
Sequencing Operator Counts

Toby O. Davies, Adrian R. Pearce,
and Peter Stuckey

National ICT Australia and
The University of Melbourne

Melbourne, Australia
firstname.lastname@nicta.com.au

Nir Lipovetzky
Computing & Information Systems

The University of Melbourne
Melbourne, Australia

nir.lipovetzky@unimelb.edu.au

Abstract

Operator-counting is a recently developed framework for
analysing and integrating many state-of-the-art heuristics for
planning using Linear Programming. In cost-optimal plan-
ning only the objective value of these heuristics is tradition-
ally used to guide the search. However the primal solution,
i.e. the operator counts, contains useful information. We
exploit this information using a SAT-based approach which
given an operator-count, either finds a valid plan; or generates
a generalized landmark constraint violated by that count. We
show that these generalized landmarks can be used to encode
the perfect heuristic, h∗, as a Mixed Integer Program. Our
most interesting experimental result is that finding or refuting
a sequence for an operator-count is most often empirically ef-
ficient, enabling a novel and promising approach to planning
based on Logic-Based Benders Decomposition (LBBD).

Introduction
We investigate the problem of sequencing operator counts
obtained from an operator counting heuristic. The algorithm
will find a feasible sequence, if it exists, or obtain an ex-
planation why there is no plan that uses only the operators
counted. We refer to these explanations as generalised dis-
junctive action landmarks.

Disjunctive action landmarks are a core feature of many
admissible heuristics (Helmert and Domshlak 2009; Bonet
and Helmert 2010; Haslum, Slaney, and Thiébaux 2012;
Imai and Fukunaga 2014). Admissible heuristics based on
these landmarks count the occurrence of any operator at
most once. Most are dominated by the optimal delete re-
laxation h+ (Helmert and Domshlak 2009).

We generalize this notion of disjunctive action landmarks
to count operators multiple times, and show that admissible
heuristics using generalized landmarks are capable of defin-
ing the perfect heuristic h∗. As disjunctive action landmarks
are the only kind of landmark we consider in this paper, we
will refer to them simply as “landmarks”.

We present a complete, incremental algorithm for gen-
erating generalized landmarks, prove that generalized land-
marks can encode h∗, and experimentally verify that this al-
gorithm computes h∗. We show that even if we compute h∗,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the corresponding operator count does not necessarily rep-
resent a valid plan. Our approach can be used both as an
incremental lower bound function and as an optimal plan-
ner, much like h++ (Haslum 2012), as our approach does
not terminate until it finds a proof that it has computed h∗,
i.e. finds a plan with optimal cost.

We explain this approach to planning in terms of Logic-
Based Benders Decomposition (LBBD). LBBD partitions
an optimization problem in terms of a Mixed Integer Pro-
gramming master problem, and one or more combinatorial
subproblems used to explain flaws in the master problem.

This approach to planning is particularly promising for
two reasons. Firstly, it introduces a principled interac-
tion between operator-counting heuristics and SAT. This
interaction can be applied to any explanation-based com-
binatorial search approach including SAT Modulo The-
ories (SMT) (Nieuwenhuis, Oliveras, and Tinelli 2006)
and constraint programming using Lazy Clause Generation
(LCG) (Ohrimenko, Stuckey, and Codish 2009). Constraints
or theories capable of generating clausal explanations can
be added to the SAT model we present, potentially allowing
direct integration of cost-optimal planning with SMT and
state-of-the-art scheduling approaches based on LCG. Plan-
ning Modulo Theories problems (Gregory et al. 2012) could
therefore potentially be tackled using the extensive range of
existing theories and constraints already implemented by the
SMT and constraint programming communities.

Secondly, this approach decomposes the planning prob-
lem into problems for which there exist well-suited optimi-
sation technologies: Mixed Integer Programming handling
the linear counting constraints; and Conflict-Directed Clause
Learning for the problem of operator sequencing given op-
erator counts. This allows planning to take advantage of the
ever improving performance of both of these widespread and
industrially applied technologies.

Background
SAS+ planning A SAS+ planning task is a tuple
〈V,O, s0, s∗, c〉 where V is a set of finite domain state vari-
ables, O is a set of operators, s0 is a full assignment of each
variable to one of its values representing the initial state, and
s∗ is a partial assignment of some subset of V representing
the goal states. Finally c is a function O → N+

0 that assigns
a non-negative cost to each operator.

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

61



Each variableX ∈ V has a domainD(X), we sometimes
abuse notation and write X=x ∈ V which should be read
X ∈ V ∧ x ∈ D(X). Each operator o has a set of precondi-
tions pre(o) which is a partial assignment representing the
preconditions of that operator, and a set of postconditions
post(o) which is a partial assignment representing the ef-
fects of the operator. Producers, prod(X=x) = {o | X=
x′ ∈ pre(o) ∧X=x ∈ post(o) ∧ x′ 6= x} are the operators
which cause X=x to become true. Note that for simplic-
ity, we do not distinguish between preconditions and prevail
conditions in this paper.

A state s in the search space is a full assignment of ev-
ery variable to a value. State s is said to satisfy a par-
tial assignment F if all assignments in F are also in s, i.e.
X=x ∈ F ⇒ X=x ∈ s. A state is said to be a goal state if
it satisfies the partial assignment s∗.

An operator o ∈ O is applicable in s if s satisfies the par-
tial assignment pre(o). If o is applicable in state s, applying
o yields a new state s′ which is the same as s except that all
assignments X=x ∈ post(o) replace any assignment to X .

