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H o Partial Order Reduction

in this chapter we consider only Biichi automata. Algorithms for other types of automata
can be derived in a similar fashion from results in [60]. In general, checking language
_inclusion between two nondeterministic w-automata is PSPACE-hard. For this reason we
consider a restricted case of the general problem in-which- the specification-automaton 1s-
deterministic. Thus, our algorithm cannot be used in those cases where the spectfication
cannot be expressed using a deterministic automaton (see Section 9.2.1). For simplicity we
also require that both automata are complete.

Let A=(Z, 0, A, Q0% F)and A =(Z, 0, A, 0", F’) be two Biichi automata
over the same alphabet £. Let M (A, A") be a Kripke structure ( x Q. R, L) over
AP =({q,q’}, where g, ¢ are two new symbols and

ift s e F.
iff s e F'.
iffdo eT:(s,o,r)eAand (s, 0,r)e .

g € L((s,5)

q' € L((s,5))

(s.s)R(r.r)
Recall that in Section 5.2 we showed how to encode Kripke structures symbolically.

In [60], it is shown that, if A" is deterministic,

L(A) € L(A) & M(A A) = AGFqg = GFg')

Note that the formula above is not a CTL formula, in that there are temporal opera-
tors that are not immediately preceded by path quantifiers. However, it is equivalent to
AG AF ¢’ (“infinitely often ¢"”) under the fairness constraint “infinitely often ¢ " Checking
the above formula with the given fairness constraint can be handled using the techniques

described in Section 6.2.
THEOREM 8 L(A) € L(A') if and only if M(A, A) =AG AF g

straint q.

'

with fairness con-

The partial order reduction is aimed at reducing the size of the state space that needs to
be searched by model checking algorithms. It exploits the commutativity of concurrently
executed transitions, which result in the same state when executed in different orders. Thus,
~this reduction technique is best suited for asynchronous systems (in synchronous systems,
concurrent transitions are executed simultaneously rather than mmm\:m interleaved).

The method consists of constructing a reduced state graph. The full state graph, which
may be too big to fit in memory, is never constructed. The behaviors of the reduced graph
are a subset of the behaviors of the full state graph. The justification of the reduction method
shows that the behaviors that are not present do not add any information. More precisely,
it is possible to define an equivalence relation among behaviors such that the checked
property cannot distinguish between equivalent behaviors. If a behavior is not present in
the reduced state graph, then an equivalent behavior must be included.

The name partial order reduction has its justification in early versions of the algorithms
that were based on the partial order model of program execution [126, 153, 244]. However,
the method can be described better as model checking using representatives [210, 212],
since the verification is performed using representatives from the equivalence classes of
behaviors.

In this chapter the transitions of a system play a significant role. The partial order
reduction is based on the dependency relation that exists between the transitions of a
system. Furthermore, this reduction method specifies which transitions should be included
in the reduced model and which should not. As in Chapter 7, we want (o distinguish
between different transitions in a system. Thus, we modify the definition of a Kripke
structure slightly. Instead of having one transition relation R, we will now have a set of
transition relations 7'. For simplicity, we will refer to ecach element « in 7" as a transition,
instead of a transition relation.

A state transition system is a quadruple (S, 7, Sy, L) where the set of states S, the set of
initial states Sy, and the labeling function L are defined as for Kripke structures, and T is a
set of transitions such that foreacha € T, € § x S. A Kripke structure M = (S, R, Sy, L)
may be obtained by defining R so that R(s, s") holds when there exists a transition @ € T
such that «(s, 57).

For a transition @ € T, we say that « is enabled in a state s if there is a state 5" such
that « (s, s") holds. Otherwise, « is disabled in s. The set of transitions enabled in s is
enabled(s). A transition « is deterministic if for every state s there is at most one state
s" such that @(s, s"). When « is deterministic we often write s = «(s) instead of a(s, s').
Henceforth, we will only consider deterministic transitions.

A path from a state s in a state transition system is a finite or infinite sequence defined
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we do not require paths to be infinite. Moreover, any prefix of a path is also a path. If
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7 is finite, then the length of m is the number of transitions in 7 and will be denoted

by |m|.

10.1 Concurrency in Asynchronous Systems
A common observation about concurrent asynchronous systems is that the interleaving
arbitrary ordering between concurrent events. To avoid discriminating

model imposes an
ays. The ordering

against any particular ordering, the events are interleaved in all possible w
between independent transitions is largely meaningless. However, common specification
languages, including many temporal Jogics, can distinguish between behaviors that only
differ in this manner. Our aim is to take advantage of the cases where the specifications
do not distinguish between such behaviors. In these cases, the partial order reduction only
checks a subset of the behaviors. However, it checks sufticiently many of them to guarantee
the soundness of the verification.

Putting concurrent events in various possible orderings is a potenti
explosion problem. To see this, consider n transitions that can be executed concurrently. In
this case, there are n! different orderings and 2" different states (one state for each subset
of the transitions). If the specification does not distinguish between these sequences, it is

al cause of the state

clearly beneficial to consider only one sequence, with 1 + | states. This is demonstrated in

Figure 10.1 with n = 3.
Our aim is to reduce the number of states that are considered in the model checking

ess, while preserving the correctness of the checked property. We will assume for

proc

simplicity of presentation that a reduced state graph is first generated explicitly using DFS.
The model checking algorithm is then applied to the resulting state graph. The reduction
constructs a graph with fewer states and edges. This speeds up the construction of the
graph and uses less memory, thus resulting in a more efficient model checking algorithm.

Moreover, the reduction can be applied ::-::.%.V. mi:_m;ao:ﬁ the model ‘r,_an_a:m [209].
The DES can also be replaced by breadth first search [55] and combined with symbolic
model checking [4, 164].

The reduction is performed by modifying the DFS used to construct the state graph, as
in Figure 10.2. The search starts with an initial state so (line 1) and proceeds recursively.
For each state s it selects only a subset ample(s) of the enabled transitions enabled () (in
line 5), rather than the full set of enabled transitions, as in the full state space construction.
The DFS explores only successors generated by these transitions ::.Em 6-16). In the
DFS algorithm in Figure 10.2, a state is labeled as on_stack (lines 2,12) when it is first
encountered and as complered (line 17) when all of its successors have been scarched.
Thus, a state is marked on_stack when it is on the DFS search stack. This information is
useful for computing the function ample.

1 hash(sy);

2 seton_stack(sy):
3 expand_state(sy);
4 procedure expand_state(s)
5 work_set(s) ==ample(s);
6 while work_set(s) is not empty do
7 let « € work_set(s);
8 work_set(s) := work_set (s) \ {«};
9 s i=al(s);
10 if new(s") then
11 hash(s";
12 set on_stack(s');
13 expand_state(s');
14 end if;
15 create_edge(s, «, s');
16 end while;
17 set completed(s);

18 end procedure

Figure 10.1
Executing three independent transitions.

Figure 10.2
Depth-first search with partial order reduction.
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When the model checking algorithm is applied to the reduced state graph it terminates
with a positive answer when the property holds for the original full state graph. Otherwise,
it produces a counterexample. Because the reduced state graph contains fewer behaviors,

the counterexample can differ from the one that would have resulted from-using the full

state graph.

Notice that the algorithm in Figure 10.2 constructs the reduced state graph directly.
Constructing the full state graph and later reducing it would defy the purpose of the
reduction.

