
Expressing and Exploiting the Common Subgoal Structure
of Classical Planning Domains Using Sketches

Dominik Drexler1 , Jendrik Seipp1 , Hector Geffner3,2,1
1Linköping University, Linköping, Sweden

2Universitat Pompeu Fabra, Barcelona, Spain
3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

{dominik.drexler, jendrik.seipp}@liu.se, hector.geffner@upf.edu

Abstract

Width-based planning methods deal with conjunctive goals
by decomposing problems into subproblems of low width.
Algorithms like SIW thus fail when the goal is not easily
serializable in this way or when some of the subproblems
have a high width. In this work, we address these limita-
tions by using a simple but powerful language for expressing
finer problem decompositions introduced recently by Bonet
and Geffner, called policy sketches. A policy sketch R over a
set of Boolean and numerical features is a set of sketch rules
C 7→ E that express how the values of these features are
supposed to change. Like general policies, policy sketches
are domain general, but unlike policies, the changes captured
by sketch rules do not need to be achieved in a single step.
We show that many planning domains that cannot be solved
by SIW are provably solvable in low polynomial time with
the SIWR algorithm, the version of SIW that employs user-
provided policy sketches. Policy sketches are thus shown
to be a powerful language for expressing domain-specific
knowledge in a simple and compact way and a convenient
alternative to languages such as HTNs or temporal logics.
Furthermore, they make it easy to express general problem
decompositions and prove key properties of them like their
width and complexity.

1 Introduction
The success of width-based methods in classical planning
is the result of two main ideas: the use of conjunctive
goals for decomposing a problem into subproblems, and
the observation that the width of the subproblems is often
bounded and small (Lipovetzky and Geffner 2012). When
these assumptions do not hold, pure width-based methods
struggle and need to be extended with heuristic estima-
tors or landmark counters that yield finer problem decom-
positions (Lipovetzky and Geffner 2017a; Lipovetzky and
Geffner 2017b). These hybrid approaches have resulted in
state-of-the-art planners but run into shortcomings of their
own: unlike pure width-based search methods, they re-
quire declarative, PDDL-like action models and thus can-
not plan with black box simulators (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Geffner and Geffner 2015), and they produce decomposi-
tions that are ad-hoc and difficult to understand. Variations
of these approaches, where the use of declarative action
models is replaced by polynomial searches, have pushed the

scope of pure-width based search methods (Francès et al.
2017), but they do not fully overcome their basic limits: top
goals that are not easily serializable or that have a high
width. These are indeed the limitations of one of the sim-
plest width-based search methods, Serialized Iterated Width
(SIW) that greedily achieves top goal first, one at a time,
using IW searches (Lipovetzky and Geffner 2012).

In this work, we address the limitations of the SIW al-
gorithm differently by using a simple but powerful lan-
guage for expressing richer problem decompositions re-
cently introduced by Bonet and Geffner (2021), called pol-
icy sketches. A policy sketch is a set of sketch rules over a
set of Boolean and numerical features of the form C 7→ E
that express how the values of the features are supposed to
change. Like general policies (Bonet and Geffner 2018),
sketches are general and not tailored to specific instances of
a domain, but unlike policies, the feature changes expressed
by sketch rules represent subgoals that do not need to be
achieved in a single step.

We pick up here where Bonet and Geffner left off and
show that many benchmark planning domains that SIW can-
not solve are provably solvable in low polynomial time
through the SIWR algorithm, the version of SIW that makes
use of user-provided policy sketches. Policy sketches are
thus shown to be a powerful language for expressing
domain-specific knowledge in a simple and compact way
and a convenient alternative to languages such as HTNs
or temporal logics. Bonet and Geffner introduce the lan-
guage of sketches and the theory behind them; we show
their use and the properties that follow from them. As
we will see, unlike HTNs and temporal logics, sketches
can be used to express and exploit the common sub-
goal structure of planning domains without having to ex-
press how subgoals are to be achieved. Also, by being
simple and succinct they provide a convenient target lan-
guage for learning the subgoal structure of domains auto-
matically, although this problem, related to the problem of
learning general policies (Bonet, Francès, and Geffner 2019;
Francès, Bonet, and Geffner 2021), is outside the scope
of this paper. In this work, we use sketches to solve do-
mains in polynomial time, which excludes intractable do-
mains. Indeed, intractable domains do not have general
policies nor sketches of bounded width and require non-
polynomial searches. Sketches and general policies, how-

ever, are closely related: sketches provide the skeleton of a
general policy, or a general policy with “holes” that are filled
by searches that can be shown to be polynomial (Bonet and
Geffner 2021).

The paper is organized as follows. We review the notions
of width, sketch width, and policy sketches following Bonet
and Geffner (2021). We show then that it is possible to write
compact and transparent policy sketches for many domains,
establish their widths, and analyze the performance of the
SIWR algorithm. We compare sketches to HTNs and tempo-
ral logics, briefly discuss the challenge of learning sketches
automatically, and summarize the main contributions.

2 Planning and Width
A classical planning problem or instance P = (D, I) is as-
sumed to be given by a first-order domain D with action
schemas defined over some domain predicates, and instance
information I describing a set of objects, and two sets of
ground literals describing the initial situation Init and goal
description Goal . The initial situation is assumed to be com-
plete such that either L or its complement is in Init . A prob-
lem P defines a state model S(P) = (S, s0, G,Act , A, f)
where the states in S are the truth valuations over the ground
atoms represented by the set of literals that they make true,
the initial state s0 is Init , the set of goal states G includes
all of those that make the goal atoms in Goal true, the ac-
tions Act are the ground actions obtained from the action
schemas and the objects, the actions A(s) applicable in state
s are those whose preconditions are true in s, and the state
transition function f maps a state s and an action a ∈ A(s)
into the successor state s′ = f(a, s). A plan π for P is a
sequence of actions a0, . . . , an that is executable in s0 and
maps the initial state s0 into a goal state; i.e., ai ∈ A(si),
si+1 = f(ai, si), and sn+1 ∈ G. The cost of a plan is as-
sumed to be given by its length, and a plan is optimal if there
is no shorter plan. We’ll be interested in solving collections
of well-formed instances P = (D, I) over fixed domains D
denoted as QD or simply as Q.

The most basic width-based search method for solving
a planning problem P is IW(1). It performs a standard
breadth-first search in the rooted directed graph associated
with the state model S(P) with one modification: IW(1)
prunes a newly generated state if it does not make an atom r
true for the first time in the search. The procedure IW(k) for
k > 1 is like IW(1) but prunes a state if a newly generated
state does not make a collection of up to k atoms true for
the first time. Underlying the IW algorithms is the notion of
problem width (Lipovetzky and Geffner 2012):
Definition 1 (Width). Let P be a classical planning problem
with initial state s0 and goal states G. The width w(P)
of P is the minimum k for which there exists a sequence
t0, t1, . . . , tm of atom tuples ti, each consisting of at most k
atoms, such that:

1. t0 is true in initial state s0 of P ,
2. any optimal plan for ti can be extended into an optimal

plan for ti+1 by adding a single action, i = 1, . . . , n− 1,
3. if π is an optimal plan for tm, then π is an optimal plan

for P .