A plan π is a sequence of operators o1, · · · on such that o1
is applicable in s0, each subsequent operator is applicable in
the state resulting from applying the previous operators in
sequence, and the final state satisfies s∗. An optimal plan
has the minimum sum of operator costs of all plans, a SAS+
planning task may have many optimal plans.

Mixed Integer Programming A Mixed Integer Program
(MIP) is a representation of a combinatorial optimisation
problem in terms of linear constraints over some finite set
of integer and continuous variables. Finding a solution to a
MIP is an NP-complete problem, however its linear relax-
ation, (which replaces all integer variables with continuous
ones) can be optimised in polynomial time.

In recent years many admissible planning heuristics have
been proposed that use linear programs (van den Briel et al.
2007; Coles et al. 2008; Bonet 2013; Pommerening et al.
2014; Bonet and van den Briel 2014).

Of particular interest is the family of operator-counting
heuristics. Operator-counting uses a linear programming
framework with a common set of variables Yo representing
the count of occurrences of each operator o in some relaxed
representation of a plan. One or more component heuris-
tics can be encoded as linear constraints on these variables
such that the combined operator-counting heuristic domi-
nates each of the component heuristics, often strictly (Pom-
merening et al. 2014). Pommerening et al. describe how to
encode a variety of heuristics within this framework, includ-
ing optimal cost partitioning (Katz and Domshlak 2008) of
LM-Cut landmarks (Helmert and Domshlak 2009).

As presented in the original paper, operator-counting
heuristics may be linear programs, by requiring operator
count variables to be integer, we obtain a MIP that is at least
as tight as the LP. As we wish to obtain perfect operator
counts, branching on operators will be essential in general,
and in the remainder of this paper we will assume that any
operator-counting heuristics are in fact MIPs, and we will be
explicit when we solve only the linear relaxation.

Operator Counts The solution to an operator-counting
heuristic assigns a count to each operator o whenever the
MIP is optimized. To distinguish the count assigned to each
operator by a solution to an operator-counting heuristic from
the variable Yo, we refer to a solution to the heuristic as an
operator-count C.

We primarily treat an operator-count as a function from
operators to their count assigned in the last solution of the
MIP. The values of each Yo will change throughout any solv-
ing process, conversely an operator count C should be con-
sidered an immutable copy of the assignments. We also refer
to operator counts as multisets: a count C is said to be a su-
perset of another count C′ if ∀o ∈ O : C(o) ≥ C′(o).

An operator-count C is said to be a projection of a plan π
if for each distinct operator o, there exist exactly C(o) copies
of that operator in π. We say an operator count is perfect if
it is the projection of an optimal plan.

Delete Relaxation The delete relaxation changes the
SAS+ transition function such that applying an operator o
does not replace previous assignments to variables, but ac-
cumulates them.

Imai and Fukunaga (2014) introduce a new MIP encoding
of the optimal delete relaxation heuristic h+. Their model
uses 0-1 variables U(o) for each operator o to represent the
fact that at least one o appears in the delete-relaxed plan.
They also present an extension to h+ which they call “count-
ing constraints” which are roughly equivalent to the lower-
bound constraints in single-variable flow models (van den
Briel et al. 2007). These constraints utilise additional inte-
ger variables N (o) which count occurrences of an operator
o. For consistency with Pommerening et al. (2014), we will
denote N (o) as Yo.

Incremental lower bounding Incremental lower bound-
ing is a general technique for obtaining high-quality lower
bounds, which can be useful in proving the quality of an ex-
isting plan. Incremental lower bounding was most promi-
nently used in planning by Haslum (2012), however the
technique is used throughout the various optimisation com-
munities, referred to as “dual” techniques, reflecting the dual
(lower) bound obtained from a linear program. Haslum
(2012) describe a distinctive property of incremental lower
bounding techniques as “informed by flaws in the current
[optimum]”.

Generalized Landmarks
The constraints in the h+ model of Imai and Fuku-
naga (2014) rely on operator variables being binary. In gen-
eral this does not hold with operator counting heuristics. In
particular, flow-based heuristics (van den Briel et al. 2007;
Bonet 2013; Bonet and van den Briel 2014) can count ar-
bitrarily many executions of an operator. Imai and Fuku-
naga use N (o) variables to handle this in their “counting
constraint” extension. Changing these N (o) variables to Yo
leads us to a simple but interesting alternative notation for

62



R : l r

move-r

move-l

Bi : l g r

grip-i-l drop-i-r

grip-i-rdrop-i-l

G : e n
grip-*-*

drop-*-*

Figure 1: Domain Transition Graphs in gripper. The vari-
able R represents the location of the robot (in the left or
right room) ; Bi represents the location of ball i, (in the left
or right room, or in the gripper); G represents the state of
the gripper (empty or non-empty). For each automaton, the
initial state is marked by an incoming arrow, and the states
consistent with the goal s∗ are double circled.

their core U(o) variables, which we denote [Yo ≥ 1].1 We
generalize this notion by separating variables representing
the number of times an operator o occurs, Yo, from variables
representing if an operator occurs at least k times, [Yo ≥ k],
which we refer to as bounds literals.

Bounds literals can be used to form linear constraints of
the form [Yo1 ≥ k1] + · · · + [Yon ≥ kn] ≥ 1 which we
call generalized landmark constraints. Note that only one
bounds literal need occur per operator within the same land-
mark. If the same operator o had two literals [Yo ≥ k1]
and [Yo ≥ k2] in the same landmark with k2 > k1, then
[Yo ≥ k2] can be omitted without changing the solutions, as
[Yo ≥ k1] ≥ [Yo ≥ k2].
Definition 1. A generalized landmark constraint is a linear
inequality of the form:∑

i∈L
[Yoi ≥ ki] ≥ 1

for some L ⊆ O.
We call these generalized landmarks because any tradi-

tional disjunctive action landmark can be encoded as a gen-
eralized landmark by setting all ki = 1.

