) (if the hand is not empty) in local-
tion l1 = s(pos).

• Move from l1 to the location l2 where the key to unlock l
is.

• Pick it up.

• Move to a neighbour location l3 of l.

• Unlock l with the key.

• Move back to l2.

• Drop the key.

• Move back to l1.

• Pick up the key s(hand) (if the hand was not empty at the
beginning).

Clearly the plan P 5-improves l ((s[P])(l) = goal(l) and
(s[P])(v) = s(v) for all remaining variables). All it remains
to show is that the movements described in the plan are fea-
sible, that is, there is a path between l1 and l2, and a path
between l2 and l3, that is not blocked by unlocked locations.
Let U be a set of locations, and let G[U] be the graph that de-
scribes valid movements when the only unlocked locations
are those in U , namely, G[U] is the restriction of G to the
set of vertices U . Let U be the set of locations smaller than
the location l we are trying to improve, and let U ′ be the
set of locations unlocked in state s. We know that l1 is con-
nected to init(pos) in G[U ′] (otherwise the state s would not
be reachable). The plan P would be feasible if both l2 and
l3 are also connected to init(pos) in G[U ′]. The way l was
chosen implies that U ⊂ U ′, thus G[U] ⊂ G[U ′]. The fact
that plan Π̃ managed to unlock location l implies that loca-
tion l2 and at least a neighbour location l3 of l are connected
to init(pos) in G[U]. It follows from G[U] ⊂ G[U ′] that l2
and l3 are also connected to init(pos) in G[U ′]

It remains to consider the case when all locations in s are
unlocked. Then the problem is the same as Gripper, except
for the restrictions the graph G imposes on the movements.
The fact that Π is solvable means that we can restrict to the
connected component the robot starts in in order to reach a
goal state. Hence any action movel,l′ appearing in a plan
P of Π when seen as an instance of Gripper can be safely
translated to a sequence of move actions in Π when seen as
an instance of Unlock (namely, a path in G from l to l′). By
means of this translation it follows that we can 4-improve
any variable u in s, due to the Theorem 4. �

Hamming width
This section presents the notion of Hamming width. As in
the previous section, we consider a domain to motivate this
extension of width: we show that an extension of the Lo-
gistics domain does not have bounded width, but does have
bounded Hamming width.

Domain 11 (Logistics domain) In our formulation of the
Logistics domain, we have trucks and airplanes that can be
used to move packages between locations. Trucks and air-
planes cannot in general move arbitrarily between pairs of
locations, but rather, graphs specify permitted movements.
Note that, in contrast to a typical formulation of this domain,
we permit arbitrary graphs to specify movements.

In an instance of the Logistics domain, there is a set of
locations L, a set of trucks T , a set of airplanes A, and a
set of packages Q, and two undirected graphs GT and GA,
both having L as vertex set. The variable set is the union
T ∪A∪Q, where D(t) = L for all t ∈ T , D(a) = L for all
a ∈ A, and D(p) = L ∪ A ∪ T for all p ∈ Q.

• ∀t ∈ T and ∀{l, l′} ∈ E(GT) movet,l,l′ = 〈t = l; t = l′〉
• ∀a ∈ A and ∀{l, l′} ∈ E(GA) movea,l,l′ = 〈a = l; a =

l′〉
• ∀v ∈ T ∪ A, ∀l ∈ L, ∀p ∈ Q, dropv,l,p = 〈v = l, p =

v; p = l〉

77

• ∀v ∈ T ∪ A, ∀l ∈ L, ∀p ∈ Q, pickv,l,p = 〈v = l, p =
l; p = v〉

�
Theorem 12 For each k ≥ 1, there exists an instance Πk of
the logistics domain such that Πk does not have width k.

