
A Novel Transition Based Encoding Scheme for Planning as Satisfiability

Ruoyun Huang, Yixin Chen, Weixiong Zhang
Dept. of Computer Science and Engineering

Washington University in St. Louis
Saint Louis, MO, 63105, USA

{rh11, chen, zhang}@cse.wustl.edu

Abstract

Planning as satisfiability is a principal approach to plan-
ning with many eminent advantages. The existing plan-
ning as satisfiability techniques usually use encodings
compiled from the STRIPS formalism. We introduce a
novel SAT encoding scheme based on the SAS+ formal-
ism. It exploits the structural information in the SAS+
formalism, resulting in more compact SAT instances
and reducing the number of clauses by up to 50 fold.
Our results show that this encoding scheme improves
upon the STRIPS-based encoding, in terms of both time
and memory efficiency.

Introduction

Planning as satisfiability is one of the major paradigms
for planning. The approaches using this technique com-
pile a planning problem into a sequence of SAT instances,
with increasing time horizons (Kautz, Selman, and Hoff-
mann 1999). Planning as satisfiability has a number of dis-
tinct characteristics that make it effective and widely ap-
plicable. It makes a good use of the extensive advance-
ment in fast SAT solvers. The SAT representation can be
extended to accommodate a variety of complex problems,
such as planning with uncertainty (Castellini, Giunchiglia,
and Tacchella 2003), numerical planning (Hoffmann et al.
2007) and temporally expressive planning (Huang, Chen,
and Zhang 2009). Developing novel and superior SAT en-
coding schemes has a great potential to advance the state-of-
the-art of planning.

Encoding scheme has a great impact on the efficacy of
SAT-based planning. Extensive researches have been done
on compact SAT encoding for planning. One example of
compact encoding is the lifted action representation, first
studied in (Ernst, Millstein, and Weld 1997). In this com-
pact encoding scheme, actions are represented by a conjunc-
tion of parameters, thus this method mitigates the problem
of blowing up time steps caused by grounding and itemizing
each action. The original scheme does not guarantee the op-
timality on time steps. An improved lifted action represen-
tation that preserves optimality was proposed in (Robinson
et al. 2009). In (Rintanen, Heljanko, and Niemelä 2006), a

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

new encoding was proposed based on a relaxed parallelism
semantic, which still does not guarantee optimality.

Most planning approaches heavily depend on problem
formulations. The SAS+ formalism represents a planning
problem using multi-valued state variables instead of propo-
sitional facts (Bäckström and Nebel 1996). The SAS+ for-
malism has recently attracted much attention due to its con-
cise representation and rich structural information (Helmert
2006). It has been used to derive heuristics (Helmert
2006), landmarks (Richter, Helmert, and Westphal 2008),
and stronger mutual exclusions (Chen et al. 2009).

In this paper, we propose the first SAS+ formalism-based
SAT encoding scheme for classical planning. Unlike previ-
ous SAT encoding methods that model STRIPS actions and
facts, the new SAT encoding directly models transitions in
the SAS+ formalism.

We further study the search space in our new SAT en-
coding. We show that the new encoding scheme models a
planning problem with a search space consisting of two hi-
erarchical subspaces. The top subspace is the space of tran-
sition plans, and the lower subspace is the space of support-
ing action plans corresponding to feasible transition plans.
We analyze and compare the worst case search space sizes,
in the original STRIPS-based search space and the new hi-
erarchical search space. We show that, because of the new
search space’s structure, in which the lower level search can
be decomposed based on time steps without backtracking,
our encoding scheme typically has a smaller search space.

We also propose a number of techniques to reduce the en-
coding size by recognizing the characteristics of mutual ex-
clusive cliques of actions and transitions. Finally, we evalu-
ate the new encoding on the standard benchmarks from re-
cent planning competitions. Our results show that the new
encoding scheme only requires as low as 6% of the memory
needed by a STRIPS-based encoding, is more efficient than
the latter, and solves many large instances that the state-of-
the-art STRIPS-based SAT planners fail to solve.