Consider an instance of the simplified gripper domain
shown in Figure 1 with 2 balls. The goal is to move both
balls from the left room to the right, using a robot with a
single “gripper” which can hold only one ball at a time. The
robot starts in the right room, and can only pick up and drop
balls in the room it is currently occupying.

The operator count obtained by h+ on this domain counts
the following.

C(o) = 1 if o ∈ {move-l,move-r, grip-1-l,
grip-2-l, drop-1-l, drop-2-l}

C(o) = 0 otherwise
1Iverson brackets denote binary variables of the form [P ] that

take the value 1 iff the condition P holds.

Note that there is only one occurrence of the move-r opera-
tor, however all feasible plans must contain two of this oper-
ator. We can add the constraint [Ymove-r ≥ 2] ≥ 1 to explain
this requirement. With the addition of this constraint the
MIP returns the optimal operator count for this instance.

If there existed an alternative path for the robotR to move
between rooms the constraints are more complex. Consider
an additional operator move-r’ identical to move-r. The con-
straint we described above would no longer be valid: it is
possible to solve the planning problem with one of each of
the two identical operators.

However adding both of the following constraints:

[Ymove-r ≥ 2] + [Ymove-r’ ≥ 1] ≥ 1

and
[Ymove-r ≥ 1] + [Ymove-r’ ≥ 2] ≥ 1

captures the requirement that two of the move operators
must occur in any feasible plan. These can be read as “ei-
ther move-r occurs at least twice, or move-r’ occurs at least
once”; and “either move-r occurs at least once, or move-r’
occurs at least twice.” The conjunction of these implies that
a total of at least two of these operators must occur.

To enforce the correct behaviour of bounds literals we
need to add the following domain constraints2 to our model:

[Yo ≥ k] ≤ [Yo ≥ k − 1] if k > 0 (1)

Yo ≥
k∑
i=1

[Yo ≥ i] (2)

Yo ≤M [Yo ≥ k] + k − 1 (3)

WhereM is a sufficiently large number such that no feasible
plan could contain more than M of any individual operator.
In practice this number need only be as large as the longest
plan the solver could feasibly solve. Constraint 1 ensures
that a bound can’t hold unless the next smallest bound also
holds; 2 ensures that if k bounds literals are set, then at least
k operators must occur; and finally 3 ensures that if k or
more operators occur, the bounds literal [Yo ≥ k] must be
set.

Note that the constraint

[Ymove-r ≥ 1] + [Ymove-r’ ≥ 1] ≥ 1

is semantically equivalent to the traditional landmark con-
straint

Ymove-r + Ymove-r’ ≥ 1

however the former has a tighter linear relaxation since
Yo ≥ [Yo ≥ 1] always holds for any o. For example, the lin-
ear relaxation could assign [Yo ≥ 1] = 0.5, [Yo ≥ 2] = 0.5,
Yo = 1. In this case the constraint [Yo ≥ 1] ≥ 1 is violated,
but Yo ≥ 1 is not. Consequently if any operator-counting
heuristic uses bounds literals, it is always preferable to en-
code landmark constraints using the bounds literals.

2Domain constraints reflect the fact that Yo variables are finite
domain variables, and the bounds literals we use are closely re-
lated to bounds literals used in lazy clause generation (Ohrimenko,
Stuckey, and Codish 2009), where the same term is used.

63



Lemma 1. A SAS+ problem’s cost function c can be re-
placed by c′(o) = c(o) + ε where ε > 0 leaving at least
one identical optimal plan.

Proof. There exists an upper bound on optimal plan length
l. Either all actions are uniform cost and any ε will not
change the relative solution costs of minimum-length plans,
or there exists a minimum cost difference between operators
δ = min(c(o)− c(o′) | o, o′ ∈ O ∧ c(o) > c(o′)).

If 0 < ε < δ
l , the sum of ε terms for an optimal plan

must be less than δ, and thus can only change the cost-order
of plans which are either both suboptimal, or of equal cost
according to c.

Theorem 1. For any solvable SAS+ planning problem hav-
ing strictly positive action costs, there exists a set of gen-
eralized landmark constraints (with the domain constraints
for all the bounds literals involved) such that solving a MIP
with these constraints will compute h∗(s0).

Proof. An optimal operator count C (which may initially be
empty) can be obtained by solving the MIP. If C does not
represent the projection of a plan, then the generalized land-
mark constraint: ∑

o∈O
[Yo ≥ C(o) + 1] ≥ 1

can be added.
This constraint can be read “at least one operator must be

applied at least one more time”. This is clearly violated by
C, and can only possibly invalidate subsets of C. If any strict
subset of C were feasible, C would not be optimal. Con-
sequently this new constraint changes the optimum solution
without affecting the admissibility of the MIP.

There are only finitely many distinct operator counts with
the same cost, and each iteration of this process invalidates
exactly one operator count.

Consequently this process will eventually terminate with:
an operator count that is the projection of an optimal plan,
if any plan exists; an infeasible MIP; or an operator count
containing more operators than states in the state space, im-
plying that no solution exists.

This process will generate sufficiently many generalized
landmarks to compute h∗, but each landmark invalidates
only one new operator count. Consequently, using these
landmarks in a heuristic would likely be inefficient. If we
were to omit bounds literals for some operators from the
landmark, it would invalidate many more operator counts.
This is similar to traditional landmarks which are stronger
when they contain a small subset of operators. To obtain
smaller, more focused landmarks we turn to the conflict
analysis built into modern “Conflict-Directed Clause Learn-
ing” SAT solvers.