Proof. We show such an instance Πk. Let L = {1, . . . , k +
1}, and let A and T be such that for any i ∈ {1, . . . , k} we
have a truck ti if i is odd, and an airplane ai if i is even. Let
GT be the graph on L with edges {i, i+1} for i odd, and GA

be the graph with edges {i, i + 1} for i even. Let Q contain
a single packet p such that init(p) = 1 and goal(p) = k + 1.
Let this be the only goal. It follows easily that init is not
k-improvable, because the only variable p ∈ wrong(init)
cannot be brought to its destination goal(p) without using
the k trucks and airplanes. �

We say that a variable u is k-Hamming improvable in state
s if there exists a plan P = a1, . . . , an improving u in s such
that for all i = 1, . . . , n, dh(s, s[a1, . . . , ai]) ≤ k. Here,
dh(·, ·) denotes the Hamming metric, that is, the number of
variables at which the two arguments differ.

Definition 13 A planning instance has Hamming width k
if no plan exists, or for every reachable state s that is not
a goal state, every variable u ∈ wrong(s) is k-Hamming
improvable in s.

To obtain the corresponding Hamming width k algorithm
we just need to make a minor change to the width k algo-
rithm. The inner loop now looks for plans P that improve
the variable vi without differing from state s more than k
variables at any time, irrespective of how many variables P
uses in total. Note that to improve one variable in a state s,
we only need to search a single graph whose vertices are all
states within Hamming distance k from s.

Theorem 14 Let C be a set of planning instances having
Hamming width k. The plan generation problem for C is
solvable in polynomial time via the Hamming width k algo-
rithm, in time O(nk+1dka).

Theorem 15 All instances of the Logistics domain have
Hamming width 2.

Proof (Sketch). Let s be reachable state in a solvable in-
stance Π, and let u be a variable to Hamming improve in s.
When u is a vehicle it is enough to consider a sequence of
move actions; when u is a package, we may need to use sev-
eral vehicles to bring u to its goal location. The Hamming
width is 2 because this can be done in such a way that, at
any time, at most one vehicle v needs to stay away from its
initial location s(v) to move the package: when v has done
its share, it returns to s(v). �

Persistent Hamming width
Definition 16 A planning instance has persistent Hamming
width k if no plan exists, or for every reachable state s that
is not a goal state, there exists a variable u ∈ wrong(s) such
that u is k-Hamming improvable in s.

The corresponding persistent Hamming width k algo-
rithm is just the combination of the improvements of the
persistent width k and the Hamming width k algorithms.

Theorem 17 Let C be a set of planning instances having
persistent Hamming width k. The plan generation problem
for C is solvable in polynomial time via the persistent Ham-
ming width k algorithm, in time O(nk+1dka).

The persistent Hamming width k algorithm gives a uni-
form explanation of the tractability of all of the domains
considered so far.

Theorem 18 Let C be the set of instances from the Gripper,
Unlock, and Logistics domains. The plan generation prob-
lem for C is solvable in polynomial time via the persistent
Hamming width 5 algorithm.

Action monotonicity
In this section, we establish that the introduced width mea-
sures exhibit action monotonicity: adding actions that do not
enlarge the set of reachable states does not increase width.
(Note that we use the abbreviations P, H, and PH for persis-
tent, Hamming, and persistent Hamming, respectively.)

Theorem 19 Let Π = (V, init, goal, A) be a planning in-
stance having width k (respectively, P width k, H width k,
PH width k). Let A′ be a set of actions that is a superset of
A such that every reachable state in Π′ = (V, init, goal, A′)
is reachable in Π. Then, the instance Π′ has width k (re-
spectively, P width k, H width k, PH width k).

