
Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering

Yuri Malitsky
Cork Constraint Computation Centre

University College Cork, Ireland
y.malitsky@4c.ucc.ie

Ashish Sabharwal, Horst Samulowitz, Meinolf Sellmann
IBM Watson Research Center

Yorktown Heights, NY 10598, USA
{ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

Abstract
Different solution approaches for combinatorial
problems often exhibit incomparable performance
that depends on the concrete problem instance to
be solved. Algorithm portfolios aim to combine
the strengths of multiple algorithmic approaches
by training a classifier that selects or schedules
solvers dependent on the given instance. We de-
vise a new classifier that selects solvers based on a
cost-sensitive hierarchical clustering model. Exper-
imental results on SAT and MaxSAT show that the
new method outperforms the most effective portfo-
lio builders to date.

1 Introduction
Algorithm portfolios are an essential tool for boosting prob-
lem solving performance. In essence, the idea of algorithm
portfolios is to select one or schedule several solvers out of
a pool of algorithms based on the problem instance that is
to be solved. This technology has proven key for providing
state-of-the-art performance in satisfiability (SAT), quantified
Boolean formulae (QBFs), and constraint programming (CP)
as exemplified by the performance of portfolios in the respec-
tive solver competitions.

1.1 Related Work on Algorithm Portfolios
Algorithm portfolios, at least in their most recent advent,
were pioneered by Gomes and Selman [2001] and Xu et
al. [2008]. The first really prominent instance of a solver
portfolio was SATzilla 2007, a SAT solver portfolio. It was
based on a linear regression model to predict log runtime for
each solver. For a while, the trend was towards more sophis-
ticated machine learning models, such as a hidden-class port-
folio generator [Silverthorn and Miikkulainen, 2010] or col-
laborative expert portfolio management [Stern et al., 2010].
In parallel, the idea to schedule solvers, meaning, to run a se-
lection of solvers for some designated time, was introduced
by Streeter and Smith [2007] and O’Mahony et al. [2008].

Based on these methods, Kadioglu et al. [2011] introduced
the idea of scheduling solvers while still picking one long-
running solver. The notable feature of this portfolio, named
3S, was that it used a low-bias (the authors call it “non-model
based”) machine learning technique for selecting the long

running solver. Namely, the latter is conducted by means of
a k-nearest neighbor approach which proved very effective
for SAT. The 2011 and 2012 incarnations of SATzilla [Xu
et al., 2012a; 2012b] followed this trend and introduced a
cost-sensitive, low-bias classification model approach based
on random forests and voting. A recent comparison of the
SATzilla-2012 and the 3S portfolio building approaches
was conducted by Amadini et al. [2013] for building a port-
folio of CP solvers which revealed a statistical tie between
both methods for this benchmark, whereby 3S appears to be
performing marginally better.

1.2 Motivation and Scope
The motivation of this work is to provide a portfolio builder
that works efficiently across a wide range of problem do-
mains. For SAT and for CP we have fairly well-established
feature sets that can be used to characterize a given prob-
lem instance and predict which solver(s) will be most ef-
fective at solving it quickly. However, we strongly believe
that algorithm portfolios could be equally effective in boost-
ing solver performance in other domains, such as MaxSAT
or global continuous optimization or mixed-integer program-
ming (MIP) where no good feature sets are readily available.

We expect that the SATzilla-2012 methodology will
generalize to other domains better than 3S as each feature
that has little predictive power regarding which solver is
better suited for solving a problem deteriorates k-nearest
neighbor-based 3S performance. While there are ways to
handle this (e.g., feature selection [Guyon and Elisseeff,
2003]), it is at the very least tedious for the non-expert to
have to select the right features. Moreover, even when us-
ing scaling techniques, k-nearest neighbor cannot give differ-
ent weight to features in different parts of the feature space.
SATzilla-2012 on the other hand can easily accommodate
features which are not helpful and use features only in those
areas of the search space where they actually help us differ-
entiate between solvers.