In order to implement the algorithm we must find a systematic way of calculating
ample(s) for any given state 5. The calculation of ample(s) needs to satisfy three goals:

1. When ample(s) is used instead of enabled(s), sufficiently many behaviors must be
present in the reduced state graph so that the model checking algorithm gives correct
results.

2. Using ample(s) instead of enabled(s) should result in a significantly smaller state
graph.

3. The overhead in calculating ample(s) must be reasonably small.

10.2 Independence and Invisibility

In this section, we will define two concepts that can assist in reducing the state graph.
As noted earlier, in the interleaving model for concurrent systems, transitions that can
be executed concurrently from some state are interleaved in either order. This can be
formulated by defining an independence relation on pairs of transitions that can execute
concurrently. An independence relation I €T x T isa symmetric, antireflexive relation,
satisfying the following two conditions for each state s € § and for each (¢, B) € I:

Enabledness If «, p € enabled(s) then a € enabled (B(s)).

Commutativity «, 8 € enabled(s) then a(B(s)) = fla(s)).
The dependency relation D is the complement of /, namely

D=(T xT)\I.

The enabledness condition states that a pair of independent transitions do not disable
one another. Note, however, that it is possible for one to enable another. Note that the
definition makes use of the fact that / is symmetric. The commutativity condition, which is

. 1 1 e ~1t1 9
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Figure 10.3
Execution of independent transitions.

When it is hard to check whether two transitions « and g are independent or not, assuming
that they are dependent always preserves the correctness of the reductions described in this
chapter.

The definition of independence can be used for the reduction even when two independent
transitions cannot actually be executed in parallel. For example, when two transitions of
different processes increment a shared variable, they satisfy the independence conditions,
although some type of physical arbitration must be used to prevent them from executing
simultaneously.

The commutativity condition, illustrated in Figure 10.3, suggests a potential reduction
to the state graph, for it does not matter whether « is executed before f or vice versa in
order to reach the state » from s. Thus, it is tempting to select only one of the transitions
originating from s. This is not appropriate for the following reasons:

ProBLEM |  The checked property might be sensitive to the choice between the states s,
and s», not only the states s and r.

ProBLEM 2 The states s and s> may have other successors in addition to r, which may
not be explored if either is eliminated.

We will return to these problems at the end of Section 10.3. The first step in solving them
is to define what it means for a transition to be invisible.

Let L : § — 2% be the function that labels each state with a set of atomic propositions.
A transition @ € T is invisible with respect to a set of propositions AP" < AP if for each
pair of states s, s" € S such that 5" = a(s), L(s) N AP' = L(s’) N AP’. In other words, a
transition is invisible when its execution from any state does not change the value of the
propositional-variables in AP’ A transition is visible if it s not invisible.

o L

Prop t
T vz nza

well defined due to the enabledness conditron; Staes i
in either order results in the same state. These conditions are illustrated in Figure 10.3.
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Figure 10.4

Two s

£ equi

A closely related concept is that of stutrering [167], which refers to a sequence of
@)

identically labeled states along a path in a Kripke structure. Two infinite paths o =59 —>

3 B . N
S S, and pP=r 0, r L are stuttering equivalent (see Figure 10.4), denoted
T~ P :a there are two infinite sequences of positive integers 0 =ig < i <i><... and

0= jy< ji <j»<...such that forevery k = 0,
N\A.f.»v = h\:.:l_v == N‘Av.:,__‘ 1) = N.A\..;v = N;A\.‘:,;._v == N\C.:S_l_v.

We call a finite sequence of identically labeled states a block. Intuitively, two paths
are stuttering equivalent when they can be partitioned into infinitely many blocks, such
that the states in the kth block of one are labeled the same as the states in the kth
block of the other. Note that corresponding blocks may have different lengths. Stutter-
ing equivalence can be defined in a similar way for finite paths using finite sequence
of indexes 0 =iy <i; <ir<...ip and 0= j, < ji < j» <...j,. Stuttering is a par-
ticularly important concept for asynchronous systems because there is no correlation
between the time separating two events and the number of transitions occurring between
them.

An LTL formula A f is invariant under stuttering if and only if for each pair of paths 7

and 7’ such that & ~,, 7/,

7= f ifandonlyif n'E f.

We denote the subset of the Jogic LTL without the next time operator by LTL .
THEOREM 9 Any LTL _y property is invariant under stuttering.

The theorem is proved using a simple induction on the size of the LTL formula. It is
interesting to note that the converse of Theorem 9 also holds [211]:

We now extend the notion of stuttering equivalence to structures. Two structures M and
M’ are stuttering equivalent if and only if

= M Ea \S\ F:.o 50 same IQ 9 :::.._ mr:oﬁ

= For each path o of M :r: starts ?oS an ::?: state s of M there exists a ?:: o Om >\~
from the same initial state s such that ¢ ~,, ¢, and

= for each path o’ of M’ that starts from an initial state s of M’ there exists a path ¢ of M
from the same initial state s such that o’ ~,; .

The following corollary is useful for showing that an LTL_y formula does not distinguish
between structures that are stuttering equivalent. It will be exploited later, for the partial
order reduction generates a structure that is stuttering equivalent to the full state graph.

CoroLLARY 2 Let M and M’ be two stuttering equivalent structures. Then, for every
LTL_y property A f, and every initial state s € Sy, M, s =Af ifandonly it M', s =AS.

Returning to Figure 10.3, suppose that at least one transition, say «, is invisible, then
L(s) = L(sy) and L(s;) = L(r). Consequently,

SS|r~gSSsr

10.3 Partial Order Reduction for LTL _y

When the specification is invariant under stuttering, commutativity and invisibility allow us
to avoid generating some of the states. Based on this observation, we suggest a systematic
way of selecting an ample set of transitions for any given state. The ample sets will be
used by the DFS algorithm to construct a reduced state graph so that for every path not
considered by the DFS algorithm there is a stuttering equivalent path that is considered.
This guarantees that the reduced state graph is stuttering equivalent to the full state graph.

We say that state s is fully expanded when ample(s) = enabled(s). In this case, all of
the successors of that state will be explored by the DFES algorithm.

Instead of giving a specific algorithm for constructing ample sets, we will first pro-
vide four conditions for selecting ample(s) C enabled(s) such that the satisfaction of the
LTL_ x specification is preserved. The reduction will depend on the set of propositions A P’
that appear in the LTL_ y formula.

Condition C0 guarantees that if the state has at least one successor, then the reduced
state graph also contains a successor for this state.

TueoreM 10 Every LTL property that is stuttering closed cam be expressed mETE—x-

COampte(s) =Vt and only il enabtedtr—
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Condition C1 is the most complicated among the constraints on ample(s).

C1 [126, 153, 208, 244] Along every path in the full state graph that starts at s, the
—following-condition holds: a transition that is dependent on a transition in ample(s) cannot
be executed without a transition in ample(s) occurring first.

Note that Condition C1 refers to paths in the full state graph. We need a way of checking
that C1 holds without actually constructing the full state graph. Later, we will show how
to restrict C1 so that ample(s) can be calculated based on the current state s.

LEMMA 24 The transitions in enabled(s) \ ample(s) are all independent of those in

ample(s).