This paper is organized as follows. After giving some ba-
sic definitions in Section 2, we present our SAS+ based en-
coding in Section 3. We then explain the search space size
reduction by the new encoding in Section 4. Techniques to
further reduce the encoding size are presented in Section 5.
We present our experimental results in Section 6 and con-
clude in Section 7.

89

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Background
The SAS+ formalism (Bäckström and Nebel 1996) repre-
sents a classical planning problem by a set of multi-valued
state variables. A planning task Π in the SAS+ formalism,
referred to as a SAS+ planning problem, is defined as a tuple
Π = {X ,O, sI , sG}, where

• X = {x1, · · · , xN} is a set of state variables, each with
an associated finite domain Dom(xi);

• O is a set of actions and each action a ∈ O is a tuple
(pre(a), eff(a)), where pre(a) and eff(a) are sets of par-
tial state variable assignments in the form of xi = v, v ∈
Dom(xi);

• A state s is a set of assignments with all the state variables
assigned. We denote S as the set of all states, sI ∈ S the
initial state, and sG a partial assignment that defines the
goal. A state s ∈ S is a goal state if sG ⊆ s.

Given a state s, in which a state variable x is assigned
a value f ∈ Dom(x), we write s(x) = f for this assign-
ment. For a given state s and an action a, when all variables
in pre(a) matches the assignments in s, a is called applica-
ble in state s. We use apply(s, a) to denote the state after
applying a to s, in which variable assignments are changed
according to eff(a).

We also write apply(s, P) to denote the state after apply-
ing a set of actions P , P ⊆ O, to s. A set of actions P is
applicable to s, when 1) each a ∈ P is applicable to s, 2)
there are no two actions a1, a2 ∈ P existing such that a1

and a2 are mutually exclusive (Blum and Furst 1997).

Definition 1 (Action Plan). An action plan is a sequence
P = {P1, P2, . . . , PN}, where each Pt, t ∈ {1, 2, . . . , N},
is a set of actions executed at time step t, such that sG ⊆
apply(. . . apply(apply(sI, P1), P2) . . . PN).

In this paper, we also consider plans of transitions, based
on the SAS+ formalism.

Definition 2 (Transition). Given a state variable x, a tran-
sition is a change of the assignment of x from value f to g,
written as δx

f→g , or from an unknown value to g, written as

δx
∗→g . We may also simplify the notation of δx

f→g to δx or δ,

when there is no confusion.

For an action a, three types of transitions may be derived:

• Transitions δx
f→g such that (x = f) ∈ pre(a), and (x =

g) ∈ eff(a). A transition δx
f→g is applicable to a state s,

if and only if s(x) = f . We denote apply(s, δ) as the
state after applying transition δ to state s, which results in
a new state s′ such that s′(x) = g.

• Transitions δx
f→f such that no assignment to x is in eff(a),

and (x = f) ∈ pre(a). We call this type of transitions
prevailing. A prevailing transition δx

f→f is applicable to

a state s, if and only if s(x) = f , resulting in the same
state s.

• Transitions δx
∗→g such that no assignment to x is in

pre(a), and (x = g) ∈ eff(a). We call this type of
transitions mechanical. A mechanical transition δx

∗→g

can be applied to an arbitrary state s, and the result of
apply(s, δx

∗→g) is a state s′ with s′(x) = g.

For each action a, we denote its transition set as M(a),
which includes all three types of transitions above. A transi-
tion is applicable at a state s only for the above cases. Given
a transition δ, we use A(δ) to denote the set of actions that
include δ in their transition sets. We call A(δ) the support-
ing action set of δ.