On the other hand, 3S’s scheduler is based on traditional
optimization MIP technology while SATzilla-2012 uses a
heuristics-based presolver schedule. Surprisingly, we found
that training this presolver takes a significant amount of time
in SATzilla-2012. Furthermore, SATzilla-2012 trains
one random forest for each pair of solvers. This creates
a computational bottleneck as the training time obviously

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

608

squares when the number of solvers doubles. One goal of
this paper is to perform cost-sensitive multi-class classifica-
tion directly and not by means of binary classification in order
to alleviate this computational burden.

We propose a new portfolio builder that combines 3S’s
static scheduler with a new algorithm selector based on cost-
sensitive hierarchical clustering (CSHC) which creates a multi-
class classification model, runs orders of magnitude faster
than SATzilla-2012, and is less sensitive to poor fea-
ture sets than 3S. We describe the method in detail and
provide extensive empirical results comparing CSHC with
SATzilla-2012 and 3S on various benchmark sets for port-
folio generators.

2 Toward A New Algorithm Portfolio Builder
Clustering is a standard technique in unsupervised learning,
equally fundamental and simple as k-nearest-neighbor clas-
sification in supervised learning. The two methods bear
methodological similarities as well. The result of k-nearest
neighbor learning is the labeling of compact areas of the fea-
ture space by one class, just as clustering groups of instances
into compact clusters. In fact, the k-nearest-neighbor in
3Swas inspired by cluster-based instance-specific algorithm
configuration shown by Kadioglu et al. [2010].

While clustering is certainly appealing, it makes sense to
center clusters at the test instance that needs to be solved.
That is exactly what the k-NN approach does. Moreover, tra-
ditional clustering is unsupervised. For the purpose of algo-
rithm portfolios, we would like to group training instances
in such a way that they can agree on the class they should
be labeled with. For us that means that training instances in
the same cluster should preferably not disagree violently on
which solver solves them most efficiently (or at all, in case of
timeouts). Finally, while clustering is traditionally based on
some metric of distance, to accommodate poor feature sets
we need a clustering method that allows us to select when or
under what circumstances we use the dimensions that features
provide are used for determining what goes into the same
cluster.

2.1 Cost-Sensitive Hierarchical Clustering
We propose a learning method which we named cost-sensitive
hierarchical clustering (CSHC). High-level, the method pro-
ceeds as follows. First, all instances are in the same cluster.
Now, for each cluster in the current set of clusters, we test
whether a given minimum number of instances is still present
in that cluster (we typically set this required minimum to ten
instances). If not, we remove the cluster from consideration
for further partitioning. Otherwise we split the cluster in such
a way that the instances within each of the two clusters max-
imally agree on the class they should be labeled with.

We will investigate a variant where we add another phase,
where we consider merging clusters again for which the split
resulted in diminishing cross-validation performance.

At run-time, we compute the given instance’s feature vec-
tor and determine which cluster it belongs to. Then, we em-
ploy the solver that performs best on the training instances in
this cluster.

Cost-Sensitive Learning Problem
More formally, we consider the following (incomplete) clas-
sification problem. Given are a set of classes C and a set
of training instances T , each associated with a feature vector
f ∈ IRF . Moreover, we are provided with a cost-vector that
associates each instance i ∈ T with a cost mi,c ≥ 0 which
represents the cost of (mis-)classifying instance i by class
c ∈ C. The task is to infer a classification algorithm which
will assign a class to new instances such that their associated
misclassification cost is minimized. We label this classifica-
tion problem incomplete as we obviously do not know what
the misclassification costs for the given instance are or how
these can be inferred from the misclassification costs that we
observe for the training instances.

It is worth noting that the problem considered is similar
yet fundamentally different from semi-supervised problems
considered in machine learning. In particular, Elkan [2001]
considered the problem where the misclassification costs are
determined by a given |C| × |C| matrix which assigns a mis-
classification cost to each pair of classes, where the first is the
preferred class of the instance, and the second is the class we
label it with. Obviously, when building an algorithm portfo-
lio, there does not exist and, in any case, we would not have
access to such a class-misclassification matrix.

It is interesting to note that the model-based portfolio ap-
proaches [Xu et al., 2008; Silverthorn and Miikkulainen,
2010] essentially aim to predict the misclassification costs
for a given instance. One advancement was the realization
that better predictions are obtained when we focus on pre-
dicting a preferred class without taking the detour of fore-
casting the misclassification costs for each class for the given
instance [O’Mahony et al., 2008; Kadioglu et al., 2011;
Xu et al., 2012b].