If a problem P is unsolvable, w(P) is set to the number
of variables in P , and if P is solvable in at most one step,
w(P) is set to 0 (Bonet and Geffner 2021). Chains of tu-
ples θ = (t0, t1, . . . , tm) that comply with conditions 1–3
are called admissible, and the size of θ is the size |ti| of
the largest tuple in the chain. We talk about the third con-
dition by saying that tm implies G in the admissible chain
t1, t2, . . . , tm. The widthw(P) is thus k if k is the minimum
size of an admissible chain for P . If the width of a problem
P is w(P) = k, IW(k) finds an optimal (shortest) plan for
P in time and space that are exponential in k and not in the
number of problem variables N as breadth-first search.

The IW(k) algorithm expands up to Nk nodes, generates
up to bNk nodes, and runs in time and space O(bN2k−1)
and O(bNk), respectively, where N is the number of atoms
and b bounds the branching factor in problem P . IW(k) is
guaranteed to solve P optimally (shortest path) if w(P) ≤
k. If the width of P is not known, the IW algorithm can be
run instead which calls IW(k) iteratively for k=0, 1, . . . , N
until the problem is solved, or found to be unsolvable.

While IW and IW(k) algorithms are not practical by
themselves, they are building blocks for other methods. Se-
rialized Iterated Width or SIW (Lipovetzky and Geffner
2012), starts at the initial state s = s0 of P , and then per-
forms an IW search from s to find a shortest path to state s′
such that #g(s′) < #g(s) where #g counts the number of
top goals of P that are not true in s. If s′ is not a goal state, s
is set to s′ and the loop repeats until a goal state is reached.

In practice, the IW(k) searches in SIW are limited to
k ≤ 2 or k ≤ 3, so that SIW solves a problem or fails
in low polynomial time. SIW performs well in many bench-
mark domains but fails in problems where the width of some
top goal is not small, or the top goals can’t be serialized
greedily. More recent methods address these limitations by
using width-based notions (novelty measures) in complete
best-first search algorithms (Lipovetzky and Geffner 2017a;
Francès et al. 2017), yet they also struggle in problems
where some top goals have high width. In this work, we take
a different route: we keep the greedy polynomial searches
underlying SIW but consider a richer class of problem de-
compositions expressed through sketches. The resulting
planner SIWR is not domain-independent like SIW, but it
illustrates that a bit of domain knowledge can go a long way
in the effective solution of arbitrary domain instances.

3 Features and Sketches
A feature is a function of the state over a class of problems
Q. The features considered in the language of sketches are
Boolean, taking values in the Boolean domain, or numeri-
cal, taking values in the non-negative integers. For a set Φ
of features and a state s of some instance P inQ, f(s) is the
feature valuation determined by a state s. A Boolean fea-
ture valuation over Φ refers instead to the valuation of the
expressions p and n = 0 for Boolean and numerical features
p and n in Φ. If f is a feature valuation, b(f) will denote the
Boolean feature valuation determined by f where the values
of numerical features are just compared with 0.

The set of features Φ distinguish or separate the goals
in Q if there is a set BQ of Boolean feature valuations such

that s is a goal state of an instance P ∈ Q iff b(f(s)) ∈ BQ.
For example, ifQclear is the set of all blocks world instances
with stack/unstack operators and common goal clear(x) ∧
handempty for some block x, and Φ = {n(x), H} are the
features that track the number of blocks above x and whether
the gripper is holding a block, then there is a single Boolean
goal valuation that makes the expression n(x) = 0 true and
H false.

A sketch rule over features Φ has the formC 7→ E where
C consists of Boolean feature conditions, and E consists of
feature effects. A Boolean (feature) condition is of the form
p or ¬p for a Boolean feature p in Φ, or n = 0 or n > 0 for
a numerical feature n in Φ. A feature effect is an expression
of the form p, ¬p, or p? for a Boolean feature p in Φ, and
n↓, n↑, or n? for a numerical feature n in Φ. The syntax
of sketch rules is the syntax of the policy rules used to de-
fine generalized policies (Bonet and Geffner 2018), but their
semantics is different. In policy rules, the effects have to
be delivered in one step by state transitions, while in sketch
rules, they can be delivered by longer state sequences.

A policy sketchRΦ is a collection of sketch rules over the
features Φ and the sketch is well-formed if it is built from
features that distinguish the goals inQ, and is terminating
(to be made precise below). A well-formed sketch for a
class of problemsQ defines a serialization overQ; namely, a
“preference” ordering ‘≺’ over the feature valuations that is
irreflexive and transitive, and which is given by the smallest
strict partial order that satisfies f ′ ≺ f if f ′ is not a goal
valuation and the pair of feature valuations (f, f ′) satisfies
a sketch rule C 7→ E. This happens when: 1) C is true in
f , 2) the Boolean effects p (¬p) in E are true in f ′, 3) the
numerical effects are satisfied by the pair (f, f ′); i.e., if n↓
inE (resp. n↑), then value of n in f ′ is smaller than in f , i.e.,
f ′n < fn (resp. fn > f ′n), and 4) Features that do not occur
in E have the same value in f and f ′. Effects p? and n? do
not constraint the value of the features p and n in any way,
and by including them in E, we say that they can change in
any way, as opposed to features that are not mentioned in E
whose values in f and f ′ must be the same.

Following Bonet and Geffner, we do not use the serializa-
tions determined by sketches but their associated problem
decompositions. The set of subgoal states Gr(s) associ-
ated with a sketch rule r : C 7→ E in RΦ and a state s for
a problem P ∈ Q, is empty if C is not true in f(s), and
else is given by the set of states s′ with feature valuations
f(s′) such that the pair (f, f ′) for f = f(s) and f ′ = f(s′)
satisfies the sketch rule r. Intuitively, when in a state s, the
subgoal states s′ in Gr(s) provide a stepping stone in the
search for plans connecting s to the goal of P .

4 Serialized Iterated Width with Sketches
The SIWR algorithm is a variant of the SIW algorithm that
uses a given sketch R = RΦ for solving problems P ∈ Q.
SIWR starts at the state s := s0, where s0 is the initial state
of P , and then performs an IW search to find a state s′ that
is closest from s such that s′ is a goal state of P or a subgoal
state in Gr(s) for some sketch rule r in R. If s′ is not a goal
state, then s is set to s′, s := s′, and the loop repeats until
a goal state is reached. The features define subgoal states

through the sketch rules but otherwise play no role in the
IW searches.

The only difference between SIW and SIWR is that in
SIW each IW search finishes when the goal counter #g is
decremented, while in SIWR, when a goal or subgoal state
is reached. The behavior of plain SIW can be emulated in
SIWR using the single sketch rule {#g > 0} 7→ {#g↓} in R
when the goal counter #g is the only feature, and the rule
{#g > 0} 7→ {#g↓, p?, n?}, when p and n are the other fea-
tures. This last rule says that it is always “good” to decrease
the goal counter independently of the effects on other fea-
tures, or alternatively, that decreasing the goal counter is a
subgoal from any state s where #g(s) is positive.