Proof Let y € enabled(s) \ ample(s). Suppose that (y,d) € D, where § € ample(s).
Because y is enabled in s, in the full graph there is a path starting with y. But then
a transition dependent on some transition in ample(s) is executed before a transition in
ample(s), contradicting Condition C1. 0O

In order to guarantee the correctness of the DFS reduction algorithm, we need to know
that if we always choose the next transition to explore from ample(s), we do not omit
any paths that are essential for checking the correctness of the state graph. Condition C1
implies that such a path will have one of two forms:

= The path has a prefix o8, ... Bua, where o € ample(s) and each f; is independent of
all transitions in ample(s) including «.
= The path is an infinite sequence of transitions fyf) . . . where each f; is independent of

all transitions in ample(s).

Condition CI also implies that, if along a finite sequence of transitions fyf) ... S,
exccuted from s, none of the transitions in ample(s) have occurred, then all the transitions
in ample(s) remain enabled. This is because each f; is independent of the transitions in
ample(s) and, therefore, cannot disable them.

In the first case, assume that the sequence of transitions o8, . . . 8,,« reaches a state r.
This sequence will not be considered by the DFS algorithm. However, by applying the
enabledness and commutativity conditions m times, we can construct a finite sequence
afoB ... By, that also reaches r. This is illustrated in Figure 10.5. In other words, even if
the reduced state graph does not contain the sequence fyf) . . . f,« that reaches the state
r, we can still construct from s another sequence that reaches the same state r.

Consider_the two sequences of states o = sys) ... s,» and p =srgr| ... r, in Fig-
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Figure 10.5
Transition ¢ commutes with Bof . .. B.

L(s;) = L(r;) for 0 =i < m. Thus, the checked property will not be able to distinguish
between the two sequences above. This can be achieved by condition C2:

C2 [Invisibility (209]] If s is not fully expanded, then every a € ample(s) is invisible.

Consider now the second case, in which an infinite path Byf, 5 . . . that starts at s does
not include any transition from ample(s). By Condition C2 all transitions in ample(s)
are invisible. Let « be such a transition in ample(s), then the path generated by the
infinite sequence of transitions aff B, . . . is stuttering equivalent to the one generated
by BofiB: . ... Again, even though the path B8, . . . is not included in the reduced state
graph, there is a stuttering equivalent path that is included.

Conditions C1 and C2 are not yet sufficient to guarantee that the reduced state graph is
stuttering equivalent to the full state graph. In fact, there is a possibility that some transition
will actually be delayed forever because of a cycle in the constructed state graph. As an
example, consider the processes in Figure 10.6. Assume that the transition g is independent
of the transitions @), «,, and 3. The transitions «,, >, and «; are interdependent. The
process on the left can execute the visible transition 8 exactly once. Assume there is one
proposition p, which is changed from True to False by B, so that f is visible. The process
on the right performs the invisible transitions a, @y, and a3 repeatedly in a loop.

The full state graph of the system in Figure 10.6 is shown on the left in Figure 10.7. The
right side of the figure shows the first stages of constructing the reduced state graph, where
@, @, and ey are invisible. Starting with the initial state sy, we can select ample(s)) = {a, ).

gl —————

ure 10.5, generated by BofB ... Bna and afyf, . 1, respectively. I order to discard
o, we want o and p to be stuttering equivalent. This is guaranteed if « is invisible, for then

£ g £0 11 N, - ) N .
Comdrtrons—Co-Cland-C2are-satistied—Thus—we-senerate-so=—coq t—Simdaclywe can

select ample(s:) = {a,}, generating 53 = &1 (s,). Finally, reaching 53, Conditions C0, C1,
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Figure 10.6

Two concurrent processes

Figure 10.7
Full and reduced state graph.

and C2 allow selecting ample(sy) = {a;}. But the reduced state graph generated in this
way does not contain any sequences where p is changed from True to False. The problem
is that each state along the cycle sy, 52, 53, 51 has deferred 8 to a possible future state. When
the cycle is closed, the construction terminates, and transition g is ignored.

To remedy this problem, we add the following condition:

C3 [Cycle condition [21, 55, 208]] A cycle is not allowed if it contains a state in which
some transition « is enabled, but is never included in ample(s) for any state s on the cycle.

We are now able to address Problems 1 and 2 described in the previous section. Consider
Figure 10.3 again. Assume that the DFS reduction algorithm chooses g as ample(s) and

does not include state s, in the reduced graph.

Figure 10.8
Diagram illustrating Problem 2.

We consider Problem [ first. By Condition C2, 8 must be invisible, thus s, 52, r and
s, 81, ¥ are stuttering equivalent. In this chapter we are only interested in properties that are
invariant under stuttering. Such properties will not be able to distinguish between the two
sequences.

We next consider Problem 2. Assume that there is a transition y enabled from s, as in
Figure 10.8. We show that y is still enabled at state ». Moreover, the transition sequernces
a,y and B, «, ¥ lead to stuttering equivalent state sequences. We first note that y cannot
be dependent on 8. Otherwise, the sequence «, y violates Condition C1, since a transition
dependent on £ is executed before 8. Thus, y is independent of g. Because it is enabled
in sy, it must also be enabled in state r. Assume that y, when executed from r, results in
state r" and when executed from s; results in state 5. Since p is invisible, the two state
sequences s, 5, s, and s, 52, 7, r’ are stuttering equivalent. Therefore, properties that are
invariant under stuttering will not distinguish between the two.

10.4 An Example

Consider the mutual exclusion program P, presented in Chapter 2. The state graph for P
is given in Figure 10.9. The states of the program are labeled with AP = {NC;, CR;, [;,
turn=1,L |i=0,1}, where CR; € L(s) if pc; = CR; in the state s, and CR; & L(s) if
pci # CR; in s. The labeling L(s) is defined similarly for all other atomic propositions in
AP.

Let f =G —=(CRyA CRy) be an LTL_x formula describing the mutual exclusion
property. We will show how the DES algorithm of Figure 10.2 can be used to construct
a reduced state graph that is stuttering equivalent to the full state graph with respect to a
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torn =0
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Figure 10.9

Reduced state graph for a mutual exclusion progri
"of i i ; interes inc A o 2

subset AP’ of the atomic propositions. Because we are interested in checking whether £

satisfies f, we choose AP = {CRy, CR}.
Following is a list of the transitions of the program P that are enabled in some reachable
state of P, where i = 0, 1. For brevity we omitted same(pc;) for j # i from each of the

transitions.
a: pe=m A pey=Ily A pci=1 A pc’=1

B pci=1l A pc,=NC; A True A same(turn)

vii: pci=NCi A pci=CR; A turn=i A same(turn)
S pe;=CRi A pcl=1;, A turn’ = (i + 1) mod 2
g pci=NCi A pci=NCi A turn#i A same(turn)

The-visible transitions with respect 1o A P' are those in which CR;, or C R, has different
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Each transition is dependent on itself because the dependency relation is reflexive. All

of the transitions are dependent on « since it must be executed before any other transition
in the program. The dependency relation for the remaining transitions is calculated using

_the following two rules: .

= Two transitions that change the same variable (including the program counters) are
dependent.
= [f one transition sets a variable and the other checks that variable, then the transitions are
dependent.

Thus, all of the transitions in the same process are interdependent. Also, (i, dy), (v, 61),
(&1, 80), (0, 81). (80, 61) are in D since §; changes the variable turn, while y; and ¢; check
its value. Finally, we complete the relation D to be symmetric.