There exist many other cost-sensitive learning methods
(see for example [Lenarcik and Piasta, 1998; Ting, 2002;
Zadrozny et al., 2003; Klinkenberg and Rüping, 2003;
Geibel and Wysotzki, 2004; Wysotzki and Geibel, 2009]).
It is beyond the scope of this paper to give a compre-
hensive overview. However, the only cost-sensitive multi-
classification approaches for the cost-model that applies to
portfolios that we are aware of are the ones employed by
3Sand SATzilla-2012, whereby the latter is based on a se-
ries of binary classifications.

Approach
During CSHC’s learning phase we maintain a set of clusters,
starting with all training instances in one cluster. In each iter-
ation, we remove one cluster from the current set. If it is too
small, we do not partition it further. Otherwise, we partition
the cluster in two parts by running a hyperplane through the
feature space so that instances fall on either side of the plane.

When labeling an instance i with class C we incur the cost
m(i, C). The total (mis)classification cost when labeling a
subcluster with a specific class is the sum of all costs for all
instances in that cluster. The cost of a binary split is the cost
of labeling each subcluster with a class that gives the lowest
cost. We select a hyperplane to split the cluster so that the cost
of the binary split is minimized. If none of the sub-clusters
are empty, we add both to the current set of clusters.

609

In a potentially following phase, we consider undoing
some cluster splits based on the cross-validation performance
that we would achieve by labeling the whole cluster with one
class, compared to the cross-validation performance when
doing the same for the two sub-clusters. If the performance
of the split is not better, we undo the partition.

At runtime, for the first 10% of available time, the portfolio
executes the same static schedule as 3S. If this does not result
in a solution, we use the hyperplanes used for splitting the
base set to determine which cluster the test instance belongs
to, and we try solving it with the solver that has the overall
best performance on all training instances in that cluster.

Decision Trees
As we will discuss shortly, in practice we will consider axis-
parallel hyperplanes to obtain a tractable training method.
This means that the clustering approach could very well also
be viewed as a decision tree approach where the ground set
of training instances is repeatedly partitioned by branching
on individual features. The main difference to existing cost-
sensitive desision tree methods is the way how we compute
the cost of a split. Instead of considering entropy or cost-
sensitive entropy, we favor splits where, in both parts, the in-
stances can agree on a consensus label that may not be perfect
for any one instance but that incurs minor costs for all.

2.2 Bagging, Maximum-Margin Hyperplanes,
Feature Augmentation

In this section, we discuss several alternative techniques that
we considered adding to the basic CSHC methodology. Later
we will test these empirically and quantify their effect on
overall portfolio performance.

Bagging
The first technique we consider is bootstrap aggregating (bag-
ging), a well-known technique in machine learning for im-
proving the stability of classification and regression algo-
rithms. In our case, we generate bootstrap samples to create
training sets which are then clustered. That is, rather than cre-
ating just one clustering using all training instances, we create
multiple clusterings based on subsets of the training set.

The obvious question arises how we should then combine
the potentially conflicting classifications from different clus-
terings. We propose four different ways on how this informa-
tion can be combined:

• PAR-10 Aggregation: Collect, for each clustering, the
respective training instances in each cluster that the test
instance belongs to. We can assemble these instances
into a set or a multi-set of instances. Then, to determine
the solver the given instance should be solved with, we
compute which solver has the best performance in terms
of average runtime with timeouts penalized by a factor
of 10 (PAR-10) on the set or multi-set of instances in the
various different clusters the test instance belongs to.

• Winner Aggregation: Determine the best class for each
cluster the test instance belongs to. Then we label the
test instance with the class that was chosen most often.

• Rank Aggregation: Rank the classes in each cluster the
test instance belongs to. Then, we choose the class that
has the best average rank over all clusterings.