The complexity of SIWR over a class of problems Q can
be bounded in terms of the width of the sketch RΦ, which
is given by the width of the possible subproblems that can
be encountered during the execution of SIWR when solving
a problem P in Q. For this, let us define the set SR(P)
of reachable states in P when following the sketch R = RΦ

recursively as follows: 1) the initial state s of P is in SR(P),
2) the (subgoal) states s′ ∈ Gr(s) that are closest to s are in
SR(P) if s ∈ SR(P) and r ∈ R. The states in SR(P) are
called the R-reachable states in P . The width of the sketch
R is then (Bonet and Geffner 2021):

Definition 2 (Sketch width). The width of the sketch R =
RΦ at state s of problem P ∈ Q, denoted wR(P [s]), is the
width k of the subproblem P [s] that is like P but with initial
state s and goal states that contain those of P and those in
Gr(s) for all r ∈ R. The width of the sketch R over Q is
wR(Q) = maxP,s wR(P [s]) for P ∈ Q and s ∈ SR(P).1

The time complexity of SIWR can then be expressed as
follows, under the assumption that the features are all linear
(Bonet and Geffner 2021):

Theorem 3. If width wR(Q) = k, SIWRΦ
solves any P ∈ Q

in O(bN |Φ|+2k−1) time and O(bNk +N |Φ|+k) space.

A feature is linear if it can be computed in linear time and
can take a linear number of values at most. In both cases,
the linearity is in the number of atoms N in the problem P
in Q. If the features are not linear but polynomial in P , the
bounds on SIWR remain polynomial as well (both k and Φ
are constants).

Bonet and Geffner introduce and study the language of
sketches as a variation of the language of general policies
and their relation to the width and serialized width of plan-
ning domains. They illustrate the use of sketches in a sim-
ple example (Delivery) but focus mainly on the theoretical
aspects. Here we focus instead on their use for modeling
domain-specific knowledge in the standard planning bench-
marks as an alternative to languages like HTNs.

1This definition changes the one by Bonet and Geffner slightly
by restricting the reachable states s to those that are R-reachable;
i.e., part of SR(P). This distinction is convenient whenQ does not
contain all possible “legal” instances P but only those in which the
initial situations complies with certain conditions (e.g., robot arm
is empty). In those cases, the sketches for Q do not have to cover
all reachable states.

5 Sketches for Classical Planning Domains
In this section, we present policy sketches for a representa-
tive set of classical planning domains from the benchmark
set of the International Planning Competition (IPC). All of
the chosen domains are solvable suboptimally in polynomial
time, but plain SIW fails to solve them. There are two main
reasons why SIW fails. First, if achieving a single goal atom
already has a sufficiently large width. Last, greedy goal se-
rialization generates such avoidable subproblems, including
reaching unsolvable states.

We provide a handcrafted sketch for each of the domains
and show that it is well-formed and has small sketch width.
These sketches allow SIWR to solve all instances of the do-
main in low polynomial time and space by Theorem 3. Fur-
thermore, we impose a low polynomial complexity bound
on each feature, i.e., at most quadratic in the number of
grounded atoms. Such a limitation is necessary since oth-
erwise, we could use a numerical feature that encodes the
optimal value function V ∗(s), i.e., the perfect goal dis-
tance of all states s. With such a feature, the sketch rule
{V ∗ > 0} 7→ {V ∗↓} makes all problems trivially solv-
able. Even with linear and quadratic features, we can capture
complex state properties such as distances between objects.

5.1 Proving Termination and Sketch Width
For each sketch introduced below we show that it uses goal-
separating features, is terminating and has bounded and
small sketch width. Showing that the features are goal sepa-
rating is usually direct.

Proving termination is required to ensure that by itera-
tively moving from a state s to a subgoal state s′ ∈ Gr(s) we
cannot get trapped in a cycle. The conditions under which a
sketchRΦ is terminating are similar to those that ensure that
a general policy πΦ is terminating (Srivastava et al. 2011;
Bonet and Geffner 2020b; Bonet and Geffner 2021), and can
be determined in polynomial time in the size of the sketch
graph G(πΦ) using the SIEVE procedure (Srivastava et al.
2011; Bonet and Geffner 2020b). Often, however, a sim-
ple syntactic procedure suffices that eliminates sketch rules,
one after the other until none is left. This syntactic proce-
dure is sound but not complete in general. In the following,
we say that a rule C 7→ E changes a Boolean feature b if
b ∈ C and ¬b ∈ E or the other way around. The proce-
dure iteratively applies one of the following cases until no
rule is left (the sketch terminates) or until no further cases
apply (there may be an infinite loop in the sketch): (a) elim-
inate a rule if it decreases a numerical feature n (n↓) that no
other remaining rule can increase (n↑ or n?); (b) eliminate
a rule r if it changes the value of a Boolean feature that no
other remaining rule changes in the opposite direction; (c)
mark all features that were used for eliminating a rule in (a)
or (b) as these can only change finitely often; (d) remove
rules C 7→ E that decrease a numerical feature n or that
change a Boolean feature b to true (false) such that for all
other remaining rules C ′ 7→ E′ it holds that if E′ changes
the feature in the opposite direction, i.e., n↑, n? or changes
b to false (true), there must be a condition on a variable in C
that is marked and is complementary to the one in C ′, e.g.,
n> 0 ∈ C and n= 0 ∈ C ′ or b ∈ C and ¬b ∈ C ′.

Showing that a sketch for problem class Q has sketch
width k requires to prove that for all R-reachable states s in
all problem instances P ∈ Q, the width of P [s] is bounded
by k. Remember that P [s] is like P but with initial state
s, and goal states G of P combined with goal states Gr(s)
of all r ∈ R. The definition of R-reachability shows that
we need a recursive proof strategy: informally, we show that
(1) the feature conditions of a rule r with nonempty subgoal
Gr(s) are true in all initial states s ofQ, and (2) by following
a rule, we land in a goal state or a state s′ where the feature
conditions of another rule r′ with nonempty subgoalGr′(s

′)
are true. To show that the sketch has width k, we prove that
all subtasks P [s] for traversed states s have width k. We do
this by providing an admissible chain t1, . . . , tm of size at
most k where all optimal plans for tm are also optimal plans
for P [s]. We overapproximate the set of R-reachable states
where necessary to make the proofs more compact. This im-
plies that our results provide an upper bound on the actual
sketch width but are sufficiently small. For space reasons,
we give only two exemplary proofs in the paper and present
the remaining proofs in Drexler, Seipp, and Geffner (2021).