Figure 10.9 shows the full state graph. The states and edges included in the reduced state
graph are shown using thick lines. Following are the states of the reduced state graph in the
order they are visited by the DFS algorithm: sq, 5/, 53, S4, S65 510, S115 513, 57, Sg-

The DES algorithm starts with s, which is one of the two initial states. For this state,
ample(sy) = enabled(sy) = {«}. For s, it is possible to select as ample(s|) either {8},
{B1} or {Bu, Bi}. The latter will usually result in a smaller reduction and therefore will
not be considered. The first choice corresponds to selecting the enabled transitions of £,
whereas the second choice corresponds to selecting P;. Condition CO is trivially satisfied.
In both cases, C1 is satistied. For example, suppose ample(s;) = {Bo} then along all paths
leaving s, either By is immediately executed or f; is executed before g,. However, g, is
independent of f.

Condition C2 is also satisfied, for f; and #; are invisible. Finally, C3 is satisfied because
no cycle is yet formed. The choice between the two sets is arbitrary, although one may
provide a better reduction in a later stages of the algorithm. We select ample(s;) = { ).

Executing f; from s results in the state s3. By using a similar argument, we select
as ample(sy), the transitions of P that are enabled in s3, namely {f;}. Next, we select
ample(sy) = {y. £1}. We cannot select for s4 the set {yy}, since yy is visible. We cannot
also select the singleton {g,}, because this will construct a self loop on which the transition
v is enabled but never included in an ample set, thus violating Condition C3.

We can now select, ample(ss) = {&1, do}. Because they are dependent we have to choose
both in order not to violate Condition C1. For states s and 5;; we choose ample(sy)) =
{Bo} and ample(s|) = {yi, €0}. The arguments are similar to the ones for states 53 and s.,
respectively. We next select ample(sy3) = {8y, £p}. The transition §; taken from s3 closes

the cycle 53 54 5¢ 5 | 513. By examining Figure 0.9 it is easy to check that Condition C3

Tt

values before and after the transition. Thus, {yo, 1, o, 8} are visible.

il -
54N ICUTO
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The DFES algorithm continues the search from the other initial state s;. We select
ample(s;) = {a}. Based on arguments similar to those for s,, we also select ample(sg) =
__{B}. By executing #; from sg, we reach only the state s1¢ that has already been visited.

o
wn
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In view of the previous theorem, we will avoid checking Condition C1 for an arbitrary
subset of enabled transitions. In Section 10.5.2 we will give a procedure to compute a set
of transitions that is guaranteed by construction to satisfy C1. Although the procedure may

Thus, the algorithm terminates.
A model-checking algorithm for LTL can now be applied to check if the reduced state
graph constructed by the algorithm satisfies the formula f because f € LTL _y. The full

state graph satisfies the formula if and only if the reduced state graph does.

10.5 Calculating Ample Sets

10.5.1 The Complexity of Checking the Conditions

In order to make the partial order reduction efficient, we need to be able to calculate the
ample sets for the states in the reduced graph with minimal overhead. We will aoszcﬂ. the
related problem of checking Conditions CO to C3 for a set of enabled transitions at a given
state. Condition CO for a particular state can be checked in constant time. Condition C2 is
also simple to check, by examining the transitions in the set.

Condition C1 is a constraint that is not immediately checkable by examining the current
state of the search, in that it refers to future states (some of which need not even be in the
reduced state graph). The next theorem shows that, in general, checking C1 is at least as
hard as searching the full state space.

TueoreEM 11 Checking Condition C1 for astate s and a set of transitions T C enabled(s)

is at least as hard as checking REAcHABILITY for the full state space.

Proof ~Consider checking whether a state r is reachable in a transition system 7 from an
initial state so. We will reduce this problem to deciding condition C1. First, let @ and B be
new transitions. Let the transition & be only enabled at the state r. Let the transition g be
enabled from the initial state and independent of all the transitions of 7. We construct f§
and « so that they are dependent (¢.g., they both change the value of the same variable).

Consider {8} as a candidate for being an ample set from sg. First assume that C1 is
violated. Then there is a path in the new state graph along which « is performed before B.
Because « is enabled only in r, this path leads from sy to ». The sequence of transitions on
the path from s, to r exists also in the original state graph, in that it does not include the
added transitions « or . Thus r is reachable from sy in the original system.

For the other direction, assume that r is reachable in the original state graph from 5.
Then, there is a sequence from sq to r, which does not include B. This sequence also

is evidently a tradeoff between efficiency of computation and the amount of reduction.

Condition C3 is also defined in global terms. However, it refers to the reduced state
graph, whereas C1 refers to the full state graph. A possible way of implementing this con-
straint is to first generate a reduced state graph and then to correct it by adding additional
transitions until it satisfies C3 [244]. On the other hand, the approach we take replaces C3
by a stronger condition that can be checked directly on the current state.

LEMMA 25 A sufficient condition for C3 is that at least one state along each cycle is fully
expanded.

Proof  Assume there is a cycle with a fully expanded state, but the cycle does not satisfy
Condition C3. Thus, we have some transition « that is enabled in some state s of the cycle
but is never included in an ample set along the cycle. By lemma 24, if « is not included in
an ample set then it is independent of all the transitions in it. Thus, « is independent of all
transitions in the ample sets selected along the cycle. Consequently, it remains enabled in
all the states along the cycle. However, if one of the states s” is fully expanded, meaning
that ample(s') = enabled(s'"), « is necessarily included in ample(s’). This contradicts the
assumption that « is never selected. O

Efficient ways of enforcing C3 are based on the specific search strategy that is used to
generate the reduced state space. For depth first scarch, we can usc the fact that every cycle
includes an edge that goes back to a node on the scarch stack. Such an edge is also called
a back edge. Thus, we strengthen C3 in the following manner.

C3' If s is not fully expanded, then no transition in ample(s) may reach a state that is on
the search stack.

We thus always try to select an ample set that does not include a back edge. If we do not
succeed, the current state is fully expanded.

In breadth first search, the search progresses in levels, where level k consists of a set of
states reachable from the initial states using & transitions. A necessary condition for closing
a cycle during breadth first search is the following: A transition applied to a state s in the
current level results in a state in the current or previous level of the breadth first search.
This condition is not sufficient. Consequently, using this condition to detect when a cycle

is-closednav cause mare states than necessary to be fully expanded

e

s

appears in the new state graph, and now can b¢ cxtended by the fransition & tareH

r. The resulting sequence violates C1. O




156 Chapter 10

10.5.2 Heuristics for Ample Sets

In view of the complexity results in Section 10.5.1 we give some heuristics for calculating

—ample sets. The algorithm will depend on the model of computation. We will n/o:m‘amw

shared variables and message passing with handshaking and with queues.
Common to all of these models of computation is the notion of a program counter, which
is part of the state. We will denote the program counter of a process £ in a state s by pc;(s).
In order to present the algorithm, we will use the following notation:

» pre(a) is a set of transitions that includes the transitions whose execution may enable
«. More formally, pre(a) includes all the transitions g such that there exists a state s for
which @ & enabled(s), B € enabled(s), and « € enabled (B (s)).

® dep(w) is the set of transitions that are dependent on «, that is,

{BI(B, «) € D}.

= 7 is the set of transitions of process P;. T;(s) = T; N enabled(s) denotes the set of
transitions of P; that are enabled in the state s.

= currenti(s) is the set of transitions of P; that are enabled in some state s’ such that
pei(s’) = pei(s). The set current;(s) always contains 7;(s). In addition, it may include
transitions whose program counter has the value pc;(s), but are not enabled in s.