We use R(x) = {δx
f→f | ∀f, f ∈ Dom(x)} to denote the

set of all prevailing transitions related to x, and R the union
of R(x) for all x ∈ X . Note that for a prevailing transition
δ ∈ R, there may not be an action a such that δ ∈ M(a).
We introduce T (x) = {δx | ∃a ∈ O, δx ∈ M(a)} ∪ R(x),
which is the set of all legal transitions that transit the state
variable x between two assignments. T is the union of T (x),
for all x ∈ X .

Definition 3 (Transition Mutex). Two different transitions
δ1 and δ2 are mutually exclusive, i.e., δ1 and δ2 are a pair of
transition mutex, if there exists a state variable x ∈ X such
that δ1, δ2 ∈ T (x), and either of the following holds:

1. Neither δ1 nor δ2 is mechanical transition.

2. Both δ1 and δ2 are mechanical transitions.

3. Only one of δ1 and δ2 is a mechanical transition, and
without loss of generality, they are of the form δx

f→g and

δx
∗→g, respectively.

Two transitions that are both mechanical or not, are mu-
tual exclusive to another, as long as they belong to the same
state variable. If exactly one of them is mechanical, then
they are mutual exclusive if and only if they transit to the
same assignment.

A set of transitions T is applicable to a state s when 1)
every transition δ ∈ T is applicable to s, and 2) there do
not exist two transitions δ1, δ2 ∈ T such that δ1 and δ2 are
mutually exclusive. We write apply(s, T) to denote the state
after applying all transitions in T to s with an arbitrary order.

Definition 4 (Transition Plan). A transition plan is a se-
quence Q = {Q1, Q2, . . . , QN}, where Qt, t ∈ [1, N],
is a set of transitions executed at time step t, such that
sG ⊆ apply(. . . apply(apply(sI, Q1), Q2) . . . QN).

There always exists a unique transition plan for a parallel
action plan. In contrast, given a transition plan, there may
exist either no or multiple valid action plans.

SAS+ Based SAT Encoding

In this section, we propose our new SAS+ based encoding
(SASE) for SAS+ planning tasks. Similar to the STRIPS
based encoding in SatPlan, we use an increasing number of
time steps, N . For a fixed N , we encode a planning task in
the SAT representation which can be solved by a SAT solver.
The high-level planner will start with a small N and increase
N until a satisfiable solution is found. For a given N , SASE
includes the following binary variables:

1. Uδ,t, ∀δ ∈ T and t ∈ [1, N]. Uδ,t may also be written as
Ux,f,g,t when δ is explicitly defined as δx

f→g,

2. Va,t, ∀a ∈ O and t ∈ [1, N].

90

We have two classes of variables, transition variables U
and action variables V . We have eight classes of clauses for
a planning task. In the following, we define each class for
every time step t ∈ [1, N] unless otherwise indicated.

1. Initial state - (∀x, sI(x) = f):
∨

∀δf→g∈T (x) Ux,f,g,1.

2. Goal - (∀x, sG(x) = g):
∨

∀δf→g∈T (x) Ux,f,g,N .

3. Transition’s progression - (∀δx
f→g ∈ T and t ∈ [2, N]):

Ux,f,g,t →
∨

∀δx
f′

→f
∈T (x)

Ux,f ′,f,t−1.

4. Transition mutex - (∀δ1∀δ2 such that δ1 and δ2 are transi-
tion mutex): Uδ1,t → ¬Uδ2,t.

5. Existence of transitions - (∀x ∈ X):
∨

∀δ∈T (x) Uδ,t.

6. Composition of actions - (∀a ∈ O):

Va,t →
∧

∀δ∈M(a)

Uδ,t.

7. Action’s existence - (∀δ ∈ T \ R):

Uδ,t →
∨

∀a,δ∈M(a)

Va,t.