SAT Encoding for Operator Sequencing
Assumptions are a feature of most SAT solvers’ incremen-
tal interfaces. These allow the user to temporarily assert unit
clauses. Importantly, if the resulting formula including these

unit clauses is not satisfiable, the final conflict in the unsat-
isfiability proof can always be re-written in terms of a subset
of the assumptions. This conflict clause represents a neces-
sary (though not in general sufficient) property required of
any model. In our SAT encoding assumptions will be used
to ensure that only the operators selected by the operator
counting heuristic are actually used.

The most important high-level constraint in achieving this
is the at-most-k constraint (denoted ≤k). ≤k (S) enforces
that k or fewer literals from a set S are simultaneously true.
This is a well studied constraint in satisfiability, and we use
the sequential counter encoding by Sinz (2005), which is
identical to the O(n) encoding of Rintanen (2006) in the ≤1

case.
We denote by X=i x that X=x holds after operator layer

i and by oi that operator o occurs in layer i.
Given an operator count C and a number of layers L =∑

o∈O
C(o), the following constraints for each layer l form the

core SAT model:

≤1 ({ol | o ∈ O})
∀X ∈ V : ≤1 ({X=lxi | xi ∈ D(X)})

∀X=x ∈ s0 : X=0x

∀o ∈ O :
∧

X=x∈pre(o)

(¬ol ∨X=l−1x)

∀o ∈ O :
∧

X=x∈post(o)

(¬ol ∨ x=lx)

∀X=x ∈ V : X=l+1x⇒

X=lx ∨
∨

o∈prod(X=x)

ol

∀X=x ∈ s∗ : FactXLx ∨ [ΣC(o) ≥ L+ 1]

∀o ∈ O : ≤C(o) ({ol | l ∈ [1, L]}) ∨ [Yo ≥ C(o) + 1]

Additionally we add the following assumptions: ¬[ΣC(o) ≥
L+1] (i.e. that the goal is achieved by layer L); and ¬[Yo ≥
C(o) + 1] for each operator o. Any resulting conflict clause
will be written in terms of the negation of a subset of these
assumptions.

The conflict clause will thus contain [ΣC(o) ≥ L+1] and
some subset of the bounds literals implied by the operator
count. Specifically it will be of the form:

[ΣC(o) ≥ L+1]∨[Yo1 ≥ C(o1)+1]∨· · ·∨[Yon ≥ C(on)+1]

This clause must be a necessary condition on all plans of
length L or less. Since it is also satisfied by any operator
count having more than L actions in total, it is also a neces-
sary condition on all plans. This translates to a generalized
landmark cut by replacing∨with + and appending≥ 1. The
only complication is the ¬[ΣC(o) ≥ L+1] literal, which we
tackle by adding an artificial operator T with zero cost (rep-
resenting the total operator count) to the MIP, constrained
such that:

YT =
∑
o∈O

Yo

Using this new operator, we can replace the total operator
count literal [ΣC(o) ≥ L+ 1] with the bounds literal for the

64



artificial operator T :

[ΣC(o) ≥ L+ 1] ≡ [YT ≥ L+ 1]

It should be noted that the SAT formula we describe only
ensures that no more operators occur than were chosen in the
operator count. Thus it can sequence any subset of an opera-
tor count, allowing it to be used with approximate solutions
while guaranteeing that the same proof of admissibility as in
Theorem 1 applies.

We described earlier the two “hand-made” generalized
landmarks one would add in order to improve the delete re-
laxation in the gripper domain. However the first general-
ized landmark generated from the SAT solver was:

[Ygrip-1-l ≥ 1] + [Ydrop-1-r ≥ 1] + [Ymove-l ≥ 2]

+ [Ydrop-2-r ≥ 1] + [Ygrip-2-l ≥ 1] + [Ymove-r ≥ 2]

+ [YT ≥ 7] ≥ 1

In spite of the conflict analysis in MiniSAT (Eén and
Sörensson 2004), this cut clearly contains irrelevant bounds
literals, and “cut strengthening” (removing irrelevant parts
of generated cuts) will definitely be an important improve-
ment to techniques using generalized landmarks. In some
scheduling domains, cut strengthening has been shown to
be responsible for orders of magnitude decreases in run-
time (Ciré, Coban, and Hooker 2013).

Each operator omitted from a conflict roughly doubles the
number of operator counts that conflict applies to, drastically
decreasing the number of iterations needed to find a perfect
operator count. In our experiments, most of the conflicts
learnt included no more than 10% of the total operators.
While this sounds good, in practice this still means many
conflicts were over 200 operators long, so there is clear room
for improvement.

Planning using Logic-Based Benders
Logic-Based Benders Decomposition (LBBD) (Hooker and
Ottosson 2003) is an approach to decomposing combinato-
rial search problems into a master MIP and one or more
combinatorial subproblems. The master and subproblems
share some variables such that the subproblem becomes eas-
ier to solve or prove infeasible once those variables it shares
with the master are fixed. Importantly, LBBD allows for
mixing of different optimisation technologies which may be
better suited to the master problem and subproblems.

The master problem represents a relaxation of the orig-
inal problem, and the subproblem checks for and explains
flaws in that relaxation. Explanations in this context are
constraints on the variables in the master problem. By in-
crementally adding these explanations, the master problem
incrementally approaches the true solution.