Proof. We prove this in the case of width k; the proof is
similar for the other notions of width. Assume that Π has
width k. If there is no plan solving Π′, then by definition
it has width k. Otherwise, in Π′, let s be a reachable state
that is not a goal state, and let u be a variable in wrong(s).
By assumption s is reachable in Π. Since Π and Π′ have the
same goal state, s is not a goal state in Π, and u ∈ wrong(s)
with respect to Π. Since Π has width k, there exists a plan P
that k-improves the variable u in state s, in the instance Π.
The same plan P also k-improves u in state s in the instance
Π′. �

Reformulation theorem
This section defines a notion of reformulation and demon-
strates that, relative to this notion, if an instance Π′ is a re-
formulation of an instance Π, then bounded PH width of Π
implies the bounded PH width of Π′. We then define the
binary formulation B(Π) of an instance Π and show that,
with respect to our definition of reformulation, the instances
Π and B(Π) are always reformulations of each other. We
can consequently observe that any class of instances C has
bounded PH width if and only if the binary formulation B(C)
does. This may be viewed as a robustness result for the con-
cept of bounded PH width.

Definition 20 Let Π = (V, init, goal, A) and Π′ =
(V ′, init′, goal′, A′) be instances, and let S and S′ denote
the set of states of Π and Π′, respectively. The instance Π′
is a reformulation of the instance Π with non-decreasing

78

blowup function b : N → N if there exists a relation
R ⊆ S × S′ such that the following conditions hold.

1. For every reachable Π′-state s′ ∈ S′, there exists a reach-
able Π-state s ∈ S such that (s, s′) ∈ R

2. there exists a function t : A → A′ such that for all
(s, s′) ∈ R, and all actions a ∈ A, it holds that
(a(s), (t(a))(s′)) ∈ R

3. for all (s, s′) ∈ R, s is a goal state in Π if and only if s′
is a goal state in Π′

4. if (s1, s
′
1), (s2, s

′
2) ∈ R and wrong(s1) � wrong(s2),

then wrong(s′1) � wrong(s′2)
5. for all (s1, s

′
1), (s2, s

′
2) ∈ R, it holds that dh(s′1, s

′
2) ≤

b(dh(s1, s2))
Theorem 21 If instance Π′ = (V ′, init′, goal′, A′) is a re-
formulation of instance Π = (V, init, goal, A) with blowup
function b : N → N, and Π has persistent Hamming width
k, then Π′ has persistent Hamming width b(k).
Proof. We first make a general observation. Let P =
a1, . . . , an be any plan in Π and let (s, s′) ∈ R such that
for all i = 1, . . . , n, dh(s, s[a1, . . . , ai]) ≤ k. By successive
application of condition 2 it follows that for all i = 1, . . . , n,

(s[a1, . . . , ai], s′[t(a1), . . . , t(ai)]) ∈ R

and by condition 5 it follows that for all i = 1, . . . , n,
dh(s′, s′[t(a1), . . . , t(ai)]) ≤ b(dh(s, s[a1, . . . , ak])) ≤
b(k).

Now we prove the theorem. Let s′ be a reachable Π′-state
that is not a goal state. By condition 1 in Definition 20 there
exists a reachable Π-state s such that (s, s′) ∈ R; the state s
is not a goal state by condition 3. Thus, there exists a plan
P = a1, . . . , an that k-Hamming improves a variable u in
state s.

Let P ′ denote the plan t(a1), . . . , t(an). By the observa-
tion, we have (s[P], s′[P ′]) ∈ R. Note that wrong(s[P]) �
wrong(s). By condition 4, wrong(s′[P ′]) � wrong(s′).
Let u′ be any variable in wrong(s′) \ wrong(s′[P ′]). Thus,
the plan P ′ improves u′ in s′. Moreover, the plan P ′ k-
Hamming improves u′ in s′, since by the observation, for all
i = 1, . . . , n, dh(s′, s′[t(a1), . . . , t(ai)]) ≤ b(k). �

We remark that this theorem does not hold for width nor
persistent width.