5.2 Floortile
In the Floortile domain (Linares López, Celorrio, and Olaya
2015), a set of robots have to paint the tiles of a rectangular
grid. There can be at most one robot a on each tile t at any
time and the predicate robot-at(a, t) is true iff a is on tile
t . If there is no robot on tile t then t is marked as clear, i.e.,
clear(t) holds. Robots can move left, right, up or down,
if the target tile is clear. Each robot a is equipped with a
brush that is configured to either paint in black or white ,
e.g., robot-has(a, black) is true iff the brush of robot a is
configured to paint in black . It is possible to change the
color infinitely often. The goal is to paint a rectangular sub-
set of the grid in chessboard style. If a tile t has color c
then the predicate painted(t , c) holds and additionally the
tile is marked as not clear, i.e., clear(t) does not hold. A
robot a can only paint tile t if a is on a tile t ′ that is be-
low or above t , i.e., robot-at(a, t ′) holds, and up(t ′, t) or
down(t ′, t) holds.

Consider the set of features Φ = {g, v} where g counts
the number of unpainted tiles that need to be painted and v
represents that the following condition is satisfied: for each
tile t1 that remains to be painted there exists a sequence of
tiles t1, . . . , tn such that each ti with i = 1, . . . , n − 1 re-
mains to be painted, tn does not need to be painted, and for
all pairs ti−1, ti with i = 2, . . . , n holds that ti is above ti−1,
i.e., up(ti−1, ti), or for all pairs ti−1, ti with i = 2, . . . , n it
holds that ti is below ti−1, i.e., down(ti−1, ti). Intuitively,
v is true iff a given state is solvable. The set of sketch rules
RΦ contains the single rule

r = {v, g > 0} 7→ {g↓}
which says that painting a tile such that the invariant v re-
mains satisfied is good.
Theorem 4. The sketch for the Floortile domain is well-
formed and has width 2.

Proof. Recall that a sketch is well-formed if it uses goal-
separating features and is terminating. The features Φ are

goal separating because the feature valuation g= 0 holds in
state s iff s is a goal state. The sketch RΦ is terminating
because r decreases the numerical feature g and no other
rule increases g.

It remains to show that the sketch width is 2. Consider
a Floortile instance P with states S. If the initial state s is
a solvable non-goal state, then the feature conditions of r
are true, and the subgoal Gr(s) is nonempty. If we reach
such a subgoal state, then either the feature conditions of
r remain true because the invariant remains satisfied or the
overall goal was reached. Next, we show that P [s] with sub-
goal Gr(s) in R-reachable state s has width 2. Consider
states S1 ⊆ S where the feature conditions of rule r are
true, i.e., solvable states where a tile t must be painted in a
color c. We do a three-way case distinction over states S1.

First, consider states S1
1 ⊆ S1 where some robot a on tile

t1 that is configured to color c, can move to tile tn above or
below t to paint it. The singleton tuple painted(t, c) implies
Gr(s) in s ∈ S1

1 in the admissible chain that consists of
moving a from t1 to tn, while decreasing the distance to tn
in each step, and painting t , i.e.,

(robot-at(a, t1), . . . , robot-at(a, tn), painted(t , c)).

Second, consider states S2
1 ⊆ S1 where the robot a must

reconfigure its color from c′ to c before painting. The tuple
(robot-at(a, tn), painted(t , c)) implies Gr(s) in s ∈ S2

1 in
the admissible chain that consists of reconfiguring the color,
and then moving closer and painting as before, i.e.,

((robot-at(a, t1), robot-has(a, c′)),

(robot-at(a, t1), robot-has(a, c)), . . . ,

(robot-at(a, tn), robot-has(a, c)),

(robot-at(a, tn), painted(a, c))).

We observe that reconfiguring requires an admissible chain
of size 2 because of serializing the reconfiguring and the
moving part. Therefore, in the following case, we assume
that the robot must reconfigure its color.

Third, consider states S3
1 ⊆ S1 where robot a is stand-

ing on t and there is a sequence of robots a1, . . . , an such
that a can only paint t if each a1, . . . , an moves in such a
way that tile t ′ above or below t becomes clear. Using the
fact that a rectangular portion inside a rectangular grid has
to be painted, it follows that the set of tiles that must not
be painted is pairwise connected. Therefore, we can move
each robot ai from its current tile t ′i to ti in such a way that
after moving each robot, tile t becomes clear. The tuple
(robot-at(a, t ′), painted(t , c)) implies Gr(s) in s ∈ S3

1 in
the admissible chain that consists of moving each robot ai
from t ′i to ti in such a way that moving all of them clears tile
t ′, followed by moving a to t ′, and painting t , i.e.,

((robot-at(a, t), robot-has(a, c′)),

(robot-at(a, t), robot-has(a, c)),

(robot-at(a1, t1), robot-has(a, c)), . . . ,

(robot-at(an, tn), robot-has(a, c)),

(robot-at(a, t ′), robot-has(a, c)),

(robot-at(a, t ′), painted(t , c)))

We obtain sketch width 2 because all tuples in admissible
chains have size of at most 2.

5.3 TPP
In the Traveling Purchaser Problem (TPP) domain, there is
a set of places that can either be markets or depots, a set of
trucks, and a set of goods (Gerevini et al. 2009). The places
are connected via a roads, allowing trucks to drive between
them. If a truck t is at place p, then atom at(t , p) holds.
Each market p sells specific quantities of goods, e.g., atom
on-sale(g , p, 2) represents that market p sells two quantities
of good g . If there is a truck t available at market p, it can
buy a fraction of the available quantity of good g , making
g available to be loaded into t , while the quantity available
at p decreases accordingly, i.e., atom on-sale(g , p, 1) and
ready-to-load(g , p, 1) hold afterwards. The trucks can un-
load the goods at any depot, effectively increasing the num-
ber of stored goods, e.g., atom stored(g , 1) becomes false,
and stored(g , 2) becomes true, indicating that two quantities
of good g are stored. The goal is to store specific quantities
of specific goods.

SIW fails in TPP because loading sufficiently many quan-
tities of a single good can require buying and loading them
from different markets. Making the goods available opti-
mally requires taking the direct route to each market fol-
lowed by buying the quantity of goods. Thus, the problem
width is bounded by the number of quantities needed.

Consider the set of features Φ = {u,w} where u is the
number of goods not stored in any truck of which some
quantity remains to be stored, and w is the sum of quanti-
ties of goods that remain to be stored. The sketch rules in
RΦ are defined as:

r1 = {u > 0} 7→ {u↓}
r2 = {w > 0} 7→ {u?,w↓}

Rule r1 says that loading any quantity of a good that remains
to be stored is good. Rule r2 says that storing any quantity
of a good that remains to be stored is good.

Theorem 5. The sketch for the TPP domain is well-formed
and has width 1.

Proof. The features are goal separating because w = 0 holds
in state s iff s is a goal state. We show that the sketch RΦ is
terminating by iteratively eliminating rules: r2 decreases the
numerical feature w which no other rule increments, so we
eliminate r2 and mark w . Now only r1 remains and we can
eliminate it since it decreases u , which is never incremented.

It remains to show that the sketch width is 1. Consider
any TPP instance P . In the initial situation s, the feature
conditions of at least one rule r are true and the correspond-
ing subgoal Gr(s) is nonempty. Furthermore, whenever we
use r1 in some state s to get to the next subgoal Gr1(s), we
know that in this subgoal the feature conditions of r2 must
be true and its subgoal is nonempty, and it can be the case
that the feature conditions of r1 remain true and its subgoal
is nonempty. At some point, the subgoal of r2 is the overall
goal of the problem. Next, regardless of which rule r de-
fines the closest subgoal Gr(s) for an R-reachable state s,

we show that P [s] with subgoal Gr(s) in R-reachable state
s has width 1.