Note that on any path starting from s, some transition in curreni;(s) must be exe-
cuted before other transitions of 7; can execute. The definitions of pre(e) and the de-
pendency relation D (which directly effects dep(«)) may not be exact. The set pre(«)
may contain transitions that do not enable «. Likewise, the dependency relation D may
also include pairs of transitions that are actually independent. This freedom makes it
possible to calculate ample sets efficiently while still preserving the correctness of the
reduction.

The above definitions are extended to sets in the natural way. For instance, dep(T) =
Ugerdep(a).

Next, we specialize pre(w) for various models of computation. Recall that pre(«)
includes all transitions whose execution from some state can enable «. We construct

pre(a) as follows:

= The set pre(w) includes the transitions of the processes that contain « and that can
change the program counter to a value from which « can execute.

= If the enabling condition for « involves shared variables then pre(w) includes all other
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= If o involves message passing with queues, that is, « sends or receives data on some
queue g, then pre(a) includes the transitions of other processes that receive or send data,

respectively, through ¢.

~We now describe the dependency refation for the different models of computation.

1. Pairs of transitions that share a variable, which is changed by at least one of them, are
dependent.

2. Pairs of transitions belonging to the same process are dependent. This includes in
particular pairs of transitions in current;(s) for any given state s and process P;. Note that
a transition that involves handshaking or rendezvous communication as in CSP or ADA
can be treated as a joint transition of both processes. Therefore, it depends on all of the
transitions of both processes.

3. Two send transitions that use the same message queue are dependent. This is because
executing one may cause the message queue to fill, disabling the other. Also, the contents
of the queue depends on their order of execution. Similarly, two receive transitions are
dependent.

Note that a pair of send and receive transitions in different processes, which use the same
message queue are independent. This is because any one of these transitions can potentially
enable the other but can not disable it.

An obvious candidate for ample(s) is the set 7;(s) of transitions enabled in s for some
process P;. Because the transitions in 7;(s) are interdependent, an ample set for s must
include either all of the transitions or none of them. To construct an ample set for the
current state s, we start with some process £; such that 7; (s) # ¢1. We want to check whether
ample(s) = T;(s) satisfies Condition C1. There are two cases in which this selection might
violate C1. In both of these cases, some transitions independent of those in 7;(s) are
executed, eventually enabling a transition « that is dependent on T;(s). The independent
transitions in the sequence cannot be in 7}, since all the transitions of P, are interdependent.

I. In the first case, « belongs to some other process P;. A necessary condition for this to
happen is that dep(7; (s)) includes a transition of process P;. By examining the dependency
relation, this condition can be checked effectively.

2. In the second case,  belongs to P;. Suppose that the transition & € 7; which violates C1
is executed from a state 5”. The transitions executed on the path from s to 5’ are independent
of Ti(s) and hence, are from other processes. Therefore, pci(s’) = pei(s). So a must
be in current;(s). In addition, « & T;(s), otherwise it does not violate C1. Thus, «

current-(s)\ T.(s)
e
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Since « is not in 7;(s), it is disabled in s. Therefore, a transition in pre(e) must
be included in the sequence from s to s'. A necessary condition for this case is that
pre(current;(s) \ T;(s)) includes transitions of processes other than P;. This condition

" can also be checked effectively.

In both cases we discard 7;(s) as an ample set, and can try the transitions T;(s)of another
process j as a candidate for ample(s). Note that we take a conservative approach discard-
ing some ample sets even though at run-time it might be that Condition C1 would actually

not be violated.
The following code checks Condition C1 for the enabled transitions of a process F;, as

explained above.

function check_Cl(s, P;)
for all P; # P; do
i dep(T;(s)) NT; # W
or pre(current(s) \ T;(s)) N T; # ¢ then
return Fualse;
end if;
end for all;
return True;
end function

The function check_C2 is given a set of transitions and returns True if all of the transi-

tions in the set are invisible. Otherwise, it returns False.

function check_C2(X)

for all« € X do

if visible(«) then return Fulse;

return True;

end function
The procedure check_C3 tests whether the execution of a transition in a given set

X C enabled(s) is still on the search stack. For that, we can use our marking of the states
as on_stack or completed in Figure 10.2. Recall that a state is on_stack when the state is
on the search stack.
function check_C3'(s, X)

forallx € X do
if on_stack(a(s)) then return False,
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end function

The algorithm for ample(s) tries to find a process P; such that 7;(s) satisfies all the
conditions C0 to C3. If no such process can be found, ample returns the set enabled(s).

function ample(s) -
for all P; such that 7;(s) # ¢ do
if check_Cl(s, P) and check_C2(7;(s))
and check_C3'(s, T;(s)) then
return 7;(s);
end if;
end for all;
return enabled(s);
end function

The SPIN [138, 140] system includes an implementation [[39] of the partial order
reduction. The heuristics used for selecting ample sets are similar to the ones described
in this section. However, in SPIN, for many of the states, Conditions C0, C1, and C2 are
precomputed when the system being verified is translated into its internal representation.

10.5.3 On-the-Fly Reduction

In previous sections of this chapter, the model-checking algorithm was explained as a two-
phase process. The reduced state-space is constructed in the first phase. In the second
phase, an LTL model-checking algorithm is used to check the correctness of a formula
in the reduced state graph. In practice, many model checkers work in a more efficient
manner. They combine the construction of the state graph with checking that it satisfies the
specification. As shown in Section 9.5, it is frequently possible to identify on-the-fly that
the system violates the specification before completing the construction of the state graph.
The partial order reduction can be used in conjunction with on-the-fly model checking.
The only condition that needs special attention is the cycle closing Condition C3. The
cycles in the product of the state graph and the property automaton are not necessarily the
same as the ones in the reduced state graph generated in the oft-line algorithm. To see this,
observe that each state (s, ¢) in the product is a pair of a system state s and a state ¢ of
the property automaton. Assume that a cycle is closed at state s in the state graph. In the
product, the state s may be paired with a different component of the automaton when it is
encountered the second time. Thus, it cannot close a cycle. However, it can be shown [209]
that it is correct to check Condition C3” with respect to cycles of the product. Intuitively,
the purpose of C3’ is to avoid postponing the inclusion of some transitions forever in the

return 7rue;
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reduced graph. This is still guaranteed when €3 is applied to the cycles of the product. A
tormal proof appears in [209].

A subtle point arises when the double DFS procedure described in Section 9.3 is used
with the partiat order reduction. In this case, the order in which the graph is traversed may
differ in the first and second phases of the search. As a consequence cycles may be closed
at different states in the two phases. Thus, some additional information must be propagated
between the two phases, to ensure that the same ample sets will be chosen in both [141].

10.6 Correctness of the Algorithm

Let M be the full state graph of some system. Let M be a reduced state graph constructed
using the partial order reduction algorithm described in Section 10.1.

A string is a sequence of transitions from 7' Let 7 be the set of all the strings over 7.
Denote by vis(v), where v is either finite or infinite string, the projection of v onto the vis-
ible transitions. Thus, if @ and b are visible and ¢ and d are not, then vis(abddbcbaac) =
abbbaa. Let tr(c) be the sequence of transitions on a path . Let v, w be two finite strings.
We write v = w if v can be obtained from w by erasing one or more transitions. For example
abbed T aabebeede. We denote v C w if either v =w or v C w.

Let o o 7 denote the concatenation of the paths o and 7 of M, where o is finite, and the
last state [ast () of & is the same as the first state first (i) of n. The length of a path o,
denoted |o |, is the number of edges of o.