• SATzilla-style Aggregation: Recall that
SATzilla-2012 builds a random forest for each
pair of classes (which, in our case, correspond to
solvers). Using the analogy of axis-parallel clustering
and decision trees discussed above (the only difference
being how we split), each random tree can be viewed as
a “clustering” of training instances. In SATzilla-2012
the information from each “cluster” are aggregated by
first aggregating over all trees, and then counting how
many other solvers each solver is able to outperform.
We can emulate this aggregation scheme by computing,
for each ordered pair of solvers, for how many of our
bagged clusterings the first solver outperforms the
second. If this number is at least half, we say the first
solver outperforms the second, otherwise we say the
second outperforms the first. We then compute, for
each solver, how many other solvers it outperforms.
We choose the solver that outperforms the most other
solvers.

Maximum-Margin Hyperplanes
Earlier, we said that we would compute a hyperplane to split
the base instances such that the performance of the best solver
on each side is maximized. This is, in general, a hard opti-
mization problem. We consider two heuristics for comput-
ing such hyperplanes. The first is to consider feature-axis-
parallel hyperplanes only which renders the resulting opti-
mization problem tractable. Using this method, our cluster-
ing approach can be viewed as a decision-tree procedure. In a
second variant, we consider accepting the best split according
to an axis-parallel hyperplane, but then tilt it so as to achieve
a splitting hyperplane that achieves the same base partition
with a maximum margin. We found that non-axis-parallel hy-
perplanes do not boost performance, yet increase the learning
time considerably, which is why we do not pursue this avenue
further in this paper.

Feature-Augmentation
One welcome advantage that CSHC shares with the
SATzilla-2012 approach is the ability to accommodate fea-
tures that have limited prediction potential. That is, we can
add a bunch of new features or combinations of the existing
features without fearing that performance would decline. We
consider adding products and quotients of pairs of features to
our feature set.

3 Analyzing the Components of CSHC
A priori it is not clear which of the variants of CSHC performs
best. In this section, we therefore perform an experimental
comparison of different versions of the cost-sensitive cluster-
ing approach we have proposed.

Typically, in the literature on algorithm portfolios we find
that different papers consider different sets of features, differ-
ing sets of solvers, and differing train and test sets. Recently,
Malitsky [2013] created an actual benchmark for algorithm

610

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0 200 400 600 800 1000 1200

T
ra

in
in

g
 T

im
e

 P
e

r
S

p
li

t
(s

e
c)

Number of Clusterings

INDU12S

HAND12S

RAND12S

Figure 1: Training time of CSHC as a function of the number
of clusterings

portfolios that standardizes these choices. It allows us to com-
pare different algorithm portfolio methods on a level playing
field as the benchmark for a portfolio builder really consists
of all, available features, the set of base solvers, as well as
training and test sets.

All experiments in this section are based on the dataset
provided by the UBC group1 after SATzilla won the SAT
Challenge 2012. The data is broken down into crafted, in-
dustrial, and random categories. Instances in each category
were solved by the same 31 SAT solvers with a 1,200 second
timeout. Malitsky [2013] removed all instances that cannot
be solved by any solver within the allotted timeout and broke
down each of the data sets into 10 parts suitable for cross-fold
validation. Instances are characterized by the 125 features
the UBC team proposed (option -base). For each of the three
benchmark sets, we created five benchmarks with two, three,
four, twelve, and all 31 solvers by removing solvers from the
base set.

In the rest of this section, we evaluate the contribution of
various components of CSHC to its performance and use the
findings to tune basic choices in CSHC (how many clusterings
to use, what aggregation mechanism to use, etc.). In Sec-
tion 4 we then compare the resulting tuned CSHC with other
portfolio solvers. To keep this latter comparison fair, we tune
the components of CSHC on a different benchmark than the
benchmarks we will use later to compare with other portfolio
builders.

3.1 Number of Bootstrap Samples
First, we investigate the impact of the number of cluster-
ings on the robustness, stability, and scalability of CSHC. We
ran CSHC with various numbers of bootstrap samples ranging
from 5 to 1,200, whereby each sample contains 60% of all
available training instances. We also tested various other per-
centages but that had little effect on the overall trend. The ex-
periments were run on the benchmark data mentioned above
and results reported are the averages over the 10 data splits
used for cross-validation.