We first consider rule r1. Intuitively, we show that loading
a good that is not yet loaded but of which some quantity re-
mains to be stored in a depot has width at most 1. Consider
states S1 ⊆ S where the feature conditions of r1 are true,
i.e., states where there is no truck that has a good g loaded
but of which some quantity remains to be stored in a depot.
With Gr1(s) we denote the subgoal states of r1 in s ∈ S1,
i.e., states where some quantity ql of g is loaded into a truck
t . The tuple loaded(g , t , ql) implies Gr1(s) in s ∈ S1 in the
admissible chain that consists of moving t from its current
place p1 to the closest market pn that has g available, or-
dered descendingly by their distance to pn, buying qb quan-
tities of g , loading ql quantities of g , i.e., (at(t , p1), . . . ,
at(t , pn), ready-to-load(g , pn, qb), loaded(g , t , ql)). Note
that loading ql quantities can be achieved optimally by buy-
ing qb ≥ ql quantities.

Next, we consider rule r2. Intuitively, we show that stor-
ing a good of which some quantity remains to be stored in
a depot has width at most 1. Consider states S2 ⊆ S where
the feature conditions of r2 are true and some quantity of a
good is loaded that remains to be stored, i.e., states where
some quantity of a good g remains to be stored in a depot,
and some quantity ql of g is loaded into a truck t because it
has width 1 (see above). WithGr2(s) we denote the subgoal
states of r2 in s ∈ S2, i.e., states where the stored quantity qs
of g has increased from qs to q′s using a fraction of the loaded
quantity q′l ≤ ql. The tuple stored(g , q′s) implies Gr2(s) in
s ∈ S2 in the admissible chain that consists of moving t
from its current place p1 to the closest depot at place pn, or-
dered descendingly by their distance to pn, storing q′l quan-
tities of g , i.e., (at(t , p1), . . . , at(t , pn), stored(g , q′s)).

We obtain sketch width 1 because all tuples in admissible
chains have a size of at most 1.

5.4 Barman
In the Barman domain (Linares López, Celorrio, and Olaya
2015), there is a set of shakers, a set of shots, and a set of dis-
pensers where each dispenses a different ingredient. There
are recipes of cocktails each consisting of two ingredients,
e.g., the recipe for cocktail c consists of ingredients i1, i2.
The goal is to serve beverages, i.e., ingredients and/or cock-
tails. A beverage b is served in shot g if g contains b. An
ingredient i can be filled into shot g using one of the dis-
pensers if g is clean. Producing a cocktail c with a shaker
t requires both ingredients i1, i2 of c to be in t . In such a
situation, shaking t produces c. Pouring a cocktail from t
into shot g requires g to be clean. The barman robot has
two hands which limits the number of shots and shakers it
can hold at the same time. Therefore, the barman often has
to put down an object before it can grasp a different object.
For example, assume that the barman holds the shaker t and
some shot g ′ and assume that ingredient i must be filled into
shot g . Then the barman has to put down either t or g ′ so
that it can pick up g with hand h . As in the Barman tasks
from previous IPCs, we assume that there is only a single
shaker and that it is initially empty.

Consider the set of features Φ = {g , u, c1, c2} where g

is the number of unserved beverages, u is the number of
used shots, i.e., shots with a beverage different from the one
mentioned in the goal, c1 is true iff the first recipe ingredient
of an unserved cocktail is in the shaker, and c2 is true iff both
recipe ingredients of an unserved cocktail are in the shaker.
We define the following sketch rules for RΦ:

r1 = {¬c1} 7→ {u?, c1},
r2 = {c1,¬c2} 7→ {u?, c2},
r3 = {u > 0} 7→ {u↓},
r4 = {g > 0} 7→ {g↓, c1?, c2?}.

Rule r1 says that filling an ingredient into the shaker is good
if this ingredient is mentioned in the first part of the recipe of
an unserved cocktail. Rule r2 says the same for the second
ingredient, after the first ingredient has been added. Requir-
ing the ingredients to be filled into the shaker in a fixed or-
der ensures bounded width, even for arbitrary-sized recipes.
Rule r3 says that cleaning shots is good and rule r4 says that
serving an ingredient or cocktail is good.
Theorem 6. The sketch for the Barman domain is well-
formed and has width 2.

5.5 Grid
In the Grid domain (McDermott 2000), a single robot op-
erates in a grid-structured world. There are keys and locks
distributed over the grid cells. The robot can move to a cell
c above, below, left or right of its current cell if c does not
contain a closed lock or another robot. The robot can drop,
pick or exchange keys at its current cell and can only hold
a single key e at any time. Keys and locks have different
shapes and the robot, holding a matching key, can open a
lock when standing on a neighboring cell. The goal is to
move keys to specific target locations that can be locked ini-
tially. Initially, it is possible reach every lock for the unlock
operation. SIW fails in this domain when goals need to be
undone, i.e., a key has to be picked up from its target loca-
tion to open a lock that is necessary for picking or moving a
different key.

Consider the set of features Φ = {l , k , o, t} where l is the
number of locked grid cells, k is the number of misplaced
keys, o is true iff the robot holds a key for which there is a
closed lock, and t is true iff the robot holds a key that must
be placed at some target grid cell. We define the sketch rules
for RΦ as:

r1 = {l > 0} 7→ {l↓, k?, o?, t?}
r2 = {l = 0, k > 0} 7→ {k↓, o?, t?}
r3 = {l > 0,¬o} 7→ {o, t?}
r4 = {l = 0,¬t} 7→ {o?, t}

Rule r1 says that unlocking grid cells is good. Rule r2 says
that placing a key at its target cell is good after opening all
locks. Rule r3 says that picking up a key that can be used to
open a locked grid cell is good if there are locked grid cells.
Rule r4 says that picking up a misplaced key is good after
opening all locks.
Theorem 7. The sketch for the Grid domain is well-formed
and has width 1.

5.6 Childsnack
In the Childsnack domain (Vallati, Chrpa, and McCluskey
2018), there is a set of contents, a set of trays, a set of gluten-
free breads, a set of regular breads that contain gluten, a set
of gluten-allergic children, a set of children without gluten
allergy, and a set of tables where the children sit. The goal is
to serve the gluten-allergic children with sandwiches made
of gluten-free bread and the non-allergic children with either
type of sandwich.

The Childsnack domain has large bounded width because
moving an empty tray is possible at any given time. The
goal serialization fails because it gets trapped in deadends
when serving non-allergic children with gluten-free sand-
wiches while leaving insufficiently many gluten-free sand-
wiches for the allergic children.