First the master MIP is solved, and the optimal values of
the shared variables are taken from the master, and this opti-
mal assignment is assumed within the subproblem, which is
then solved. If the subproblem is satisfiable then a solution
to the original problem has been found. If, as in our case, the
objective function is fully modelled in the master problem,

Operator Counting
MIP Model

Operator Sequencing
SAT Model

Operator Counts

Generalized Landmarks
Master Problem Subproblem

Figure 2: A Logic-Based Benders Decomposition Approach
to Optimal Planning

then this solution is optimal.3

If the subproblem is not satisfiable, some violated neces-
sary condition on the shared variables is detected, and a con-
straint (the Benders cut) representing this condition is added
to the master problem. The process is then iterated until the
master problem’s relaxation becomes satisfiable.

In our case, the master MIP is any operator-counting
heuristic, the operator counts (strictly speaking the bounds
literals) are shared variables, and the termination condition
is that the optimal operator count is perfect.

Canonical planning (where each operator can be applied
at most once) is NP-complete (Vidal and Geffner 2006),
meaningfully easier than the full planning problem. Many
domains in planning are canonically plannable, that is there
exists a plan containing only one instance of each opera-
tor. Our subproblem of sequencing the operators is pseudo-
polynomially reducible to a canonical planning problem, by
replacing each operator o with C(o) copies of itself, since
C(o) is usually small in optimal plans the subproblem is of-
ten much easier than the full problem in practice.

In our problem solving the master MIP problem takes
considerably longer than the SAT subproblem. Hence we
wish to consider how to speed up the LBBD solving process
by using approximate answers to the master problem.

Solving the linear relaxation of the master MIP problem
is considerably faster than solving it to integrality. Given
an optimal solution to the linear relaxation, rounding up the
variables will simply increase the operator counts available
to the sequencing subproblem (compared to the MIP opti-
mal). Since the SAT subproblem only makes use of the up-
per bounds on operator counts, if it finds this relaxed sub-
problem is unsatisfiable, it will generate a cut which removes
the current LP optimum. If on the other hand it finds a so-
lution to this relaxed sequencing subproblem, then we have
a feasible plan to the original problem. If this plan has the
same cost as the (rounded up) lower-bound found by the LP,
then we have optimally solved the planning problem. If the
plan cost is more than the lower bound, this solution can be
used to bound the search process: the MIP no longer needs
to explore branches where the lower bound exceeds the cost
of the best suboptimal plan found.

If a plan is found from a rounded-up operator count from
an LP optimum, the MIP needs to branch before we can
continue adding cuts. Importantly all modern MIP solvers
provide user-specified cut generation and heuristic solution

3In general, where the subproblem requires optimisation this is
not true, but we omit this case for simplicity as it does not apply to
our decomposition. See Hooker and Ottosson (2003).

65



facilities via callbacks. We call our SAT sequencing pro-
cedure inside the python callback interface of Gurobi 5.6
(Gurobi Optimization 2013) if both the cardinality and ob-
jective of the rounded-up operator count is within 20% of
the linear count. We test for this to avoid generating SAT
formulas for counts that are too far from the linear optimum,
as the memory cost of adding layers to the formula is quite
high. If we call the sequencing procedure, we either add a
violated cut or a heuristic solution.

We do not modify Gurobi or MiniSAT’s default branching
behaviours, though it should be noted that state-of-the-art
planning-as-satisfiability solvers use heuristics to simulate
backward-chaining (Rintanen 2012). We expect similar im-
provements could be possible by tailoring branching strate-
gies in a MIP solver for the operator counting problem.

There is one caveat to using callbacks to add cuts to the
MIP: it is impossible to lazily add bounds literals during the
MIP’s search. Consequently we do two things: pre-allocate
bounds literals up to [Yo ≥ 2]; and add a relaxed version
of the cut where each absent literal [Yo ≥ k] is replaced by
Yo/k. This happens in only a small percentage of cuts as
even rounded-up operator counts rarely contain more than
one of each operator. Cuts containing such Yo/k terms are
weaker than the normal landmarks, as for any value of Yo:

[Yo ≥ k] ≤ Yo/k
However unless there is more than one missing bounds lit-
eral, this constraint still invalidates the current linear opti-
mum. If a weakened constraint is generated that does not
invalidate the current linear optimum, the MIP search is
restarted after any weakened terms are replaced with the cor-
rect bounds literals.

This general approach of computing constraints violated
by a close-to-optimal solution has many similarities with
the improved landmark generation procedure of Haslum,
Slaney, and Thiébaux (2012). In particular the incremen-
tal lower-bounding procedure h++ is very similar to our
approach: both maintain a relaxation of the planning task
(a delete-free problem with conjunctive conditions or an
operator-counting MIP respectively); both incrementally re-
fine their relaxation by finding flaws in the current relax-
ation’s optimum (required conjunctive conditions or gen-
eralized landmarks respectively); and both exclusively find
necessary properties of all plans, rather than focusing on ex-
tending promising plan prefixes, as in A∗-based planners.

Experiments
The main purpose of the experiments is to experimentally
validate Theorem 1 and to investigate how sequencing per-
forms on a wide array of near-optimal operator counts. We
use IPC-2011 benchmarks, since our current prototype does
not handle conditional effects required by IPC-2014 bench-
marks, and since the implementation is preliminary it scales
poorly to the significantly larger IPC-2014 benchmarks.

From the IPC-2011 benchmarks, we omit the
floorplan domain as hpp’s parser rejects the do-
main file, and the tidybot and parking domains as
OpSeq’s Python base heuristic encoder exceeds the 1-hour
time limit in more than 90% of instances.