8. Non-interference of actions - (∀a1∀a2 such that ∃δ, δ ∈
T (a1) ∩ T (a2) and δ 6∈ R): Va1,t → ¬Va2,t.

Clauses in class 3 specify and restrict how transitions
change over time. Clauses in classes 4 and 5 enforce that
exactly one related transition can be true for each state vari-
able. Clauses in classes 6 and 7 together encode how ac-
tions are composed by transitions and how transitions imply
a disjunction of actions. Clauses in class 8 restrict mutually
exclusive actions from interfering with each other.

On Search Spaces of Encodings

It is in general difficult to accurately estimate the time that
a SAT solver needs to solve a SAT instance, as it depends
on not only the problem size, but also the structure of the
clauses. In this section, we give a preliminary analysis of
the worst case search space of a planning problem encoded
in SASE for a given time step N . In particular, we exam-
ine the search spaces corresponding to the SAT instances in
SatPlan and SASE, respectively. Our argument explains the
underlying encoding structures in SASE and why a problem
in SASE can be typically efficiently solved.

Search Space of STRIPS-based Encodings

We first consider the search space of planning in a STRIPS-
based SAT encoding. To simplify the analysis, we focus
on an action-based encoding. The argument can be read-
ily extended to an encoding with both actions and facts ex-
plicitly represented. In an action-based encoding, one bi-
nary variable is introduced for each action a at a time step
t. The constraint propagation is achieved through applica-
tion of actions in this encoding; hence, a key problem is
to select a set of actions for each time step t. There are

2|O| possible subsets of actions at each time step. There-

fore, a total of (2|O|)N possible action plans in the search
space. An exhaustive search will explore a search space of

size O((2|O|)N).

Search Space of SASE

A major difference between SASE and an action-based en-
coding is that in the former encoding, actions are not re-
sponsible for the constraint propagations over time horizons.
Figure 1 illustrates their essential differences. In SASE, the
SAT instance can be reduced to the following search prob-
lem of two hierarchies.

• On the top level, we search for a transition plan as defined
in Definition 4. This amounts to finding a set of transitions
for each time step t (corresponding to all δ such that Uδ,t

is set to 1), so that they satisfy the clauses in classes 1-5.

• On the lower level, we find an action plan that satisfies the
transition plan. In other words, for a given transition plan
that satisfies clauses in classes 1-5, we find an action plan
satisfying clauses in classes 6-8.

Figure 1: Illustration of how the search spaces of two encod-
ing schemes differ from each other.

We now analyze the search space size in both hierarchies
of SASE. For the top level, since there are |T | transitions,

at each time step we has 2|T | choices thus the size is in to-

tal (2|T |)N . We note that |T | is usually much less than |O|.
On the lower level, two observations can be made. For a
time step t and a given subset of selected transitions (corre-
sponding to all δ such that Uδ,t is set to 1), finding a subset
of actions that satisfies clauses in classes 6-8 amounts to ex-
ploring a search space with size K =

∏
δ∈T |A(δ)| in the

worst case. Given a transition plan, the problems of finding
a supporting action plan at different time steps are indepen-
dent of one another. That is, an action plan can be found for
each time step separately without backtracking across dif-
ferent time steps. Hence, the total cost of the lower level
is NK . Therefore, to solve an SASE instance, the search
space that an exhaustive search may explore is bounded by

O((2|T |)NNK).
The number of transitions |T | is generally much smaller

than the number of actions |O| in practise. For instance, in
Pipesworld-30, |O| is 15912 and |T | is 3474; in TPP-30, |O|
is 11202 and |T | is 1988. On the other hand, although K is
exponential in |T |, it is a relatively smaller term. Therefore,

91

the bound of SASE O((2|T |)NNK) is smaller than the one

for STRIPS-based encoding O((2|O|)N).

Reducing Encoding Size of SASE

We propose several techniques to reduce the size of SASE.
We first represent all mutual exclusions in SASE using a
more compact clique representation. We then develop two
new techniques to recognize the special structure of SASE
and further reduce encoding size.