Consider the set of features Φ = {cg , cr , skg , sk , stg , st}
where cg is the number of unserved gluten-allergic children,
cr is the number of unserved non-allergic children, skg holds
iff there is a gluten-free sandwich in the kitchen, sk holds iff
there is a regular sandwich in the kitchen, stg holds iff there
is a gluten-free sandwich on a tray, and st holds iff there is
any sandwich on a tray. We define the following sketch rules
RΦ:

r1 = {cg > 0,¬skg ,¬stg} 7→ {skg , sk}
r2 = {cg = 0, cr > 0,¬sk ,¬st} 7→ {sk}
r3 = {cg > 0, skg ,¬stg} 7→ {skg ?, sk?, stg , s

t}
r4 = {cg = 0, cr > 0, sk ,¬st} 7→ {skg ?, sk?, stg?, st}
r5 = {cg > 0, stg} 7→ {cg↓, stg?, st?}
r6 = {cg = 0, cr > 0, st} 7→ {cr↓, stg?, st?}

Rule r1 says that making a gluten-free sandwich is good if
there is an unserved gluten-allergic child and if there is no
other gluten-free sandwich currently being served. Rule r2

says the same thing for non-allergic children after all gluten-
allergic children have been served and the sandwich to be
made is not required to be gluten free. Rules r3 and r4

say that putting a gluten-free (resp. regular) sandwich from
the kitchen onto a tray is good if there is none on a tray
yet. Rule r5 says that serving gluten-allergic children be-
fore non-allergic children is good if there is a gluten-free
sandwich available on a tray. Rule r6 says that serving non-
allergic children afterwards is good.
Theorem 8. The sketch for the Childsnack domain is well-
formed and has width 1.

5.7 Driverlog
In the Driverlog domain (Long and Fox 2003), there is a set
of drivers, trucks, packages, road locations and path loca-
tions. The two types of locations form two strongly con-
nected graphs and the two sets of vertices overlap. The road
graph is only traversable by trucks, while the path graph is
only traversable by drivers. A package can be delivered by
loading it into a truck, driving the truck to the target location
of the package followed by unloading the package. Driving
the truck requires a driver to be in the truck. Not only pack-
ages, but also trucks and drivers can have goal locations.

SIW fails because it can be necessary to undo previously
achieved goals, like moving a truck away from its destina-
tion to transport a package. The following sketch induces a
goal ordering such that an increasing subset of goal atoms
never needs to be undone.

Consider the set of features Φ = {p, t , dg, dt, b, l} where
p is the number of misplaced packages, t is the number of
misplaced trucks, dg is the sum of all distances of drivers to
their respective goal locations, dt is the minimum distance of
any driver to a misplaced truck, b is true iff there is a driver
inside of a truck, and l is true iff there is a misplaced package
in a truck. We define the sketch rules RΦ as follows:

r1 = {p> 0,¬b} 7→ {dg?, dt?, b}
r2 = {p> 0,¬l} 7→ {t?, dg?, dt?, l}
r3 = {p> 0} 7→ {p↓, t?, dg?, dt?, l?}
r4 = {p = 0, t > 0, dt> 0} 7→ {dg?, dt↓, b?}
r5 = {p = 0, t > 0, dt = 0} 7→ {t↓, dg?, dt?}
r6 = {p = 0, t = 0, dg > 0} 7→ {dg↓, b?}

Rule r1 says that letting a driver board any truck is good
if there are undelivered packages and there is no driver
boarded yet. Rule r2 says that loading an undelivered pack-
age is good. Rule r3 says that delivering a package is good.
Rule r4 says that moving any driver closer to being in a
misplaced truck is good after having delivered all packages.
Rule r5 says that driving a misplaced truck to its target lo-
cation is good once all packages are delivered. Rule r6 says
that moving a misplaced driver closer to its target location is
good after having delivered all packages and trucks.
Theorem 9. The sketch for the Driverlog domain is well-
formed and has width 1.

5.8 Schedule
In the Schedule domain (Bacchus 2001), there is a set of
objects that can have different values for the following at-
tributes: shape, color, surface condition, and temperature.
Also, there is a set of machines where each is capable of
changing an attribute with the side effect that other attributes
change as well. For example, rolling an object changes its
shape to cylindrical and has the side effect that the color
changes to uncolored, any surface condition is removed, and
the object becomes hot. Often, there are multiple different
work steps for achieving a specific attribute of an object. For
example, both rolling and lathing change an object’s shape
to cylindrical. But rolling makes the object hot, while lath-
ing keeps its temperature cold. Some work steps are only
possible if the object is cold. Multiple work steps can be
scheduled to available machines, which sets the machine’s
status to occupied. All machines become available again af-
ter a single do-time-step action. The goal is to change the
attributes of objects.

SIW fails in Schedule because it gets trapped into dead-
ends when an object’s temperature becomes hot, possi-
bly blocking other required attribute changes. The fol-
lowing sketch uses this observation and defines an order-
ing over achieved attributes where first, the desired shapes
are achieved, second, the desired surface conditions are
achieved, and third, the desired colors are achieved.

Consider the set of features Φ = {p1, p2, p3, h, o} where
p1 is the number of objects with wrong shape, p2 is the
number of objects with wrong surface condition, p3 is the
number of objects with wrong color, h is the number of hot
objects, and o is true iff there is an object scheduled or a ma-
chine occupied. We define the following sketch rules RΦ:

r1 = {p1> 0} 7→ {p1↓, p2?, p3?, o}
r2 = {p1 = 0, p2> 0} 7→ {p2↓, p3?, o}
r3 = {p1 = 0, p2 = 0, p3> 0} 7→ {p3↓, o}
r4 = {o} 7→ {¬o}

Rule r1 says that achieving an object’s goal shape is good.
Rule r2 says that achieving an object’s goal surface condi-
tion is good after achieving all goal shapes. Rule r3 says
that achieving an object’s goal color is good after achiev-
ing all goal shapes and surface conditions. Rule r4 says that
making objects and machines available is good. Note that
r4 does not decrease the sketch width but it decreases the
search time by decreasing the search depth. Note also that h
never occurs in any rule because we want its value to remain
constant.

Theorem 10. The sketch for the Schedule domain is well-
formed and has width 2.

6 Experiments
Even though the focus of our work is on proving polynomial
runtime bounds for planning domains theoretically, we eval-
uate in this section how these runtime guarantees translate
into practice. We implemented SIWR in the LAPKT plan-
ning system (Ramirez, Lipovetzky, and Muise 2015) and use
the Lab toolkit (Seipp et al. 2017) for running experiments
on Intel Xeon Gold 6130 CPU cores. For each planning do-
main, we use the tasks from previous IPCs. For each planner
run, we limit time and memory by 30 minutes and 4 GiB.
The benchmark set consists of a subset of tractable classi-
cal planning domains from the satisficing track of the 1998-
2018 IPC where top goal serialization using SIW fails.

The main question we want to answer empirically is how
much an SIW search benefits from using policy sketches. To
this end, we compare SIW(2) and SIWR(2) with the sketches
for the planning domains introduced above. We use a width
bound of k=2, since SIW(k) and SIWR(k) are too slow to
compute in practice for larger values of k. We also include
two state-of-the-art planners, LAMA (Richter and Westphal
2010) and Dual-BFWS (Lipovetzky and Geffner 2017a), to
show that the planning tasks in our benchmark set are hard
to solve with the strongest planners.

