








description present in all papers about DECLARE, and shows
the subtlety of directly adopting formulas originally devised
in the infinite-trace setting to the one of finite traces. In fact,
the same meaning is retained only for those formulas that
are insensitive to infiniteness. Notice that the correct way of
formalizing the intended meaning of negation chain succes-
sion on finite traces is 2(a ≡ •¬b) (that is, 2(a ≡ ¬◦b)).
This is equivalent to the other formulation in the infinite-trace
setting, and actually it is insensitive to infiniteness.

Notice that there are several other DECLARE constraints,
beyond standard patterns, that are not insensitive to infinite-
ness, such as 2a. Over infinite traces, 2a states that a must
be executed forever, whereas, on finite traces, it obviously
stops requiring a when the trace ends.

5 Action Domains and Trajectories
We often characterize an action domain by the set of al-
lowed evolutions, each represented as a sequence of situa-
tions (Reiter 2001). To do so, we typically introduce a set
of atomic facts, called fluents, whose truth value changes
as the system evolves from one situation to the next be-
cause of actions. Since LTL/LTLf do not provide a direct
notion of action, we use propositions to denote them, as
in (Calvanese, De Giacomo, and Vardi 2002). Hence, we
partition P into fluents F and actions A, adding structural
constraint (analogous to the DECLARE assumption) such as
2(

∨
a∈A a) ∧2(

∧
a∈A(a→∧

b∈A,b6=a ¬b)), to specify that
one action must be performed to get to a new situation, and
that a single action at a time can be performed. Then, the
initial situation is described by a propositional formula ϕinit

involving only fluents, while effects can be modelled as:

2(ϕ→ ◦(a→ ψ)) (2)

where a ∈ A, while ψ and ϕ are arbitrary propositional
formulas involving only fluents. Such a formula states that
performing action a under the conditions denoted by ϕ
brings about the conditions denoted by ψ.3 Alternatively,
we can formalize effects through Reiter’s successor state ax-
ioms (Reiter 2001) (which also provide a solution to the frame
problem), as in (Calvanese, De Giacomo, and Vardi 2002;
De Giacomo and Vardi 2013), by translating the (instanti-
ated) successor state axiom F (do(a, s)) ≡ ϕ+(s)∨ (F (s)∧
¬ϕ−(s)) into the LTLf formula:

2(◦a→ (◦F ≡ ϕ+ ∨ F ∧ ¬ϕ−)). (3)

In general, to specify effects we need special LTLf formulas
that talk only about the current state and the next state to
capture how the domain does a transition from the current to
the next state. Such formulas are called transition formula,
and are inductively built as follows:

ϕ ::= φ | ◦φ | ¬ϕ | ϕ1 ∧ ϕ2, where φ is propositional.

For such formulas we can state a notable result: under the
assumption that at every step at least one proposition is true,
every specification based on transition formulas is insensitive
to infiniteness. More precisely:

3A formula like 2(ϕ→ ◦(a→ ϕ)) corresponds to a frame
axiom expressing that ϕ does not change when performing a.

Theorem 7. Let ϕ be an LTLf transition formula and P any
non-empty subset of P . Then all LTLf formulas of the form
2(◦∨a∈P a→ ϕ) are insensitive to infiniteness.

Proof. Suppose not. Then there exists a finite trace πf
and a formula 2(◦∨a∈P P → ϕ) such that πf |=
2(◦∨a∈P P → ϕ), but πf{end}ω 6|= 2(◦∨a∈P P → ϕ).
Hence, πf{end}ω |= 3(◦∨a∈P P ∧ ¬ϕ). That is there ex-
ist a point i in the trace πf{end}ω such that πf{end}ω, i |=◦∨a∈P P ∧ ¬ϕ. Now observe that i can only be in πf
since in the {end}ω part ◦∨a∈P P is false. But then πf 6|=
2(◦∨a∈P P → ϕ) contradicting the assumption.

By applying the above theorem we can immediately show
that (3) and (2) (for the latter, noting that it is equivalent to
2(◦a→ (ϕ→ ◦ψ))) are insensitive to infiniteness.