The binary formulation B(Π) of a planning instance Π =
(V, init, goal, A) is described as follows. Consider a new
variable vd for any pair v ∈ V and d ∈ D(v), and de-
fine BV as the set of all such variables, namely B(V) =⋃

v∈V,d∈D(v) vd. For each variable w ∈ B(V), we define
D(w) = {0, 1}. That is, for every variable v ∈ V , one
binary variable is introduced for each domain element in
D(v). For a partial state p of Π, we define B(p) to be the par-
tial state defined on the variables

⋃
v∈vars(p),d∈D(v) vd such

that (B(p))(vd) is 1 if p(v) = d, and 0 otherwise. For an
action a ∈ A of Π, we define B(a) to be the action with
precondition B(pre(a)) and with postcondition B(post(a)).
Also, we define B(A) =

⋃
a∈A B(a). We define B(Π) to be

(B(V),B(init),B(goal),B(A)).
We show that for any instance Π, the instances Π and

B(Π) are reformulations of each other.

Proposition 22 For any instance Π, the instance B(Π) is a
reformulation of the instance Π with blowup function b(n) =
2n.

Proof. Letting S denote the set of states of Π, we define
R = {(s,B(s)) : s ∈ S}. We verify that the five condi-
tions hold. Condition (1) holds by the fact that a state s is
reachable from init by plan a1, . . . , an in Π if and only if the
state B(s) is reachable by B(a1), . . . ,B(an) in B(Π). Con-
dition (2) follows immediately from the definition of the ac-
tions B(a). For condition (3), we observe that s is a Π-goal
state if and only if ∀v ∈ vars(goal), s(v) = goal(v). This
holds if and only if ∀v ∈ vars(goal),∀d ∈ D(v) we have
(B(s))(vd) = (B(goal))(vd) which in turn holds if and only
if B(s) is a B(Π)-goal state. Conditions (4) and (5) follow
from the observation that if two (partial) Π-states p, p′ differ
on variable v, then B(p) and B(p′) differ on vp(v) and vp′(v)

in Π′; and, if p, p′ do not differ on variable v, then for all
d ∈ D(v) we have that B(p) and B(p′) are equal on vd. �
Proposition 23 Any instance Π is a reformulation of the in-
stance B(Π) with blowup function b(n) = �n

2 �.

Proof. Letting S denote the set of states of Π, we define
R = {(B(s), s) : s ∈ S}. Conditions (1)-(4) are verified
as in the proof of Proposition 22. From the discussion of
Conditions (4) and (5) in that proof, we also have that if
(s1, s2), (s′1, s

′
2) ∈ R, then dh(s1, s2) = 2 · dh(s′1, s

′
2). It

follows that dh(s′1, s
′
2) ≤ � dh(s1,s2)

2 �, yielding condition (5).
�
Theorem 24 Let C be a set of planning instances. If C has
PH width k, then B(C) = {B(Π) : Π ∈ C} has PH width 2k.
If B(C) has PH width k, then C has PH width �k

2 �. Thus, the
set C has bounded PH width if and only if B(C) has bounded
PH width.

Proof. Immediate from Propositions 22 and 23, and Theo-
rem 21. �

Composition operations
In this section, we further investigate the robustness of our
width notions by considering two binary composition oper-
ations on instances. We give results showing that our width
notions are closed under these operations.

Disjoint union
Definition 25 Let Π = (V, init, goal, A) and Π′ =
(V ′, init′, goal′, A′) be instances. The disjoint union Π⊕Π′
is defined to be the instance (V ∪ V ′, init ∪ init′, goal ∪
goal′, A ∪ A′). Here, we assume that the variable sets V
and V ′ are disjoint; if they are not, we rename them accord-
ingly.

Note that, by the union of two partial states p ∪ p′, we
mean the function defined as p on all variables in vars(p)
and as p′ on all variables in vars(p′). Note also that this
notation is used only when vars(p) and vars(p′) are disjoint.

Theorem 26 Let Π = (V, init, goal, A) and Π′ =
(V ′, init′, goal′, A′) be instances having width k (respec-
tively, P width k, H width k, PH width k). The instance

79

Π ⊕ Π′ has width k (respectively, P width k, H width k, PH
width k).