Table 1 shows results for the four planners. We see that
the maximum effective width (MW) for SIWR(2) never ex-
ceeds the theoretical upper bounds we established in the pre-
vious section. For the domains with sketch width 2, the av-
erage effective width (AW) is always closer to 1 than to 2.

In the comparison we must keep in mind that SIWR is not
a domain-independent planner as it uses a suitable sketch for
each domain. SIW(2) solves none of the instances in three
domains (Barman, Childsnack, Floortile) because the prob-
lem width is too large. In the other four domains, it never

solves more than half of the tasks. In contrast, SIWR(2)
solves all tasks and is usually very fast. For example, SIW(2)
needs 74.7 seconds to solve the eleventh hardest TPP task,
while SIWR(2) solves all 30 tasks in at most 0.4 seconds.
This shows that our sketch rules capture useful information
and that the sketch features are indeed cheap to compute.

Even with the caveats about planner comparisons in mind,
the results from Table 1 show that policy sketches usually let
SIWR solve the tasks from our benchmark set much faster
than state-of-the-art domain-independent planners. The only
exception is Schedule, where LAMA has a lower maxi-
mum runtime than SIWR. The main bottleneck for SIWR in
Schedule is generating successor states. Computing feature
valuations on the other hand takes negligible time.

Overall, our results show that adding domain-specific
knowledge in the form of sketches to a width-based planner
allows it to solve whole problem domains very efficiently.
This raises interesting research questions about whether we
can learn sketches automatically to transform SIWR into a
domain-independent planner that can reuse previously ac-
quired information.

7 Related Work
We showed that a bit of knowledge about the subgoal struc-
ture of a domain, expressed elegantly in the form of com-
pact sketches, can go a long way in solving the instances of
a domain efficiently, in provable polynomial time. There are
other approaches for expressing domain control knowledge
for planning in the literature, and we review them here.

The distinction between the actions that are “good” or
“bad” in a fixed tractable domain can often be character-
ized explicitly. Indeed, the so-called general policies, un-
like sketches, provide such a classification of all possible
state transitions (s, s′) over the problems in Q (Francès,
Bonet, and Geffner 2021), and ensure that the goals can al-
ways be reached by following any good transitions. Sketch
rules have the same syntax as policy rules, but they do not
constraint state transitions but define subgoals.

Logical approaches to domain control have been used to
provide partial information about good and bad state tran-
sitions in terms of suitable formulas (Bacchus and Kabanza
2000; Kvarnström and Doherty 2000). For example, for the
Schedule domain, one may have a formula in linear tempo-
ral logic (LTL) expressing that objects that need to be lathed
and painted should not be painted in the next time step, since
lathing removes the paint. This partial information about
good and bad transitions can then be used by a forward-state
search planner to heavily prune the state space. A key dif-
ference between these formulas and sketches is that sketch
rules are not about state transitions but about subgoals, and
hence they structure the search for plans in a different way,
in certain cases ensuring a polynomial search.

Baier et al. (2008) combine control knowledge and prefer-
ence formulas to improve search behavior and obtain plans
of high quality, according to user preferences. The con-
trol knowledge is given in the Golog language and defines
subgoals such that a planner has to fill in the missing parts.
Since the control knowledge is compiled directly to PDDL,
they are able to leverage off-the-shelve planners. The user

SIW(2) SIWR(2) LAMA Dual-BFWS

Domain S T AW MW S T AW MW S T S T

Barman (40) 0 – – – 40 0.9 1.17 2 40 505.3 40 162.8
Childsnack (20) 0 – – – 20 10.8 1.00 1 6 2.6 8 216.9
Driverlog (20) 8 0.5 1.68 2 20 0.8 1.00 1 20 7.6 20 4.2
Floortile (20) 0 – – – 20 0.2 1.25 2 2 9.9 2 176.3
Grid (5) 1 0.1 2.00 2 5 0.1 1.00 1 5 3.6 5 3.7
Schedule (150) 62 1349.1 1.10 2 150 54.7 1.17 2 150 15.3 150 151.4
TPP (30) 11 74.7 2.00 2 30 0.4 1.00 1 30 16.5 29 99.6

Table 1: Comparison of SIW(2), SIWR(2), the first iteration of LAMA, and Dual-BFWS. It shows the number of solved tasks (S), the
maximum runtime in seconds for a successful run (T), the average effective width over all encountered subtasks (AW), and the maximum
effective width over all encountered subtasks (MW).

preferences are encoded in an LTL-like language. Like our
policy sketches, their approach can be applied to any do-
main. However, policy sketches aim at ensuring polynomial
searches in tractable domains.

Hierarchical task networks or HTNs are used mainly for
expressing general top-down strategies for solving classes
of planning problems (Erol, Hendler, and Nau 1994; Nau et
al. 2003; Georgievski and Aiello 2015). The domain knowl-
edge is normally expressed in terms of a hierarchy of meth-
ods that have to be decomposed into primitive methods that
cannot be decomposed any further. While the solution strat-
egy expressed in HTNs does not have to be complete, it is of-
ten close to complete, as otherwise the search for decompo-
sitions easily becomes intractable. For this reason, crafting
good and effective HTNs encodings is not easy. For exam-
ple, the HTN formulation of the Barman domain in the 2020
Hierarchical Planning Competition (Höller et al. 2019) con-
tains 10 high-level tasks (like AchieveContainsShakerIngre-
dient), 11 primitive tasks (like clean-shot) and 22 methods
(like MakeAndPourCocktail). In contrast, the PDDL version
of Barman has only 12 action schemas, and the sketch above
has 4 rules over 4 linear features. Note, however, that com-
paring different forms of control knowledge in terms of their
compactness is not well-defined.

Finally, the need to represent the common subgoal struc-
ture of dynamic domains arises also in reinforcement learn-
ing (RL), where knowledge gained in the solution of some
domain instances can be applied to speed up the learning
of solutions to new instances of the same family of tasks
(Finn, Abbeel, and Levine 2017). In recent work in deep RL
(DRL) these representations, in the form of general intrin-
sic reward functions (Singh et al. 2010), are expected to be
learned from suitable DRL architectures (Zheng et al. 2020).
Sketches provide a convenient high-level alternative to de-
scribe common subgoal structures, but opposed to the re-
lated work in DRL, the policy sketches above are not learned
but are written by hand. We leave the challenge of automati-
cally learning sketches as future work and describe it briefly
below.