Mutual Exclusion Cliques

A key observation on SASE is that mutual exclusions natu-
rally define cliques of transitions or actions in which at most
one of them can be true. There are two types of cliques: 1)
for each x ∈ X , T (x) is a clique of transitions enforced by
the class 4 clauses, and 2) for each transition δ that is not
prevailing, A(δ) is a clique of actions enforced by the class
8 clauses.

To encode all mutexes within a clique of size n pair-
wisely requires O(n2) clauses. To reduce the number of
clauses used, in SASE, we use a compact representation pro-
posed in (Rintanen 2006) which uses O(n log n) auxiliary
variables and O(n log n) clauses. The basic idea is the fol-
lowing. Suppose that we have a clique {x, y, z} where at
most one variable is true. we introduce auxiliary variables

b0, b1 and clauses x ⇔ b0∧b1, y ⇔ b0∧b1 and z ⇔ b0∧b1.
Note that in SatPlan’s encoding, mutual exclusions are not
naturally cliques like in SASE, thus the compact clique rep-
resentation cannot be efficiently applied.

Reduce Subsumed Action Cliques

We observe that there exist many action cliques that share
common elements, while transition cliques do not have this
property. In the following, we discuss the case where one
action clique is a subset of another. Given two transitions δ1

and δ2, if A(δ1) ⊆ A(δ2), clique A(δ1) is referred to being
subsumed by clique A(δ2).

Instances
Before Reduction After Reduction
count size count size

Pipesworld-20 2548 21.72 516 53.66
Storage-20 1449 12.46 249 60.22
Openstack-10 221 22.44 141 23.4
Airport-20 1024 6.45 604 8.49
Driverslog-15 1848 2.82 1848 2.82

Table 1: Statistics of action cliques. “count” gives the number of
action cliques, and “size” is the average size of the action cliques.

In pre-processing, for each transition δ1 ∈ T , we check if
A(δ1) is subsumed by another transition δ2’s action clique.
If so, we do not encode action clique A(δ1). In the special
case when A(δ1) = A(δ2) for two transitions δ1 and δ2,
we only need to encode one of them. Note that before do-
ing this, we verify there are no two actions, such that one’s
transition set is a subset of another.

Table 1 presents the number of cliques and their average
sizes, before and after reducing action cliques, on some rep-
resentative problems. The reduction is significant on most
problem domains, except Driverslog in which no reduction

occurred. Note that the average sizes of cliques are increased
since smaller ones are subsumed and not encoded.

Reduce Action Variables

Action variables form the majority of all variables. Thus,
it is important to reduce the number of action variables. To
this end, we propose two methods when certain structure of
a SAS+ task is observed.

Unary transition reduction. Given a transition δ such
that |T (δ)| = 1, we say the only action a in T (δ) is re-
ducible. Since a is the only action supporting δ, they are
logically equivalent. For any such action a, we remove Va,t

and replace it by Uδ,t, for t = 1, · · · , N .

Unary difference set reduction. Besides unary transition
variables, it is also possible to eliminate an action variable
by two or more transition variables. Given a transition δ, one
observation over the actions in A(δ) is that their transition
sets often differ by only one transition.

Definition 5 Given a transition δ ∈ T , let I =⋂
∀a∈A(δ) M(a). If for every a ∈ A(δ), |M(a) \ I| = 1,

we call action set A(δ) a unary difference set.

Consider a transition δ1 with A(δ1) = {a1, a2, . . . , an}.
If action set A(δ1) is a unary difference set, the transition
sets must have the following form:

M(a1) = {δ1, δ2, . . . , δk, θ1}

M(a2) = {δ1, δ2, . . . , δk, θ2}

...

M(an) = {δ1, δ2, . . . , δk, θn}

In this case, we eliminate the action variables for
a1, · · · , an by introducing the following clauses. For each
i, i = 1, · · · , n, we replace Vai,t by Uδ1,t ∧ Uθi,t, for
t = 1, · · · , N . Hence, the action variables are eliminated
and represented by only two transition variables.