The initial MIP master problem contains constraints from
the dynamically-merged flow heuristic (Bonet and van den
Briel 2014) (including LM-Cut landmarks (Helmert and
Domshlak 2009)), and the h+ base encoding of Imai and
Fukunaga (2014).

Since sequencing considers all subsets of an operator
count, rounding the linear optimum up makes for harder-
to-sequence solutions than the true MIP optima most of the
time. Nonetheless, Figure 3 shows that 99% of all the se-
quence calls take less than 1 second, although there is a
significant long-tailed distribution: 0.01% of sequence calls
took over 5 minutes. Some of this variance should be re-
duced by modifying the SAT solver’s variable choice heuris-
tics: the sequential counter implementation of ≤1 which we
use can be made significantly more robust using such tech-
niques (Marques-Silva and Lynce 2007).

We show breakdowns for the sequence times in each do-
main in the left-hand part of Table 1. The “Seqs” column
shows the number of sequence calls made in all instances of
a domain. The “Dom SeqTime” columns show the average
sequence times for all sequence calls made in that domain.
The “Inst SeqTime” columns show the arithmetic mean of
instance averages. This biases the results towards the be-
haviour seen in larger instances where fewer sequence calls
occur. For example, in barman, the overall average se-
quence time was 0.38 seconds, but, as should be expected,
most of the nearly 80,000 sequence calls occurred in easier
instances so the average sequence times for each instance,
treating each instance’s average as a single data point, show
the average was 13 seconds. The first fifteen instances of
barman have sub-second geometric mean sequence times,
the largest five however have geometric means between 4
and 47 seconds, but under 400 sequence calls were made.

We observe similar sub-second geometric means in most
domains in both cases, though the arithmetic means are no-
ticeably larger in larger instances. We believe there are two
reasons for this: firstly the sequence times include generat-
ing the SAT formula, which often takes longer than solving
in the first sequence call; and secondly, earlier calls have
fewer learned clauses to aid solving.

To evaluate our technique as a dual (incremental lower-
bounding) algorithm, we use a dual of the standard IPC qual-
ity score, where instead of dividing the best known plan cost
by the plan cost found by the planner, the lower bound found
by the planner is divided by the best lower bound proved by
any planner. We compare against hpp, a comparable incre-
mental lower bounding solver; and SymBA*-2 the winner of
the most recent IPC optimal track (Torralba et al. 2014). We
use the versions of both planners submitted to the IPC 2014
optimal track.

As observed by Haslum (2012), optimal planners using
admissible heuristics in state-based (or symbolic) search can
also be used as lower-bounding procedures by observing the
smallest f value of nodes in the open list. Since SymBA*,
like most other planners, regularly prints its best known
lower bound, it is trivial to obtain a lower bound from its
output, even if it has not successfully solved the planning
problem. Table 1 shows for each solver the number of in-
stances solved optimally (column “C”); the number of in-

66



Dom SeqTime Inst SeqTime OpSeq Hpp SymBA*-2
Benchmark Seqs Arith Geom Arith Geom C = Q C = Q C = Q
barman 79392 0.38 0.06 13.06 4.84 0 0 9.37 0 0 9.14 11 20 20.00
elevators 7437 2.55 0.09 2.08 0.26 11 11 19.38 0 0 16.47 19 20 20.00
nomystery 8761 0.04 0.01 0.25 0.03 5 10 18.33 5 8 8.00 15 18 19.82
openstacks 1655 11.21 0.12 63.19 1.60 0 0 5.52 0 0 5.52 20 20 20.00
parcprinter 102 1.65 0.09 2.38 0.19 20 20 20.00 20 20 20.00 17 17 18.63
pegsol 91466 0.45 0.02 13.53 0.12 2 5 15.97 0 0 12.43 19 20 20.00
scanalyzer 57023 0.04 0.02 6.36 0.15 1 3 7.99 3 14 18.93 9 10 14.32
sokoban 121117 0.38 0.11 1.77 0.34 0 2 10.70 1 2 11.27 20 20 20.00
transport 5223 4.42 0.17 33.76 8.38 5 13 19.47 0 0 12.41 11 14 17.81
visitall 97 15.84 0.08 14.49 0.27 14 20 20.00 5 13 19.21 12 12 15.70
woodworking 160 11.83 0.61 11.57 0.97 20 20 20.00 18 18 19.95 19 19 19.74
Total — — — — — 78 104 166.74 52 75 153.33 172 189 206.02

Table 1: Average sequence times, Coverage (C), Number of best bounds (=), and Dual quality scores (Q) for IPC-2011 sequen-
tial optimal track benchmarks. (1 hour time-out, 4GB memory limit)

stances where the solver found the best bound of any solver
(column “=”); and the dual quality score described above
(column “Q”).

We see from these results that SymBA*-2 is extremely ef-
fective, beating both dual techniques in all three metrics in
all but 5 domains, although in 4 of these 5 domains, OpSeq
earns the best dual quality score, and in 3 domains even beats
SymBA* in coverage. OpSeq also beats the previous state-of-
the-art in incremental lower bounding in 9 of the 11 domains
investigated.

We see from the quality scores in the “Q” columns, that
even when OpSeq fails to solve it usually finds good lower
bounds. This can be seen particularly in the nomystery
and transport domains. For primal techniques it is far
quicker to find a plan than to prove that a plan is optimal.
Similarly for a dual technique it is much quicker to find h∗
than it is to prove that we have found it by finding a plan.

Combinations of primal and dual techniques are among
the most effective optimisation techniques: commercial
mixed integer programming solvers use both lower bound-
ing from the linear relaxation and sophisticated primal
heuristics to find solutions close to the linear optimum. It
could be argued that this is to some extent what SymBA*
does too: it interleaves spending time on improving abstrac-
tions (dual bounds) with searching in the original search
space (Edelkamp, Kissmann, and Torralba 2012).