8 Conclusions and Future Work
We have shown that the language of policy sketches as in-
troduced by Bonet and Geffner provides a simple, elegant,

and powerful way for expressing the common subgoal struc-
ture of many planning domains. The SIWR algorithm can
then solve these domains effectively, in provable polynomial
time, where SIW fails either because the problems are not
easily serializable in terms of the top goals or because some
of the resulting subproblems have a high width. A big ad-
vantage of pure width-based algorithms like SIW and SIWR
is that unlike other planning-based methods they can be used
to plan with simulators in which the structure of states is
available but the structure of actions is not.2

A logical next step in this line of work is to learn sketches
automatically. In principle, methods similar to those used
for learning general policies can be applied. These methods
rely on using the state language (primitive PDDL predicates)
for defining a large pool of Boolean and numerical features
via a description logic grammar (Baader et al. 2003), from
which the features Φ are selected and over which the general
policies πΦ are constructed (Francès, Bonet, and Geffner
2021). We have actually analyzed the features used in the
sketches given above and have noticed that they can all be
obtained from a feature pool generated in this way. A longer-
term challenge is to learn the sketches automatically when
using the same inputs as DRL algorithms, where there is
no state representation language. Recent works that learn
first-order symbolic languages from black box states or from
states represented by images (Bonet and Geffner 2020a;
Asai 2019) are important first steps in that direction.

Acknowledgments

This work was partially supported by an ERC Advanced
Grant (grant agreement no. 885107), by project TAILOR,
funded by EU Horizon 2020 (grant agreement no. 952215),
and by the Knut and Alice Wallenberg Foundation. Hec-
tor Geffner is a Wallenberg Guest Professor at Linköping
University, Sweden. We used compute resources from the
Swedish National Infrastructure for Computing (SNIC), par-
tially funded by the Swedish Research Council through
grant agreement no. 2018-05973.

2A minor difference then is that the novelty tests in IW(k) are
not exponential in k − 1 but in k.

References
Asai, M. 2019. Unsupervised grounding of plannable first-
order logic representation from images. In Lipovetzky, N.;
Onaindia, E.; and Smith, D. E., eds., Proceedings of the
Twenty-Ninth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2019), 583–591. AAAI Press.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1–2):123–191.
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Baier, J. A.; Fritz, C.; Bienvenu, M.; and McIlraith, S. A.
2008. Beyond classical planning: Procedural control knowl-
edge and preferences in state-of-the-art planners. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI 2008), 1509–1512. AAAI Press.
Bonet, B., and Geffner, H. 2018. Features, projections, and
representation change for generalized planning. In Lang, J.,
ed., Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI 2018), 4667–4673. IJCAI.
Bonet, B., and Geffner, H. 2020a. Learning first-order sym-
bolic representations for planning from the structure of the
state space. In Giacomo, G. D., ed., Proceedings of the
24th European Conference on Artificial Intelligence (ECAI
2020), 2322–2329. IOS Press.
Bonet, B., and Geffner, H. 2020b. Qualitative numeric plan-
ning: Reductions and complexity. Journal of Artificial In-
telligence Research 69:923–961.
Bonet, B., and Geffner, H. 2021. General policies, rep-
resentations, and planning width. In Leyton-Brown, K.,
and Mausam., eds., Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2021), 11764–
11773. AAAI Press.
Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning fea-
tures and abstract actions for computing generalized plans.
In Proceedings of the Thirty-Third AAAI Conference on Ar-
tificial Intelligence (AAAI 2019), 2703–2710. AAAI Press.
Drexler, D.; Seipp, J.; and Geffner, H. 2021. Express-
ing and exploiting the common subgoal structure of clas-
sical planning domains using sketches: Extended version.
arXiv:2105.04250 [cs.AI].
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI
1994), 1123–1128. AAAI Press.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Pre-
cup, D., and Teh, Y. W., eds., Proceedings of the 34th In-
ternational Conference on Machine Learning (ICML 2017),
1126–1135. JMLR.org.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely declarative action representations are over-

rated: Classical planning with simulators. In Sierra, C., ed.,
Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017), 4294–4301. IJCAI.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning
general planning policies from small examples without su-
pervision. In Leyton-Brown, K., and Mausam., eds., Pro-
ceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021), 11801–11808. AAAI Press.
Geffner, T., and Geffner, H. 2015. Width-based planning for
general video-game playing. In Jhala, A., and Sturtevant,
N., eds., Proceedings of the Eleventh AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2015), 23–29. AAAI Press.
Georgievski, I., and Aiello, M. 2015. HTN planning. Artifi-
cial Intelligence 222:124–156.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5–
6):619–668.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019. HDDL - A language to
describe hierarchical planning problems. In Second ICAPS
Workshop on Hierarchical Planning.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A tem-
poral logic based forward chaining planner. Annals of Math-
ematics and Artificial Intelligence 30:119–169.
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh international planning
competition. Artificial Intelligence 223:82–119.
Lipovetzky, N., and Geffner, H. 2012. Width and serial-
ization of classical planning problems. In De Raedt, L.;
Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.; Heintz,
F.; and Lucas, P., eds., Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012), 540–545.
IOS Press.
Lipovetzky, N., and Geffner, H. 2017a. Best-first width
search: Exploration and exploitation in classical planning.
In Singh, S., and Markovitch, S., eds., Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI 2017), 3590–3596. AAAI Press.
Lipovetzky, N., and Geffner, H. 2017b. A polynomial plan-
ning algorithm that beats LAMA and FF. In Barbulescu, L.;
Frank, J.; Mausam; and Smith, S. F., eds., Proceedings of
the Twenty-Seventh International Conference on Automated
Planning and Scheduling (ICAPS 2017), 195–199. AAAI
Press.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning with simulators: Results on the Atari video
games. In Yang, Q., and Wooldridge, M., eds., Proceed-
ings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015), 1610–1616. AAAI Press.
Long, D., and Fox, M. 2003. The 3rd International Planning
Competition: Results and analysis. Journal of Artificial In-
telligence Research 20:1–59.

McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research
20:379–404.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind
search for Atari-like online planning revisited. In Kamb-
hampati, S., ed., Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016), 3251–
3257. AAAI Press.
Singh, S. P.; Lewis, R. L.; Barto, A. G.; and Sorg, J. 2010.
Intrinsically motivated reinforcement learning: An evolu-
tionary perspective. IEEE Transactions on Autonomous
Mental Development 2:70–82.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner,
H. 2011. Qualitative numeric planning. In Burgard, W., and
Roth, D., eds., Proceedings of the Twenty-Fifth AAAI Con-
ference on Artificial Intelligence (AAAI 2011), 1010–1016.
AAAI Press.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What
you always wanted to know about the deterministic part of
the international planning competition (IPC) 2014 (but were
too afraid to ask). The Knowledge Engineering Review 33.
Zheng, Z.; Oh, J.; Hessel, M.; Xu, Z.; Kroiss, M.; van Has-
selt, H.; Silver, D.; and Singh, S. 2020. What can learned
intrinsic rewards capture? In Proceedings of the 37th In-
ternational Conference on Machine Learning (ICML 2020),
11436–11446. JMLR.org.

http://lapkt.org/
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

	Introduction
	Planning and Width
	Features and Sketches
	Serialized Iterated Width with Sketches
	Sketches for Classical Planning Domains
	Proving Termination and Sketch Width
	Floortile
	TPP
	Barman
	Grid
	Childsnack
	Driverlog
	Schedule

	Experiments
	Related Work
	Conclusions and Future Work