Instances |O| R1 R2 %

Zeno-15 9420 1800 7620 100.00
Pathway-15 1174 173 810 83.73
Trucks-15 3168 36 300 10.61
Openstack-10 1660 0 400 24.10
Storage-10 846 540 0 63.83

Table 2: Number of reducible actions in representative in-
stances. Column ‘R1’ and ‘R2’ is the number of action vari-
ables reduced, by unary transition reduction and unary dif-
ference set reduction, respectively. Column ‘%’ is the per-
centage of the actions reduced by both methods.

Table 2 shows the number of reducible actions in several
representative problems. In Zenotravel, all action variables
can be eliminated when the two reduction methods are used.
In Openstack and Storage, there is only one type of reduction
that can be applied.

92

Experimental Results

We ran all experiments on a PC workstation with a 2.0 GHZ
Xeon CPU and 2 GB memory. We measured total running
time required, including that for parsing, preprocessing and
SAT solving. We used Precosat (build236) (Biere 2009), the
winner of the application track in the SAT’09 competition,
as the SAT solver for all planners that we tested and com-
pared. The planners considered include SatPlan06 (Kautz,
Selman, and Hoffmann 2006), SatPlan06L and SASE. Sat-
Plan06 used is the original planner, only with the underlying
SAT solver changed. We also implemented long-distance
mutual exclusion (londex) (Chen et al. 2009) in SatPlan06;
the enhanced solver is denoted as SatPlan06L. We compared
against londex since it also derives transition information
from the SAS+ formalism.

We tested all problem instances of STRIPS domains in
the 4th and 5th International Planning Competition (IPCs).
Some domains, for example, PSR and PROMELA, are
not included because all instances are solvable to all three
planners within 10 seconds. We used the parser by Fast-
Downward (Helmert 2006) to generate SAS+ formalisms
from STRIPS inputs. The preprocessing and encoding parts
of SASE are implemented in Python2.6.

Figure 2: Number of instances (out of all the instances in
the testing domains listed in Table 4) that are solvable for a
given time limit.

In Figure 2, we present the number of instances that are
solvable in the testing domains, as listed in Table 4, with
respect to a given time limit. Comparing to SatPlan06,
SatPlan06L solved a moderate number of more instances.
SASE in general solved many more instances.

Table 3 presents the number of instances solved in each
individual domain. The time limit for each instance was set
to 3600 seconds. SASE solves more instances in most do-
mains, especially in Airport and Pipesworld. In Storage, as
the only exception, SASE solves one fewer instance than
both SatPlan06 and SatPlan06L.

Table 4 gives more details on some of the instances con-
sidered. Due to space limit, since SatPlan06L has the same
number of variables as SatPlan06, we omit in the table the
numbers of variables and clauses for SatPlan06L. We list
two largest solvable instances in each domain. If both of the
two largest instances are solved by only one planner, we add
one more instance which was solved by at least one more

Domains SatPlan06 SatPlan06L SASE

Openstack 5 5 5
Pathway 12 12 13
Pipesworld 15 16 23
Rovers 13 13 14
Storage 16 16 15
TPP 27 28 29
Trucks 5 5 8
Airport 34 38 46
Driverslog 16 16 16
Freecell 4 5 6
Zeno 15 15 16

Table 3: Number of instances solved in each domain.

planner. For example, only SASE solved the two largest in-
stances of Pipesworld, Instances 18 and 27. To get informa-
tion for time and memory comparison, we add one more in-
stance, Pipesworld-12, which was solved by both SatPlan06
and SatPlan06L. We do not present any instance solved by
all planners in less than 100 seconds. For instance, all in-
stances in both Storage and Rovers, except one in each of
these domains, were solved by all planners within 100 sec-
onds, thus only the largest instances are presented.