Related Work
We have discussed in several places the relationship between
our work and h++. Counter-example guided cartesian ab-
straction refinement (Seipp and Helmert 2013), which in-
crementally refines abstractions, rather than landmarks or a
delete relaxation, could also be considered an incremental
lower-bounding technique.

The only other approach using SAT-based planning tech-
niques in cost-optimal planning that the authors are aware of
uses MaxSAT combined with a SAT encoding of the delete
relaxation (Robinson et al. 2010). SAT planning has also
been used to generate upper bounds to improve performance
of state-based search (Robinson, Gretton, and Pham 2008).

There have also been a number of “Optimal” SAT encod-

Figure 3: Cumulative Frequency of Sequence Times

ings, which find cost-optimal plans only when those plans
happen to have the same makespan as the makespan-optimal
plan (Chen, Lu, and Huang 2008; Giunchiglia and Maratea
2010). However this is clearly not the same as true cost-
optimal planning.

Other generalizations of landmarks have been proposed
including “multivalued landmarks” (Zhang et al. 2013),
which identify operator sets which must collectively be ex-
ecuted more than once:

∑
Yo ≥ k. These can be encoded

in our generalized landmarks using an artificial operator to
group the operators in the landmark (just as for the total op-
erator count) leading to a constraint like [

∑
Yo ≥ k] ≥ 1;

or directly as set of O(
(
N
k−1
)
) “standard” generalized land-

marks.
There exist other heuristics bounded only by h∗, includ-

ing many heuristics enhanced by the PC and PCce com-
pilations (Haslum 2012; Keyder, Hoffmann, and Haslum
2012) and abstraction heuristics such as merge-and-shrink
(Helmert et al. 2014). Merge-and-shrink like most heuristics
in optimal planning provides only a lower bound to guide
search; whereas if an optimal operator count is sequenced
successfully, the planning problem is solved. Similar be-
haviour is also seen in the PC and PCce compilations: when
no flaws can be extracted the planning problem is solved op-
timally.

67



There are more sophisticated planning-as-SAT encodings
that we could have added our counting constraint to, in par-
ticular the ∃-step and ∀-step encodings (Rintanen, Heljanko,
and Niemelä 2006; Wehrle and Rintanen 2007), and the
SASE encoding (Huang, Chen, and Zhang 2012). How-
ever the absence of a tighter upper bound than simply the
total number of operators required to refute any possible
sequence of an operator count made the core advantage of
these encodings less obvious. It would be interesting to com-
pare these base encodings with ours, and a theorem giving
such an upper bound would likely be an important break-
through for the LBBD approach to planning.

Conclusions and Further Work
We have defined a simple generalization of landmarks which
allows the encoding of admissible heuristics upper-bounded
only by h∗. We also introduce a SAT-based, complete al-
gorithm for generating a generalized landmark violated by a
given operator count which is usually very fast. We experi-
mentally confirmed that h∗ can be computed using only this
algorithm, and demonstrated that it outperforms the previous
state-of-the-art in incremental lower bounding: h++.

Our approach can usually generate violated constraints
from solutions to the linear relaxation of an operator count
heuristic, rather than the NP-hard MIP. Importantly, if such
a cut can be generated, it is guaranteed to invalidate the cur-
rent linear optimum, and the current rounded solution, en-
suring such heuristically generated cuts are relevant. This is
in contrast to a similar improvement to a complete algorithm
for generating traditional landmarks (Haslum, Slaney, and
Thiébaux 2012), which relies on approximate hitting sets,
with no guarantee that the generated landmark invalidates
the current optimum hitting set, nor indeed that the landmark
will change the next approximate hitting set generated. This
suggests a more traditional use for our generalized landmark
generation algorithm: applying our algorithm to the delete
relaxation can generate traditional landmarks, and the rel-
ative performance of this approach would be interesting to
investigate.

There are other more conventional applications for gen-
eralized landmarks as well, such as pre-processing to gen-
erate an initial set of generalized landmarks which can then
be used in an analogue of Incremental LM-Cut (Pommeren-
ing and Helmert 2013). We expect this to provide improved
heuristic guidance near the root of the search where it is
most valuable. While we use a complete algorithm to gener-
ate landmarks, there is an obvious fast but incomplete algo-
rithm obtained by simply terminating early when long-tailed
behaviour is observed.

Such an approach could also potentially be used as a kind
of look-ahead in an optimal planner: if an operator counting
heuristic returns a sufficiently small operator count, our ap-
proach could test if the operator count is sequenceable, and
if so, terminate the search early with an optimal plan.

We plan to investigate an extension to our approach which
explains the states in which generalized landmarks apply,
such that landmarks generated in the initial state can be eas-
ily re-used in a state-based search when they become appli-
cable again.

However we chose to explore the more novel LBBD ap-
proach to planning using generalized landmarks in the hope
that this decomposition between counting and sequencing
will lead to cost-optimal planning algorithms capable of
handling richer constraints such as numeric state variables,
resources and scheduling constraints. These ideas have been
extensively addressed, including techniques taking advan-
tage of SMT (Nareyek et al. 2005; Hoffmann et al. 2007;
Gregory et al. 2012).