Proof. We prove the theorem for persistent width k. The
proof for the other width notions is similar. Let s be a reach-
able state that is not a goal state, in (Π ⊕ Π′). Then either
(s � vars(goal)) �= goal or (s � vars(goal′)) �= goal′. If (s �
vars(goal)) �= goal, then in Π the state (s � V) is reachable
but not a goal state. By the assumption that Π has persis-
tent width k, there exists a variable u ∈ wrong(s � V) that
is k-improvable in (s � V). The plan P performing this k-
improvement also k-improves the variable u in state s, in the
instance Π ⊕ Π′. In the case that (s � vars(goal′)) �= goal′,
the proof is similar. �

Sequencing
Definition 27 Let Π = (V, init, goal, A) and Π′ =
(V ′, init′, goal′, A′) be instances. Define A′

goal to contain an
action a′

goal for every action a′ ∈ A′ such that pre(a′
goal) =

pre(a′) ∪ goal and post(a′
goal) = post(a′). The sequence

Π�Π′ is defined to be the instance (V ∪V ′, init∪init′, goal∪
goal′, A ∪ A′

goal). Here, we assume that the variable sets V

and V ′ are disjoint; if they are not, we rename them accord-
ingly.

Theorem 28 Let Π = (V, init, goal, A) and Π′ =
(V ′, init′, goal′, A′) be instances having P width k (respec-
tively, PH width k). The instance Π � Π′ has P width k
(respectively, PH width k).

Proof. We prove the theorem for P width k; the case of PH
width k is similar. Let s be a reachable state that is not a
goal state. We consider two cases. The first case is when
(s � vars(goal)) �= goal. In this case, (s � V) is, in Π, a
reachable state that is not a goal state. Since Π has P width
k, there exists a variable u ∈ V where goal and s differ
that, in Π, can be k-improved in state s. A plan k-improving
u in s with respect to the instance Π also performs the k-
improvement in the instance Π � Π′. In the second case,
where (s � vars(goal)) = goal, since s is by assumption not
a goal state, we have (s � vars(goal′)) �= goal′. Then, (s �
V ′) is, in Π′, a reachable state that is not a goal state. Since
Π′ has P width k, there exists a variable u ∈ V ′ where goal′

and s differ that, in Π′, can be k-improved in state s. Let
P = a′

1, . . . , a
′
n be a plan that k-improves u in s with respect

to the instance Π′. Then, the plan Pgoal = a′
1goal, . . . , a

′
ngoal

k-improves u in s in the instance Π�Π′. Note that in state s
it holds that (s � vars(goal)) = goal, and moreover that this
property is preserved by the application of actions in A′

goal.
Thus, during the execution of Pgoal the “added precondition”
goal in the actions of A′

goal is always satisfied. �

Acknowledgements
This work was partially supported by grant TIN2004-07925-
C03-01 (GRAMMARS).

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
IJCAI 2003, 929–935.

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–
655.
Barrett, A., and Weld, D. 1993. Characterizing subgoal in-
teractions for planning. In Proceedings of IJCAI-93, 1388–
1393.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity of planning with unary operators. JAIR 18:315–
349.
Brafman, R., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI 2006.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69:165–204.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial intelligence 76:625–655.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In Proc. 20th International Joint Confer-
ence on Artificial Intelligence.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 161–170.
Helmert, M. 2006. The fast downward planning system.
Journal of Artifical Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Jonsson, P., and Bäckström, C. 1994a. Complexity re-
sults for state-variable planning under mixed syntactical
and structural restrictions. Technical Report R-95-17, De-
partment of Computer and Information Science, Linköping
University.
Jonsson, P., and Bäckström, C. 1994b. Tractable plan-
ning with state variables by exploiting structural restric-
tions. Technical Report R-95-16, Department of Computer
and Information Science, Linköping University.
Korf, R. E. 1987. Planning as search: A quantitative ap-
proach. Artificial Intelligence 33:65–88.
Vidal, V., and Geffner, H. 2005. Solving simple planning
problems with more inference and no search. In Proc. of
the 11th Int. Conf. on Principles and Practice of Constraint
Programming (CP-05).

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