Figure 1 shows, for each number of clusterings on the hor-
izontal axis, the average training time per split on the verti-
cal axis. There is one curve each for the industrial, crafted,

1http://www.cs.ubc.ca/labs/beta/Projects/SATzilla

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

0 200 400 600 800 1000 1200

N
o

rm
a

li
ze

d
 P

A
R

1
0

 S
co

re

Number of Clusterings

INDU12S

HAND12S

RAND12S

Figure 2: PAR-10 performance of CSHC as a function of the
number of clusterings

and random instance benchmarks. As expected, we see that
the training time of CSHC scales linearly as the number of
clusterings grows. Training never took more than 7 min-
utes2 per split on this benchmark even with 1,200 cluster-
ings. This is massively faster than SATzilla-20123 which,
on these benchmark sets with 31 solvers, needs CPU-days to
be trained.

Figure 2 shows, again as a function of the number of
clusterings, the normalized average PAR-10 score observed
across the 10 splits. For each of the industrial, crafted, and
random benchmark sets, the PAR-10 score plotted here is nor-
malized by the average of the PAR-10 scores across all 10
splits. Note that, as the number of clusterings grows, this
measure will eventually converge to 1, independent of the
benchmark. We observe that CSHC is rather unstable for up to
about 100 clusterings but begins to show reasonable stability
after a few hundred clusterings.

While using more clusterings makes performance more ro-
bust, there is clearly a tradeoff with growing training time.
For the rest of the experiments reported in this paper, we
chose to use 800 clusterings which kept CSHC reasonably fast
yet stable.

3.2 Aggregation
We discussed four different aggregation schemes earlier,
PAR-10, winner, rank, and SATzilla-inspired aggregation. In
Table 1 we present our numerical results when using these
aggregators.

Our first observation from this data is that the SATzilla-
inspired aggregation method is clearly inferior to all other
techniques. Note that, while the method is inspired by
SATzilla-2012, this does not mean that, within that portfo-
lio builder, the aggregation method used is sub-optimal. First,
SATzilla-2012 builds a different random forest for each
pair of solvers. CSHC on the other hand builds just one set
of clusterings which performs multi-class classification. The
latter gives an advantage in terms of the time needed for learn-
ing. However, it may very well have an adverse effect on this

2These experiments were conducted on a 4-core Intel Xeon 2.4
GHz machine with 24 GB RAM running Scientific Linux 6.1.

3Downloaded from http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla.

611

Table 1: Performance comparison of the four different aggre-
gators with a timeout of 1,200 seconds. Shown is the average
percent solved over the ten-fold cross validation.

SAT Family PAR-10 Winner Rank SATzilla
Crafted 89.3 91.0 89.2 81.0

Industrial 96.4 96.6 97.2 87.2
Random 97.1 97.0 97.1 92.9

Table 2: Performance comparison of the three different aggre-
gators using 2, 3, 4, and 16 solvers from the SATzilla 2012
benchmark (Timeout of 1,200 seconds). Shown is the average
percent solved over the ten-fold cross validation.

SAT Family #Solvers PAR-10 Winner Rank

Industrial

2 97.6 97.6 98.5
3 97.1 97.8 98.1
4 97.6 97.8 97.8

12 96.5 96.9 96.8

Crafted

2 94.4 94.4 94.4
3 94.1 95.2 95.6
4 92.9 92.9 93.3

12 90.8 92.7 90.8

Random

2 98.2 97.9 98.0
3 96.8 96.3 96.5
4 96.4 96.5 96.3

12 98.3 97.9 98.2

aggregation method. Second, the way how we cluster the dif-
ferent bootstrap samples differs fundamentally from the cost-
sensitive random-forests that SATzilla-2012 creates.

Between the remaining aggregators, there is no clear win-
ner. We therefore created more benchmarks by selecting sub-
sets of base-solvers. Table 2 shows the comparison between
the remaining aggregators on these additional benchmarks.
Overall, we find that the rank-based aggregation performs
with good average performance while displaying the smallest
variance in performance. It works second best on the crafted
and random categories and, across the board, best on indus-
trial instances.

3.3 Combination Features
As discussed earlier, unlike 3S, both CSHC and
SATzilla-2012 can naturally accommodate more fea-
tures and simply not use them if they are not helpful. Given

Table 3: Impact of adding additional features based on quo-
tients and products on the different SATzilla benchmarks with
a timeout of 1,200 seconds. Shown are the average PAR-10
scores across the splits and the corresponding training time
per split in minutes.