We believe this approach is interesting and promising be-
cause it allows a principled interaction between state-of-the-
art heuristics and explanation-based combinatorial search
approaches including SAT, SMT and LCG. Any constraint
capable of explaining its inferences can be added to the SAT
subproblem, potentially allowing direct integration of cost-
optimal planning with SMT and state-of-the-art schedul-
ing approaches based on constraint programming with lazy
clause generation. This means that, by extending the ap-
proach we present, we should be able to solve similar prob-
lems to Planning Modulo Theories (Gregory et al. 2012) by
taking advantage of the extensive range of existing theories
and constraints already implemented by the SMT and con-
straint programming communities.

Acknowledgements
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram.

References
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In European Conference on Arti-
ficial Intelligence, 329–334. IOS press.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Inter-
national Conference on Automated Planning and Schedul-
ing, 47–55. AAAI Press.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Inter-
national Joint Conference on Artificial Intelligence, 2268–
2274. AAAI Press/IJCAI.
Chen, Y.; Lu, Q.; and Huang, R. 2008. Plan-A: A cost-
optimal planner based on SAT-constrained optimization. In
International Planning Competition.
Ciré, A.; Coban, E.; and Hooker, J. N. 2013. Mixed in-
teger programming vs. logic-based Benders decomposition
for planning and scheduling. In Integration of AI and OR
Techniques in Constraint Programming, 325–331. Springer.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. A hy-
brid relaxed planning graph-LP heuristic for numeric plan-
ning domains. In International Conference on Automated
Planning and Scheduling, 52–59. AAAI Press.
Edelkamp, S.; Kissmann, P.; and Torralba, A. 2012. Sym-
bolic A* Search with Pattern Databases and the Merge-and-
Shrink Abstraction. In European Conference on Artificial
Intelligence, 306–311. IOS Press.

68



Eén, N., and Sörensson, N. 2004. An extensible SAT-solver.
In Theory and applications of satisfiability testing, 502–518.
Springer.
Giunchiglia, E., and Maratea, M. 2010. Introducing pref-
erences in planning as satisfiability. Journal of Logic and
Computation 205–229.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm.
In International Conference on Automated Planning and
Scheduling, 65–73. AAAI Press.
Gurobi Optimization, I. 2013. Gurobi optimizer reference
manual.
Haslum, P.; Slaney, J.; and Thiébaux, S. 2012. Minimal
landmarks for optimal delete-free planning. In International
Conference on Automated Planning and Scheduling, 353–
357. AAAI Press.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In International Conference on Au-
tomated Planning and Scheduling, 74–82. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In International Conference on Automated Planning and
Scheduling, 162–169. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gen-
erating lower bounds in factored state spaces. J. ACM
61(3):16:1–16:63.
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT encodings of state-space reachability problems
in numeric domains. In International Joint Conference on
Artificial Intelligence, 1918–1923.
Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96(1):33–60.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning
as satisfiability. Journal of Artificial Intelligence Research
43(1):293–328.
Imai, T., and Fukunaga, A. 2014. A practical, integer-
linear programming model for the delete-relaxation in cost-
optimal planning. In European Conference on Artificial In-
telligence, volume 263, 459–464. IOS Press.
Katz, M., and Domshlak, C. 2008. Optimal additive compo-
sition of abstraction-based admissible heuristics. In Interna-
tional Conference on Automated Planning and Scheduling,
174–181. AAAI Press.
Keyder, E. R.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In International Conference on Au-
tomated Planning and Scheduling, 128–136. AAAI Press.
Marques-Silva, J., and Lynce, I. 2007. Towards robust CNF
encodings of cardinality constraints. In Principles and Prac-
tice of Constraint Programming. Springer. 483–497.
Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A.
2005. Constraints and ai planning. Intelligent Systems, IEEE
20(2):62–72.

Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis-
Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6):937–977.
Ohrimenko, O.; Stuckey, P.; and Codish, M. 2009. Propaga-
tion via lazy clause generation. Constraints 14(3):357–391.
Pommerening, F., and Helmert, M. 2013. Incremental LMs-
cut. In International Conference on Automated Planning
and Scheduling, 162–170. AAAI Press.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet,
B. 2014. LP-based heuristics for cost-optimal planning.
In International Conference on Automated Planning and
Scheduling, 226–234. AAAI Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12):1031–1080.
Rintanen, J. 2006. Compact representation of sets of bi-
nary constraints. In European Conference on Artificial In-
teligence., 143–147. IOS Press.
Rintanen, J. 2012. Planning as satisfiability: Heuristics.
Artificial Intelligence 193:45–86.
Robinson, N.; Gretton, C.; Pham, D.; and Sattar, A. 2010.
Partial weighted MaxSAT for optimal planning. In Pacific
Rim Iternational Conference on Artificial Iintelligence, vol-
ume 6230 of Lecture Notes in Computer Science, 231–243.
Springer.
Robinson, N.; Gretton, C.; and Pham, D.-N. 2008. Co-
plan: Combining SAT-based planning with forward-search.
International Planning Competition.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. In International Confer-
ence on Automated Planning and Scheduling. AAAI Press.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In Principles and Practice
of Constraint Programming. Springer. 827–831.
Torralba, A.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA∗: A symbolic bidirectional A∗
planner. In International Planning Competition, 105–108.
AAAI Press.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessière, C., ed., Principles and Practice of Constraint Pro-
gramming, volume 4741 of Lecture Notes in Computer Sci-
ence. Springer. 651–665.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Wehrle, M., and Rintanen, J. 2007. Planning as satisfiabil-
ity with relaxed ∃-step plans. In International Conference
on Artificial Inteligence, volume 4830 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 244–253.
Zhang, L.; Wang, C.-J.; Wu, J.; Liu, M.; and Xie, J.-y. 2013.
Planning with multi-valued landmarks. In AAAI Conference
on Artificial Intelligence, 1653–1654.

69