Besides the three planners, in Table 4 we also present the
solving time (column Timeb), and the memory consumption
(column Memb) of SASE, when mutex clique representation
is not used. Without mutex clique representation, SASE in
general has comparable running times but much larger mem-
ory consumptions than the original SASE.

From Table 5, it is evident that SASE is more scalable
than the other two planners compared. Furthermore, SASE
in general uses fewer clauses and runs in less memory, even
though it typically has more variables. One exception is
Zenotravel, on which SASE uses less variables than Sat-
Plan06, because all action variables are reduced in SASE.
On most instances that we tested, the amount of memory
used by SASE is about 1/10 of that by SatPlan06. Note that
the memory consumption is reported by Precosat, the SAT
solver, before Precosat starts SAT solving. This difference
will be larger if the size is measured by CNF file.

Conclusions and Future Work

We developed a new SAS+ based encoding scheme, called
SASE, and showed that it can significantly improve the ef-
ficacy of planning as satisfiability in both time and mem-
ory required. Comparing to SatPlan06, a state-of-the-art
SAT based planner which gains its advantage by including
extensive mutual exclusions, our experiments showed that
SASE outperforms both SatPlan06 and SatPlan06+londex in
most domains tested. The comparison to SatPlan06+londex
also revealed that the problem structure encoded and the
state variables (invariants) used by SASE play key roles in
achieving its efficiency. Different from the earlier STRIPS-
based encodings, including those using split-action repre-
sentations, in SASE actions no longer participate in the
constraint propagation over time steps. We believe this is a
major feature makes SASE have a shorter refutation length
during SAT solving in practise. Other differences include,
but not limited to, how mutual exclusions and frame axioms

93

Instances
SatPlan06 SatPlan06L SASE

N Time Var Clause Mem t
+ Time Mem t

+ Time Var Clause Mem t
+ Timeb Memb

Openstack-4 23 212.1 3,709 66,744 5 79.3 198.3 5 72.3 33.6 4,889 20,022 2 7.3 23.4 2
Openstack-5 23 176.3 3,709 66,744 5 64.4 176.7 5 54.7 35.6 5,994 26,367 2 7.6 23.4 2
Pathway-13 18 3411.8 21,043 660,942 46 3242.1 3567.3 46 3449.5 1573.6 42,157 308,716 21 1362.6 Time Out
Pathway-17 21 Time Out Time Out 2316.8 76,483 531,750 37 1392.9 2680.1 92
Pipesworld-12 16 3147.3 30,078 13,562,157 854 1240.1 2603.5 867 907.3 543.7 43,528 634,873 44 362.0 2126.4 453
Pipesworld-18 16 Time Out Time Out 536.3 90,970 1,572,884 104 166.0 676.7 1510
Pipesworld-27 14 MLE MLE 1510.8 162,856 3,522,627 231 287.8 MLE
Rover-18 12 Time Out Time Out 1384.2 32,304 312,216 22 1195.7 370.5 68
Storage-16 11 1904.5 13,141 1,737,689 111 1618.4 1316.9 113 1085.8 Time Out MLE
TPP-21 12 Time Out Time Out 1251.7 61,802 427,058 31 1140.1 1340.0 69
TPP-30 11 3589.7 97,155 7,431,062 462 323.3 1774.1 466 238.9 1844.8 136,106 997,177 70 150.8 2008.3 201
Trucks-5 19 Time Out Time Out 326.1 53,521 402,952 29 84.9 380.9 37
Trucks-7 18 1076.0 21,745 396,581 27 265.2 1069.9 27 231.2 245.7 35,065 255,020 18 65.4 320.6 31
Trucks-8 19 Time Out Time Out 830.7 74,500 561,349 39 267.9 715.3 98
Airport-44 68 Time Out 2977.8 1077 1260.4 852.2 552,670 4,843,879 291 199.6 MLE
Airport-46 68 Time Out Time Out 1293.5 716,635 6,698,814 411 302.5 MLE
Airport-47 68 Time Out Time Out 1969.7 880,069 8,978,491 512 541.1 MLE
Driverslog-17 13 2164.8 61,915 2,752,787 183 822.0 1833.7 204 801.8 544.1 74,680 812,312 56 279.7 2748.5 583
Freecell-5 16 Time Out 2343.8 1197 893.0 1143.1 58,455 989,638 65 534.6 2308.3 403
Freecell-6 15 Time Out Time Out 376.1 63,005 1,097,342 80 248.3 1185.5 555
Zeno-14 6 728.4 26,201 6,632,923 421 83.1 236.8 423 79.8 58.7 17,459 315,719 18 5.4 125.4 95
Zeno-16 7 Time Out Time Out 1015.7 40,149 869,827 63 660.6 2214.3 438