Let o be some infinite path of the full state graph M, starting with some initial state. We
will construct an infinite sequence of paths m, Ty, .. ., where 7y = o. Each path 7; will
be decomposed into 1; o §;, where 1; is of length i. Assuming that we have constructed
the paths 7, . . ., 7;, we describe how to construct | = 1i4 © 0 41. Let sy =last(y;) =
first(#;) and « the transition labeling the first edge of #;. Denote

wy=a oy )
—> 5> 5 > ...

There are two cases:
uy )

A. « € ample(sy). Then select i, =7 0 (5o s w(sp). Oy is 5y —> 55— ..., that

is, 6; without its first edge.

B. « €ample(sy). By C2, all of the transitions in ample(sy) must be invisible since sy is
not fully expanded. Here again, there are two cases, B1 and B2:

Bl. Some B € ample(sy) appears on 6; after some sequence of independent transitions

. .»J- w=u o
L Q w—then—there is a path £ = 5, —> Bsq) > Bl _

that=s—f =1
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B2. Some 8 € ample(sg) is independent of all the transitions that appear on ;. Then there
" B ()= v 2
is a path & =59 — B(sp) il B(s)) g B(s2) X .in M. That is, B is executed from

sp and then applied to cach state of 6.
- - . bl . P
In both cases 7,1 =1, 0 (s = B50)) and Gr7-is the path-that is-obtained from & by —

removing the first transition s lev B(sp).

Let 1 be the path such that the prefix of length 7 is n;. The path n is well defined in that »,
is constructed from n,_; by appending a single transition.

LemMa 26 The following hold for all i, j such that j > 7 = (.

L. my~g 7).

2. vis(tr(m)) = vis(tr(m;)).

3. Let§; be a prefix of 77; and &; be a prefix of 7r; such that vis(tr(§)) = vis(tr(§;)). Then
L(last(&)) = L(last(&;)).

Proof It is sufficient to consider the case where j =i + |. Consider the three ways of
constructing ;| from ;. In case A, 7; = 7,4, and all three parts of the lemma hold
trivially.

Next, consider case B1 of the construction, in which ;. is obtained from m; by
executing some invisible transition g in 7, earlier than it is executed in z,. In this case,
we replace the sequence s oy S\ — i Skl hv st by S0 uhv B(s0) % B(sy) Sy
= P(si—1). Because g is invisible, corresponding states have the same label, that
is, foreach 0 <! < k, L(s;) = L(B(5;)). Also, the order of the visible transitions remains
unchanged. Parts 1, 2, and 3 follow immediately.

Finally, in case B2 of the construction, the difference between 7; and ;. is that &,
includes an additional invisible transition . Thus, we replace some suffix s = s Rl
...of m; by so Ly B(sy) o B(sy) =l B(s)) S So, L(s;) = L(B(s;)) for [ = 0.
Again, the order of the visible transitions remains unchanged. As in the previous nlu.wc‘

parts 1, 2, and 3 follow immediately. O

LEmMa 27 Let i be the path constructed as the [imit of the finite paths ;. Then, n belongs
to the reduced state graph M'.

Proof By induction on the length of the prefixes 7, of 1. The base case is that 1 is a
single node, which is an initial state in §. According to the reduction algorithms, all the
initial states are included in S” as well. For the inductive step, assume that 7; is in M. Then

PN H It

ot =1~

ed-from—by-appendineatransition from ampleUast (1)) O
£ +

notree-tnatr

CI E.: E.u . 4 A ,
o = B(sy) —> s34 —> ... in M. Thatis, f is moved to appear before cpo ez . . a1
E.‘,_ 5:

Note that 8(s;) = s; 1. Therefore, B(sy) —> sg42 18 the same as Si4| —> 5% 2.

HTT e
- OOt OO oy —dp ettt
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The following three lemmas will be used to show that the path 1 that is constructed as
the limit of the finite paths 7; contains all of the visible transitions of o, and in the same

order.

LEMMA 28  Let « be the first transition on 6;. Then there exists j > i such that « is the last

transition of n;, and for i <k < j, « is the first transition of ;.

Proof  According to the above construction, if « is the first transition of ¢, then either it is
the first transition of &, . (case B), or it will become the last transition of 1, | (case A). We
need to show that the first case cannot hold for every k > i. Suppose, on the contrary. that
this is the case. Let sy = first(0;). Consider the infinite sequence s;, 5; 1. . . . . According
to the above construction, s | = yi (s1) for some y; € ample(sy). Morcover, because « is
the first transition of 0, and was not selected in case A to be moved to 1,4, ¢ must be in
enabled(s;) \ ample(s;). Because the number of states in S is finite, there is some state s
that is the first to repeat on the sequence s;, s, .. .. Thus, there is a cycle sg, 5044, - . -
with s, = 53, where « does not appear in any of the ample sets. This violates Condition C3.

re

o
LEMMA 29 Let y be the first visible transition on 0; and prefix,, (6;) be the maximal prefix

of tr(6;) that does not contain y. Then one of the following holds:

=y is the first transition of @; and the last transition of 1; ., or
invisible, and

= iy the first visible transition of ¢, ., the last transition of 1),

prefix, (0;,1) C prefix, (6,).

Proof  The first case of the lemma holds when y is selected from ample(s,) and becomes
the last transition of 1; 1, according to case A of the construction. If this does not happen,
there exists another transition g that is appended to 7; to form ;. The transition £ cannot
be visible. Otherwise, according to Condition C2, ample(s;) = enabled(s;). By case B1
of the construction, f must be the first transition of ¢;. But then £ is a visible transition that
precedes y in ¢, a contradiction.

There are three possibilities:

1. B appears on ¢, before y (case Bl in the construction),

to

B appears on 6; after y (case B1 in the construction), or

A is independent of all the transitions of ¢, (case B2 in the construction).

(o

According to the above construction, in (1), prefix, (0;1) C prefix, () since f is removed
In (2) and (3), prefix (0;,.)) =

H—hefore—whenconstructing 6.

o e o
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LEmMa 30 Let v be a preftix of vis(tr(o)). Then there exists a path #; such that v =
vis(tr(n)).

Proof By induction on the length of v. The base holds trivially for |v| = 0. In the induc-
tive step we must prove that if vy is a prefix-of vis(t(o))-and there is a path 7; such that
vis(tr(n;)) = v, then there is a path n; with j > i such that vis(tr(n;)) = vy. Thus, we
need to show that y will be eventually added to »; for some j > i, and that no other vis-
ible transition will be added to 1 fori < k < j. According to case A in the construction,
we may add a visible transition to the end of 7, to form 5, | only if it appears as the first
transition of #;. Lemma 29 shows that y remains the first visible transition in successive
paths 6 after 6; unless it is being added to some 7,. Moreover, the sequence of transitions
before y can only shrink. Lemma 28 shows that the first transition in each ¢, is eventually
removed and added to the end of some 7; for / > k. Thus, y as well is eventually added to
some sequence 77;. O

THEOREM 12 The structures M and M are stuttering equivalent.

Proof  Each infinite path of M" that begins from an initial state must also be a path of M,
for it is constructed by repeatedly applying transitions from the initial state. We need to

. o) oy
show that for each path 0 =55 — s,

apath p =nr @.v r l?i ... in M"such that o ~,, n. We will show that the path 7 that is
constructed above for o is indeed stuttering equivalent to o.