#Features Industrial Crafted Random
added PAR10 TrTime PAR10 TrTime PAR10 TrTime

0 494 3.8 1402 1.9 419 5.5
25 519 12.3 1423 6.8 419 24.9
50 507 23.5 1423 12.6 419 47.2

100 505 69.8 1316 30.3 397 119
150 493 135 1380 61.4 408 210
200 482 237 1426 123 420 300

Table 4: Performance comparison of CSHC with and without
merging on the SATzilla 2012 benchmark with a timeout of
1,200 seconds. Shown are the average percentage solved and
the average PAR-10 runtime in seconds on the test sets of the
ten-fold cross validation.

CSHC+Merging CSHC
Benchmark % PAR-10 % PAR-10
Industrial 96.7 548 97.2 494
Crafted 88.9 1445 89.2 1423
Random 97.0 432 97.1 420

k original features, we consider adding k′ randomly chosen
pairwise products and quotients of these features to CSHC. If
f2 = 0, the quotient f1/f2 is treated as 1 if f1 is also 0, and
as a cutoff value of sign(f1)× 1036 otherwise.

Table 3 shows the result of adding k′ = 0, 25, 50, 100, 150,
and 200 such feature combinations. For each benchmark we
report the resulting performance in terms of PAR-10 score av-
eraged over the 10 splits, along with the average training time
needed per split. We find that adding products and quotients
does not lead to a substantial difference in the PAR-10 per-
formance on this dataset, at least on the industrial instances.
On crafted and random instances, using k′ = 100 results in
a somewhat improved performance. However, the improve-
ment is unstable across different benchmark categories and
comes at the cost of 30 minutes to nearly 2 hours of train-
ing time per split, compared to under 6 minutes without these
additional features. We therefore chose not to use such aug-
mented features for the remainder of this empirical study.

3.4 Cross-Validation-Based Merging of Clusters
When describing the CSHC approach we discussed the pos-
sibility of undoing cluster splits based on a cross-validation.
We implemented this technique and compare it to the plain
cost-sensitive hierarchical clustering we proposed.

We show our results in Table 4. Across the board we ob-
serve that the merging of split clusters actually diminishes
performance. We tested a number of other techniques for
undoing splits, such as merging if the performance of the
split declines on the instances left out for training by the cur-
rent bootstrap sample. However, all these techniques showed
the same trend: The simpler technique of cost-sensitive hi-
erarchical clustering without cluster-merging performs bet-
ter. This observation matches the well-known fact that, when
constructing decision forests, it is better not to prune the trees.

4 Comparison with SATzilla-2012 and 3S
There are two portfolios which excelled in the last two
SAT Competition/Challenges. In 2011, 3S [Kadioglu et al.,
2011] won the crafted and random categories. In 2012,
SATzilla-2012 [Xu et al., 2012a] won the industrial and
crafted categories.

[Amadini et al., 2013] compared the two approaches when
building portfolios of constraint programming solvers. It was
already noted there that SATzilla-2012 needed much more
time for learning, especially as the number of solvers in-
creases. In terms of test performance, Amadini et al. [2013]

612

Table 5: Performance comparison of 3S, SATzilla-2012,
and CSHC on the MAXSAT benchmark. Shown are the aver-
age percent solved (timeout 1,800 seconds) and PAR-10.

3S SATzilla-2012 CSHC
MaxSat % PAR-10 % PAR-10 % PAR-10

MS Crafted 99.4 224 99.3 228 99.4 256
PMS Crafted 95.3 1014 99.3 155 99.3 196

PMS Indu 96.4 728 98.1 412 98.3 391
WPMS Crafted 91.4 1683 95.0 948 97.0 609

WPMS Indu 100 132 96.6 718 98.3 421

found that both builders result in almost the same perfor-
mance, with a slight edge in favor of 3S which was not statis-
tically significant. To the best of our knowledge, to date this
is the only comparison of SATzilla-2012 and 3S on a level
playing field where both builders use the same set of solvers,
the same features, and the the same train/test splits.