Table 4: Detailed results on various of instances. Column ‘N’ is the optimal time step. Column ‘Time’ is the total running time. Columns
‘Var’, ‘Clause’, ‘Mem’ are the number of variables, number of clauses and memory consumption (in Megabytes), respectively, of the largest
SAT encoding. Column ‘t+’ is the longest running time among all the SAT formulas. Column Timeb and Memb are the running time and
memory consumption, when SASE does not use the mutex clique representation. ‘MLE’ is short for memory limit exceeded.

are handled. As a result of modeling an hierarchical search
space, SASE is able to solve many large benchmark prob-
lems that were not solved by the two other planners.

For future research, we plan to study how to utilize other
related techniques, for example, planning graph mutual ex-
clusions, stronger additional constraints, and more compact
action representation, to improve SASE. It is also a promis-
ing future work to further reduce the encoding size. A pos-
sible way is to use log-style variables instead of plain ones
for transitions. Finally, given the efficiency of SASE, we are
looking forward to applying this encoding scheme to other
SAT-based planning approaches, such as those for complex
planning with preferences or temporal features.

Acknowledgment

The research was supported by NSF grants IIS-0535257,
DBI-0743797, IIS-0713109, and a Microsoft Research New
Faculty Fellowship.

References

Bäckström, C., and Nebel, B. 1996. Complexity results for
sas+ planning. Computational Intelligence 11:625–655.

Biere, A. 2009. Pr{e,i}coSAT. In SAT’09 Competition.

Blum, A., and Furst, M. 1997. Fast Planning Through Plan-
ning Graph Analysis. Artificial Intelligence 90:1636–1642.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003.
SAT-based planning in complex domains:Concurrency, con-
straints and nondeterminism. Artificial Intelligence 147:85–
117.

Chen, Y.; Huang, R.; Xing, Z.; and Zhang, W. 2009. Long-
distance mutual exclusion for planning. Artificial Intelli-
gence 173:197–412.

Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic
SAT-compilation of planning problems. In Proc. of IJCAI.

Helmert, M. 2006. The Fast Downward planning system. J.
of AI Research 26:191–246.

Hoffmann, J.; Kautz, H.; Gomes, C.; and Selman, B. 2007.
SAT encodings of state-space reachability problems in nu-
meric domains. In Proc. of IJCAI.

Huang, R.; Chen, Y.; and Zhang, W. 2009. An Optimal Tem-
porally Expressive Planner: Initial Results and Application
to P2P Network Optimization. In Proc. of ICAPS.

Kautz, H.; Selman, B.; and Hoffmann, J. 1999. Unifying
sat-based and graph-based planning. In Proc. of IJCAI.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as Satisfiability. In Abstracts IPC5.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks Revisited. In Proc. of 23rd AAAI.

Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 12-13:1031–1080.

Rintanen, J. 2006. Biclique-based representations of binary
constraints for making SAT planning applicable to larger
problems. In Proc. of ECAI.

Robinson, N.; Gretton, C.; Pham, D.; and Sattar, A. 2009.
SAT-Based Parallel Planning Using a Split Representation
of Actions. In Proc. of 19th ICAPS.

94