First, we show that o and » have the same sequence of visible transitions, that is.
vis(tr(a)) = vis(tr(n)). According to Lemma 30, 5 contains the visible transitions of
o in the same order, because for any prefix of o with m visible transitions, there is a
prefix 7; of n with the same m visible transitions. On the other hand, o must contain the
visible transitions of 5 in the same order. Take any prefix n; of 1. According to Lemma 26,
7; = 1; o 6; has the same visible transitions as 7, = o. Thus, ¢ has a prefix with the same

> ... in M, where s is an initial state, there exists

sequence of visible transitions as 7;.

We construct two infinite sequences of indexes 0 =iy < i, <...and 0 = Jo<ji<.
that define corresponding stuttering blocks of o and », as required in the definition of
stuttering. Assume that both o = 7 and 5 have at least n visible transitions. Let i, be the
length of the smallest prefix &, of o' that contains exactly n visible transitions. Let j,, be the
length of the smallest prefix 7;, of 7 that contains the same sequence of visible transitions
as &,. Recall that 7, is a prefix of 7. Then by part 3 of lemma 26, L(s;,) = L(rj,).
By the definition of visible transitions we also know that if n > 0, for i, | <k <i, — I,
L(sy) = L(s;,_,). This is because i, is the length of the smallest prefix &, _, of o that
contains exactly » — | visible transitjons. Thus, there is no visible transition between [,

prefix,,(6;) since the prefix of 6; ;| that precedes the transition y has the same transitions as
’

the corresponding prefix of #;. 0O

and i, — 1. Similarly, for j, | <l < j, =1, L(r) = L(r, ).
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If both o and 5 have infinitely many visible transitions, then this process will construct
two infinite sequences of indexes. In the case where o and n contain only a finite number of
visible transitions m, we have that for k > i,,, L(s;) = L(s;,,) and for! > j,, L(r;) = L(r},).

~We then-set-for k> nt, ip+ =i+ Land jrp = ji+ 1. By the above, for k > 0, the blocks

Of States Si, Siytts+ « =08 j=1 A Fjy Fig 1y - on ¥y .11 are corresponding stuttering blocks

that have the same labeling. Thus, o ~, 1. O

10.7 Partial Order Reduction in SPIN

SPIN [138, 140] is an on-the-fly LTL model checker that uses explicit state enumeration
and the partial order reduction. It was developed at Bell Laboratories by Gerard Holzmann
and Doron Peled. The tool is used primarily for verifying asynchronous software systems,
in particular communication protocols. It can check a model of a program for deadlocks or
unreachable code or determine if it satisfies an LTL specification, based on the translation
algorithm [124] described in Section 9.4. The tool uses the partial order reduction [139,
209] to limit the state space that is scarched.

The input language for SPIN, called PrRoMELA, was developed by Gerard Holzmann.
This language uses syntactic constructs from several different programming languages.
PROMELA expressions are inherited from the language C [154]. Thus, the language has the
operators ‘==" (equals), ‘! =" (not equals), ‘||" (logical or), ‘&&’ (logical and), and ‘%’
(reminder modulo an integer). Assignment is denoted by a single ‘=" symbol. Negation is
denoted by prefixing a boolean expression by the operator *!".

The syntax for communication commands is inherited from CSP [137]. Sending a mes-
sage that contains the tag tg and the values val, vabs, . . ., val, over channel ch is de-

noted by

ch!tg(valy, vals, . .., val,)

in the sending process. Receiving a message with tag tg over channel ch is denoted by
ch?tg(vary, vars, ..., var,)

in the receiving process. The message consists of n values that are stored in the vari-
ables var, var,, ..., var,. SPIN also allows untagged message passing. The language
implements both message passing with queues and message passing using handshaking. In
message passing with queues, a channel of some fixed length temporarily stores the values
sent, so that the sending process can proceed to its next command, even if the receiving
process is not yet ready to process the incoming data. In message passing with handshak-
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if do
zguard,— > 8 wguard|— > S,
wguard,— > S, wguard,— > S

i guard,— > §, o guard,— > S,

fi od

Figure 10.10
Conditionals and loops in SPIN.

with the same channel and tag (if a tag is present) are executed simultaneously. This results
in the assignment of val; to var;, for 1 <i <n.

The conditional constructs and loops are based on Dijkstra’s Guarded Commands [95]
and use the syntax in Figure 10.10.

Each guard consists of a condition, a communication command, or both. In order for a
guard to be passable, its condition must hold, and its communication command must not
be blocked. In message passing with queues, a send command is blocked when the queue
is full, and a receive command is blocked when the queue is empty. In message passing
based on handshaking, communication is blocked when only one of the communicating
processes is ready to send or to receive.

When executing the if construct and at each iteration of the do loop, one of the passable
guards guard; is selected nondeterministically and then the corresponding command §; is
executed. A do loop repeats until either a goto comimand forces a branch to a particular
label outside its scope, or a break command forces a skip to the first command after the
do loop.

The reduction obtained by using the ample set technique described in Section 10.3
is demonstrated using the leader election algorithm developed by Dolev, Klawe, and
Rodeh [102]. This algorithm operates on a ring of N processes. Each process initially has
a unique number. The purpose of this algorithm is to find the largest number assigned to a
process. The ring of processes is unidirectional; hence, each process can receive messages
from its left and send messages to its right.

Initially, each process P; is active and holds some integer value in its local variable my_
val. As long as P is active, it is responsible for some value. This value may change during
the execution of the algorithm. The current value of P is held in the variable max. A process
becomes passive when it finds out that it does not hold a value that can be the maximum
one. A passive process can only pass messages from left to right. Each active process P

l—ts-own-valne—to-theright and then waits 1o receive the value of the closest active

ing, a channel is defined in SPIN to be of length 0. Then, a send and a receive command

SCROS—HS— oWy ihrte—to—tHe—H{
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process P; on its left. This value is received using a communication command tagged with #define noleader (number_leaders == 0)
one #define oneLeader (number_leaders == 1)

If the value received by P; is the same as the value it sent, then P, can conclude that it
byte number_leaders = 0;

B “isthe ‘O\:‘_v‘\ active ‘Hu_.Oﬂmmmﬂj&ﬂ?ﬂ:ﬁmﬂ.:m value-is-the maximum. u—.ﬁﬁzrﬁ_\cnﬁmm ‘m‘mnbmmzﬁiu - — r - o ‘( e

value 6 the right with the tag winner. Every other process Rna?mm .:1.;. value and sends it tdotins N i /% mumber of procassss Tn the ring #/
to the right exactly once, so that all the processes can learn the winning number. #define L 12 /% 23N %/
If the value received by F; is not the same as the value it sent, then 7, waits for a second byte I;
message, tagged with two, that includes the value of the second closest active process on ;
its left P,. Then, P, compares its own value with the two values it received from P; and mtype = { one, two, winner };
P, If the value received from P; is the greatest among the three, then P; keeps this value. chan q(N] = [L] of { mtype, byte};

That is, P; becomes responsible for the role of the closest active process P;. Otherwise, P,
: proctype P (chan in, out; byte my_val)
{ bit Active = 1, know_winner = 0;

byte number, max = my_val, neighbor;

becomes passive. )
The execution of the algorithm can be divided into phases. In each phase, except the last,
all of the active processes receive messages tagged with one and two. In the last phase, the

surviving process receives its own value via a message tagged with one and then this value
out!one(my_val);

is propagated around the ring. s
The protocol guarantees low _:awmumo oo.::g_ox_c\ O(N x \EJAZ:H ‘:._._m complexity : . tnfens(mmber) > /+Get 1aft active neighbor valuekf

bound holds because at least half of the active processes become passive in each phase. ] if

To see this, consider the case where P; remains active. Then the value of P; must be bigger .. Active —>

than the values of P; and P.. If P; also survives, then the value of P, must be larger than , if

the value of P;. This is a contradiction. Thus, in each phase except for the last, if a process :: pumber '= max ->

remains active, the first active process to its left must become passive. In each phase, the out !two(number); neighbor = number

number of messages passed is limited to 2 x N, since each process receives two messages :: else —>

from its left neighbor. ‘know_winner = 1; out!winner (number);

The PrROMELA code for the leader election algorithm appears in Figure 10.11. We omit
the code for initializing the processes. This includes assigning a distinct number to each
process and starting the execution of that process. The channel ¢[(i + 1)%N] is used
to send messages from process P; to process gy, where %N denotes the reminder

fi
:: else —>

out!one (number)
fi

Figure 10.11

modulo N.
The leader election protocol in PROMELA.