4.1 MaxSAT
Using Malitsky’s portfolio benchmark [Malitsky, 2013], we
compare CSHC with 3S and SATzilla-2012. In Table 5
we compare CSHC with 3S and SATzilla-2012 on various
MaxSAT benchmarks. All builders use the same set of base
solvers and the same features that are provided for each in-
stance. The numbers represent the average test performance
over the same ten cross-validation splits that are part of the
benchmark.

The benchmark consists of instances gathered from the var-
ious categories of the 2012 MaxSAT Evaluation. There are
five benchmarks in total: crafted unweighted MaxSAT (MS),
crafted and industrial partial MaxSAT (PMS), and crafted
and industrial weighted partial MaxSAT (WPMS). These in-
stances were run with a 1,800 second timeout with 10 to 14
MaxSAT solvers, depending on the benchmark. We use the
ten cross-validation splits provided by [Malitsky, 2013].

For the features, the MaxSAT instance was converted into
an equivalent instance where all the soft clauses are unit. This
is achieved by reifying the soft clauses. Finally, the compu-
tation of the features is performed using the SATzilla feature-
code on the hard clauses of the MaxSAT formula.

We observe that 3S’s performance is rather erratic. At
times it works really well, other times it works significantly
worse than SATzilla-2012 and CSHC. It performs equally
well as CSHC on crafted MaxSAT benchmarks, and it clearly
outshines all other methods on weighted partial MaxSAT In-
dustrial. On the other hand, it works much worse on all re-
maining benchmarks.

Comparing SATzilla-2012 and CSHC, we find that the
latter performs on par on crafted partial MaxSAT and
better on all other benchmarks. Especially on the two
weighted MaxSAT benchmarks CSHC works notably better
than SATzilla-2012.

4.2 SAT
Next we use the benchmark based on data from the
SATzilla-2012 webpage. This data utilizes the dataset pro-
vided by the UBC group coupled with their SATzilla portfolio

Table 6: Performance Comparison of 3S, SATzilla-2012,
and CSHC on the SATzilla 2012 benchmark with a timeout of
5000 seconds. Shown are the average percentage solved and
the average PAR-10 runtime in seconds.

3S SATzilla-2012 CSHC
Benchmark % PAR-10 % PAR-10 % PAR-10
Industrial 88.0 6638 92.1 4444 93.1 4093
Crafted 81.8 10453 89.5 5760 90.9 5169
Random 96.6 2004 98.2 1165 99.0 870

Matlab code.4 The data is broken down into crafted, indus-
trial, and random categories. Instances in each category were
taken from the 2012 SAT Challenge and run on the solvers
at that competition (15 for Crafted, 18 for Industrial, and 9
for Random). Timeout is 5,000 seconds. [Malitsky, 2013]
again removed all instances that could not be solved by any
solver within the allotted timeout and provided ten standard-
ized cross-validation splits.

Consider Table 6. We observe the same trend as we
had noted on the MaxSAT benchmarks. 3S behaves errati-
cally: On the random category it performs almost as good as
SATzilla-2012 and CSHC, but on the crafted and industrial
instances it performs much worse.

We further note that the cost-sensitive clustering approach
again outperforms SATzilla-2012 on every category. How-
ever, while these results are highly encouraging, the ten splits
that were provided by [Malitsky, 2013] are not enough to con-
firm statistical significance.

5 Conclusion
We devised a cost-sensitive hierarchical clustering approach
for building algorithm portfolios. We applied this method to
benchmarks from MaxSAT and SAT. The empirical analysis
showed that adding feature combinations can improve perfor-
mance slightly, at the cost of increased training time, while
merging cluster splits based on cross-validation lowers pre-
diction accuracy. Moreover, we found that aggregating across
multiple clusterings based on class rank works most robustly.
We then compared the new approach with the most successful
state-of-the-art algorithm portfolios, SATzilla-2012 and
3S. We found that 3S’s performance is rather unpredictable:
for some benchmarks it works really well, while for others
it builds under-achieving portfolios. SATzilla-2012 works
much more stable but is outperformed on all benchmarks we
tested by cost-sensitive hierarchical clustering. Furthermore,
training CSHC is much faster than SATzilla-2012, espe-
cially as the number of base solvers grows.

Acknowledgements
This work was partially supported by the European Commis-
sion through the ICON FET-Open project (Grant Agreement
284715).