Also PDDL action effects (McDermott et al. 1998) can be
encoded in LTLf , and show to be insensitive to infiniteness
using the above theorem. Here, however, we focus on PDDL
3.0 trajectory constraints (Gerevini et al. 2009):

(at end φ) ::= last ∧ φ
(always φ) ::= 2φ

(sometime φ) ::=3φ

(within n φ) ::=
∨

0≤i≤n◦ · · ·◦︸ ︷︷ ︸
i

φ

(hold-after n φ) ::=◦ · · ·◦︸ ︷︷ ︸
n+1

3φ

(hold-during n1 n2 φ) ::=◦ · · ·◦︸ ︷︷ ︸
n1

(
∧

0≤i≤n2
◦ · · ·◦︸ ︷︷ ︸

i

φ)

(at-most-once φ) ::= 2(φ→ φW¬φ)
(sometime-after φ1 φ2) ::= 2(φ1→ 3φ2)

(sometime-before φ1 φ2) ::= (¬φ1 ∧ ¬φ2)W(¬φ1 ∧ φ2)

(always-within n φ1 φ2) ::= 2(φ1→
∨

0≤i≤n◦ · · ·◦︸ ︷︷ ︸
i

φ2)

where φ is a propositional formula on fluents, called goal for-
mula. Most trajectory constraints are (variants) of DECLARE
patterns, and we can ask if they are insensitive to infinite-
ness using Theorem 4. Moreover, the following general result
holds. Let a goal formula be guarded when it is equivalent to
(
∨
F∈F F ) ∧ φ with φ any propositional formula. Then:

Theorem 8. All trajectory constraints involving only
guarded goal formulas, except from (always ϕ), are in-
sensitive to infiniteness.

6 Reasoning in LTLf through NFAs
We can associate with each LTLf formula ϕ an (exponential)
NFA Aϕ that accepts exactly the traces that make ϕ true. Var-
ious techniques for building such NFAs have been proposed
in the literature, but they all require a detour to automata
on infinite traces first. In (Bauer, Leucker, and Schallhart
2007) NFAs are used to check the compliance of an evolving
trace to a formula expressed in LTL. The automaton con-
struction is grounded on the one in (Lichtenstein, Pnueli, and
Zuck 1985), which, by introducing past operators, focuses
on finite traces. The procedure builds an NFA that recognizes
both finite and infinite traces satisfying the formula. Such
an automaton is indeed very similar to a generalized Büchi
automaton (cf. the Büchi automaton construction for LTL
formulas in (Baier, Katoen, and Guldstrand Larsen 2008)).
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As explained in (Westergaard 2011), the DECLARE environ-
ment uses the automaton construction in (Giannakopoulou
and Havelund 2001), which applies the traditional Büchi au-
tomaton construction in (Gerth et al. 1995), and then suitably
defines which states have to be considered as final. The lan-
guage, however, does not include the next operator. Inspired
by (Giannakopoulou and Havelund 2001), also the approach
in (Baier and McIlraith 2006) relies on the procedure in
(Gerth et al. 1995) to build the NFA, but it implements the
full LTLf semantics by dealing also with the next operator.

Here, we provide a simple direct algorithm for computing
the NFA corresponding to an LTLf formula. The correctness
of the algorithm is based on the fact that (i) we can associate
with each LTLf formula ϕ a polynomial alternating automa-
ton on words (AFW) Aϕ that accept exactly the traces that
make ϕ true (De Giacomo and Vardi 2013), and (ii) every
AFW can be transformed into an NFA, see, e.g., (De Giacomo
and Vardi 2013). However, to formulate the algorithm we do
not need these notions, but we can work directly on the LTLf
formula. We assume our formula to be in negation normal
form, by exploiting abbreviations and pushing negation inside
as much as possible, leaving it only in front of propositions
(any LTLf formula can be transformed into negation normal
form in linear time). We also assume P to include a special
proposition last which denotes the last element of the trace.
Note that last can be defined as last ≡ •false. Then we de-
fine an auxiliary function δ that takes an LTLf formula ψ (in
negation normal form) and a propositional interpretation Π
for P (including last), returning a positive boolean formula
whose atoms are (quoted) ψ subformulas.

δ("a",Π) = true if a ∈ Π
δ("a",Π) = false if a 6∈ Π
δ("¬a",Π) = false if a ∈ Π
δ("¬a",Π) = true if a 6∈ Π
δ("ϕ1 ∧ ϕ2",Π) = δ("ϕ1",Π) ∧ δ("ϕ2",Π)
δ("ϕ1 ∨ ϕ2",Π) = δ("ϕ1",Π) ∨ δ("ϕ2",Π)

δ("◦ϕ",Π) =

{
"ϕ" if last 6∈ Π

false if last ∈ Π

δ("3ϕ",Π) = δ("ϕ",Π) ∨ δ("◦3ϕ",Π)
δ("ϕ1 U ϕ2",Π) = δ("ϕ2",Π) ∨

(δ("ϕ1",Π) ∧ δ("◦(ϕ1 U ϕ2)",Π))