The property that we checked is given by the LTL formula

noLeader UG onelLeader. v . . ’ . " o
: The negation of the checked property is automatically translated into a Biichi automa-
ton, based on the algorithm described in Section 9.4. An additional minimization stage

This formula asserts that in each execution there is no leader until some time in the
combines nodes with the same branching structure. The automaton is described using a

future when a leader is selected. From that point onward, there is exactly one leader.
The predicates nolLeader and oneleader are defined as number_leaders == 0 and special syntactical construct of PROMELA called the never claim. The reason for this name

number _leaders == 1, respectively. is that the automaton, obtained by translating the negation of the checked property, repre-

— ]
B =R N ——— ———————
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TO_init:
if
:: (! ((noLeader))) -> goto TO_S28
2+ (! ((noLeader)) && ! ((oneLeader))) -> goto accept_all
:: in7two(number) -> /*Get second left active neighbor value*/ i 1: (1) -> goto TO_S9
if : 11 (! ((oneLeader))) -> goto accept_S1
:: Active -> fi;
e b aceest
:: neighbor > number && neighbor > max -> if e
max = neighbor; out!one(neighbor) :: (1 ((noLeader))) -> goto TO_S28
:: else ~> :: (! ((noLeader)) &% ' ((oneLeader))) ~> goto accept_all
Active = 0 /* Becomes passive */ 21 (1) -> goto TO_S9
fi i (! ((oneLeader))) -> goto TO_init
i1 else —> iz
out!two (number) accept_S9:
fi ) if
A A 21 (! ((noLeader))) -> goto TO_S28
: wb&:wpcmwmacadmﬂv -> :: (t ((noLeader)) && ! ((oneLeader))) -> goto accept_all
if ;1 (1) => goto TO_S9
:: know_winner :: (! ((oneLeader))) -> goto TO_init
:: else -> out!winner (number) fi;
i accept_S28:
break if
od :: (1) -> goto T0_S28
Figure 10.11 (continued) t: (! ((oneLeader))) -> goto accept_all
fi;
. . ) TO_S9:
sents the computations that should never happen. The never claim for the above property is if

shown in Figure 10.12. The label of each initial node contains the word init and the label :: (1 ((noLeader))) -> goto TO_$S28
7+ (1 ((noLeader)) && ! ((oneLeader))) -> goto accept_S28
2 (1 ((noleader)) &% ! ((oneLeader))) -> goto accept_all
:: (! ((oneLeader))) -> goto accept_S9

10 (1) -> goto TO_S9

12 (! ((oneLeader))) -> goto accept_Si

of each accepting node contains the word accept.

SPIN intersects the automaton extracted from the program and the never claim automa-
ton. This intersection is done on-the-fly, using the double-DFS algorithm presented in
Section 9.3 and the partial order reduction. If the intersection is not empty, an error trace is

reported.

The experimental results are summarized in the table in Figure 10.13. The experiments £d;
were conducted on an SGI Challenge machine. The memory in the table is given in g Ho-mwmu
megabytes. Verifying the algorithm with five and six processes without using the partial R
order reduction did not terminate. The table indicates that the case of five processes without MWV AMMnMMMMQMMwwvmmnv P
partial order reduction was still running after forty hours. The results of this experiment 5 -
clearly demonstrates how the partial order reduction is able to alleviate the state explosion accept_all:
problem. skip

}

——— ]
Figure 10.12

The never claim for the specification.
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Equivalences and Preorders between Structures
_ Régiiced In this chapter we will show how to avoid the state explosion problem by developing
Non-reduced T ; y o
O — S HJ\J T Time techniques that replace a large structure by a smaller structure which satisfies the same
. Sisite cmory Time States Memory . - Sl
Procs: Sties il e properties. We have already seen one example of this technique in Chapter [0 where the
3 15929 1.801 13.8 sec 1435 _1.493 0.0 see 1 partial order reduction was used to reduce the size of structures while preserving the truth
B . 3§ 3.5 sec . - . . . ‘
4 522255 15.727 9.3 min 8475 ied% ,JMQ.,F of LTL formulas that do not involve the next-time operator. More generally, given a logic
18 . : 57555 3.234 28.7 sec : . g
5 - 128 40 hiouss .,wwélﬁ 15695 4.1 L and a structure M. we would like to find a smaller structure M’ that satisfies exactly
3408 3.625 § . . . .
5 : the same set of formulas of the logic £ as M. In order o accomplish this goal, we need a

notion of equivalence between structures that can be efficiently computed and guarantees
m“ﬂ”_ﬁ:“m:ﬁ results for the partial order reduction. that two structures satisfy the same set of formulas in £. We first consider the logic CTL?
and bisimulation equivalence [207].

It is convenient to include a set of initial states 5y and a set of atomic propositions A F
with every structure M. Thus, a typical structure is M = (AP, S, R, Sy, L). If fairness is
also considered, then M = (AP, S, R, Sy. L, F). Sometimes it is necessary to transform a
structure that does not have fairness assumptions into one that does, while preserving the
set of paths considered as computations. This can be accomplished by letting F = {§}.

Let M =(AP,S,R.S),L)and M'=(AP,S", R, S. L") be two structures with the same
set of atomic propositions AP. A relation B € S x S" is a bisimulation relation between

M and M’ if and only if for all s and s', if B(s, s") then the following conditions hold:

1. L(s)=L'(s").
2. For every state s; such that R(s, s;) there is 5| such that R'(s’, s{) and B(s), 5|).

3. For every state 5| such that R'(s", ) there is s such that R(s, 5,) and B(sy, 5)).

The structures M and M" are bisimulation equivalent (denoted M = M') if there exists a
bisimulation relation B such that for every initial state sy € Sy in M there is an initial state
sy € S in M" such that B(sy, 5,). In addition, for every initial state s, € S, in M" there is an
initial state so € S in M such that B(sy, ).

Figures 11.1 and 11.2 demonstrate simple examples of bisimulation equivalent struc-
tures. The figures show that unwinding a structure or duplicating some part of a structure
may result in a bisimulation equivalent structure. Figure 11.3, on the other hand, shows
two structures that are not bisimulation equivalent. In order to see this, note that the state
labeled with b in M' does not correspond to any of the states labeled with b in M be-
cause none of these states have both a successor labeled by ¢ and a successor labeled
by d.

The following lemma is important in establishing the connection between CTL” and
bisimulation equivalence. We say that two paths 7 = sgs;, ... in M and 7' = s/s], ... in
é\ncz.ﬁwczam;:qo=_<:4,339.5.VAWQCHL.Q.
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