4Downloaded from http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla.

613

References
[Amadini et al., 2013] Roberto Amadini, Maurizio Gab-

brielli, and Jacopo Mauro. An empirical evaluation of
portfolios approaches for solving csps. In CPAIOR-2013,
2013.

[Elkan, 2001] Charles Elkan. The foundations of cost-
sensitive learning. In IJCAI-01, pages 973–978, 2001.

[Geibel and Wysotzki, 2004] Peter Geibel and Fritz
Wysotzki. Learning perceptrons and piecewise lin-
ear classifiers sensitive to example dependent costs. Appl.
Intell., 21(1):45–56, 2004.

[Gomes and Selman, 2001] C.P. Gomes and B. Selman. Al-
gorithm portfolios. Artificial Intelligence Journal, 126(1-
2):43–62, 2001.

[Guyon and Elisseeff, 2003] Isabelle Guyon and André Elis-
seeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157–1182, 2003.

[Kadioglu et al., 2010] S. Kadioglu, Y. Malitsky, M. Sell-
mann, and K. Tierney. Isac – instance-specific algorithm
configuration. Proc. of the 19th European Conference on
Artificial Intelligence (ECAI), pages 751–756, 2010.

[Kadioglu et al., 2011] S. Kadioglu, Y. Malitsky, A. Sabhar-
wal, H. Samulowitz, and M. Sellmann. Algorithm selec-
tion and scheduling. CP, 2011.

[Klinkenberg and Rüping, 2003] Ralf Klinkenberg and Ste-
fan Rüping. Concept drift and the importance of example.
In Text Mining, pages 55–78, 2003.

[Lenarcik and Piasta, 1998] Andrzej Lenarcik and Zdzislaw
Piasta. Rough classifiers sensitive to costs varying from
object to object. In Rough Sets and Current Trends in
Computing, pages 222–230, 1998.

[Malitsky, 2013] Yuri Malitsky. Algorithm portfolio bench-
mark set, 2013. http://4c.ucc.ie/∼ymalitsky/algorithm
portfolio benchmark set.html.

[O’Mahony et al., 2008] E. O’Mahony, E. Hebrard, A. Hol-
land, C. Nugent, and B. O’Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint solving.
Irish Conference on Artificial Intelligence and Cognitive
Science, 2008.

[Silverthorn and Miikkulainen, 2010] B. Silverthorn and
R. Miikkulainen. Latent class models for algorithm
portfolio methods. AAAI, 2010.

[Stern et al., 2010] D. Stern, H. Samulowitz, R. Herbrich,
T. Graepel, L. Pulina, and A. Tacchella. Collaborative ex-
pert portfolio management. AAAI, 2010.

[Streeter and Smith, 2007] M. Streeter and S.F. Smith. Using
decision procedures efficiently for optimization. ICAPS,
pages 312–319, 2007.

[Ting, 2002] K. M. Ting. An instance-weighting method to
induce cost-sensitive trees. IEEE Trans. on Knowl. and
Data Eng., 14(3):659–665, 2002.

[Wysotzki and Geibel, 2009] Fritz Wysotzki and Peter
Geibel. A new information measure based on example-
dependent misclassification costs and its application in
decision tree learning. Adv. Artificial Intellegence, 2009.

[Xu et al., 2008] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-
Brown. Satzilla: Portfolio-based algorithm selection for
sat. JAIR, 32(1):565–606, 2008.

[Xu et al., 2012a] L. Xu, F. Hutter, J. Shen, H.H. Hoos,
and K. Leyton-Brown. Satzilla2012: Improved algo-
rithm selection based on cost-sensitive classification mod-
els. solver description, 2012. SAT Challenge 2012.

[Xu et al., 2012b] Lin Xu, Frank Hutter, Holger Hoos, and
Kevin Leyton-Brown. Evaluating component solver con-
tributions to portfolio-based algorithm selectors. In SAT-
2012, pages 228–241, 2012.

[Zadrozny et al., 2003] Bianca Zadrozny, John Langford,
and Naoki Abe. Cost-sensitive learning by cost-
proportionate example weighting. In 3rd Intl. Conf. on
Data Mining, pages 435–442, 2003.

614