δ("•ϕ",Π) =

{
"ϕ" if last 6∈ Π

true if last ∈ Π

δ("2ϕ",Π) = δ("ϕ",Π) ∧ δ("•2ϕ",Π)
δ("ϕ1Rϕ2",Π) = δ("ϕ2",Π) ∧ (δ("ϕ1",Π) ∨

δ("•(ϕ1Rϕ2)",Π))

Using function δ we can build the NFA Aϕ of an LTLf formula
ϕ in a forward fashion. States of Aϕ are sets of atoms (recall
that each atom is quoted ϕ subformulas) to be interpreted as
a conjunction; the empty conjunction ∅ stands for true:

1: algorithm LTLf 2NFA()
2: input LTLf formula ϕ
3: output NFA Aϕ = (2P ,S, {s0}, %, {sf})
4: s0 ← {"ϕ"} . single initial state
5: sf ← ∅ . single final state
6: S ← {s0, sf}, %← ∅
7: while (S or % change) do
8: if (q ∈ S and q′ |=

∧
("ψ"∈q) δ("ψ",Π)) then

9: S ← S ∪ {q′} . update set of states

10: %← % ∪ {(q,Π, q′)} . update transition relationwhere q′ is a set of quoted subformulas of ϕ that denotes a
minimal interpretation such that q′ |= ∧

("ψ"∈q) δ("ψ",Π).
(Note: we do not need to get all q such that q′ |=∧

("ψ"∈q) δ("ψ",Π), but only the minimal ones.) Notice that
trivially we have (∅, a, ∅) ∈ % for every a ∈ Σ.

The algorithm LTLf 2NFA terminates in at most exponential
number of steps, and generates a set of states S whose size is
at most exponential in the size of the formula ϕ.
Theorem 9. Let ϕ be an LTLf formula and Aϕ the NFA
constructed as above. Then π |= ϕ iff π ∈ L(Aϕ) for every
finite trace π.
Proof (sketch). Given a specific formula ϕ, δ grounded on the
subformulas of ϕ becomes the transition function of the AFW,
with initial state "ϕ" and no final states, corresponding to ϕ
(De Giacomo and Vardi 2013). Then LTLf 2NFA essentially
transforms the AFW into a NFA.

Notice that above we have assumed to have a special
proposition last ∈ P . If we want to remove such an as-
sumption, we can easily transform the obtained automaton
Aϕ = (2P ,S, {"ϕ"}, %, {∅}) into the new automaton

A′ϕ = (2P−{last},S ∪ {ended}, {"ϕ"}, %′, {∅, ended})
where: (q,Π′, q′) ∈ %′ iff (q,Π′, q′) ∈ %, or (q,Π′ ∪
{last}, true) ∈ % and q′ = ended.

It is easy to see that the NFA obtained can be built on-the-fly
while checking for nonemptiness, hence we have:
Theorem 10. Satisfiability of an LTLf formula can be
checked in PSPACE by nonemptiness of Aϕ (or A′ϕ).

Considering that validity and logical implications can be
linearly reduced to satisfiability in LTLf (see Theorem 1),
we can conclude the proposed construction is optimal wrt
computational complexity for reasoning on LTLf .

We conclude this section by observing that using the ob-
tained NFA (or in fact any correct NFA for LTLf in the litera-
ture, e.g., (Baier and McIlraith 2006)), one can easily check
when the NFA obtained via the approach in (Edelkamp 2006;
Gerevini et al. 2009) mentioned in the introduction, i.e., using
directly the Büchi automaton for the formula, but by substi-
tuting the Büchi acceptance condition with the NFA one, is
indeed correct, by simply checking language equivalence.

7 Conclusions
While the blurring between infinite and finite traces has been
of help as a jump start, we should now sharpen our focus
on LTL on finite traces (LTLf ). This paper does it in two
ways: by showing notable cases where the blurring does
not harm (witnessed by insensitivity to infiniteness); and by
proposing a direct route to develop algorithms for finite traces
(as witnessed by the algorithm LTLf 2NFA). Along the latter
line, we note that LTLf 2NFA can easily be extended to deal
with the more powerful LDLf (De Giacomo and Vardi 2013).
In future work, we plan to investigate runtime monitoring
(Bauer, Leucker, and Schallhart 2007) by using LTLf and
LDLf monitors.
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