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Abstract

We introduce two novel tree search algorithms that use a policy to guide search.
The first algorithm is a best-first enumeration that uses a cost function that allows
us to prove an upper bound on the number of nodes to be expanded before reaching
a goal state. We show that this best-first algorithm is particularly well suited for
“needle-in-a-haystack” problems. The second algorithm is based on sampling and
we prove an upper bound on the expected number of nodes it expands before
reaching a set of goal states. We show that this algorithm is better suited for
problems where many paths lead to a goal. We validate these tree search algorithms
on 1,000 computer-generated levels of Sokoban, where the policy used to guide the
search comes from a neural network trained using A3C. Our results show that the
policy tree search algorithms we introduce are competitive with a state-of-the-art
domain-independent planner that uses heuristic search.

1 Introduction

Monte-Carlo tree search (MCTS) algorithms [Coulom, 2007, Browne et al., 2012] have been recently
applied with great success to several problems such as Go, Chess, and Shogi [Silver et al., 2016, 2017].
Such algorithms are well adapted to stochastic and adversarial domains, due to their sampling nature
and the convergence guarantee to min-max values. However, the sampling procedure used in MCTS
algorithms is not well-suited for other kinds of problems [Nakhost, 2013], such as deterministic
single-agent problems where the objective is to find any solution at all. In particular, if the reward is
very sparse—for example the agent is rewarded only at the end of the task—MCTS algorithms revert
to uniform search. In practice such algorithms can be guided by a heuristic but, to the best of our
knowledge, no bound is known that depends on the quality of the heuristic. For such cases one may
use instead other traditional search approaches such as A* [Hart et al., 1968] and Greedy Best-First
Search (GBFS) [Doran and Michie, 1966], which are guided by a heuristic cost function.

In this paper we tackle single-agent problems from the perspective of policy-guided search. One
may view policy-guided search as a special kind of heuristic search in which a policy, instead of a
heuristic function, is provided as input to the search algorithm. As a policy is a probability distribution
over sequences of actions, this allows us to provide theoretical guarantees that cannot be offered
by value (e.g., reward-based) functions: we can bound the number of node expansions—roughly
speaking, the search time—depending on the probability of the sequences of actions that reach
the goal. We propose two different algorithms with different strengths and weaknesses. The first
algorithm, called LevinTS, is based on Levin search [Levin, 1973] and we derive a strict upper
bound on the number of nodes to search before finding the least-cost solution. The second algorithm,
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called LubyTS, is based on the scheduling of Luby et al. [1993] for randomized algorithms and
we prove an upper bound on the expected number of nodes to search before reaching any solution
while taking advantage of the potential multiplicity of the solutions. LevinTS and LubyTS are the
first policy tree search algorithms with such guarantees. Empirical results on the PSPACE-hard
domain of Sokoban [Culberson, 1999] show that LubyTS and in particular LevinTS guided by a
policy learned with A3C [Mnih et al., 2016] are competitive with a state-of-the-art planner that uses
GBFS [Hoffmann and Nebel, 2001]. Although we focus on deterministic environments, LevinTS
and LubyTS can be extended to stochastic environments with a known model.

LevinTS and LubyTS bring important research areas closer together. Namely, areas that traditionally
rely on heuristic-guided tree search with guarantees such as classical planning and areas devoted
to learn control policies such as reinforcement learning. We expect future works to explore closer
relations of these areas, such as the use of LevinTS and LubyTS as part of classical planning systems.

2 Notation and background

We write N1 = {1, 2, . . .}. Let S be a (possibly uncountable) set of states, and let A be a finite set
of actions. The environment starts in an initial state s0 ∈ S. During an interaction step (or just
step) the environment in state s ∈ S receives an action a ∈ A from the searcher and transitions
deterministically according to a transition function T : S × A → S to the state s′ = T (s, a). The
state of the environment after a sequence of actions a1:t is written T (a1:t) which is a shorthand
for the recursive application of the transition function T from the initial state s0 to each action
of a1:t, where a1:t is the sequence of actions a1, a2, . . . at. Let Sg ⊆ S be a set of goal states.
When the environment transitions to one of the goal states, the problem is solved and the interaction
stops. We consider tree search algorithms and define the set of nodes in the tree as the set of
sequences of actions N := A∗ ∪ A∞. The root node n0 is the empty sequence of actions. Hence
a sequence of actions a1:t of length t is uniquely identified by a node n ∈ N and we define
d0(n) = d0(a1:t) := t (the usual depth d(n) of the node is recovered with d(n) = d0(n) − 1).
Several sequences of actions (hence several nodes) can lead to the same state of the environment,
and we write N (s) := {n ∈ N : T (n) = s} for the set of nodes with the same state. We define the
set of children C(n) of a node n ∈ N as C(n) := {na|a ∈ A}, where na denotes the sequence of
actions n followed by the action a. We define the target set N g ⊆ N as the set of nodes such that
the corresponding states are goal states: N g := {n : T (n) ∈ Sg}. The searcher does not know the
target set in advance and only recognizes a goal state when the environment transitions to one. If
n1 = a1:t and n2 = a1:tat+1:k with k > t then we say that a1:t is a prefix of a1:tat+1:k and that n1
is an ancestor of n2 (and n2 is a descendant of n1).

A search tree T ∈ N ∗ is a set of sequences of actions (nodes) such that (i) for all nodes n ∈ T , T
also contains all the ancestors of n and (ii) if n ∈ T ∩ N g, then the tree contains no descendant of
n. The leaves L(T ) of the tree T are the set of nodes n ∈ T such that T contains no descendant of
n. A policy assigns probabilities to sequences of actions under the constraint that π(n0) = 1 and
∀n ∈ N , π(n) =

∑
n′∈C(n) π(n

′). If n′ is a descendant of n, we define the conditional probability
π(n′|n) := π(n′)/π(n). The policy is assumed to be provided as input to the search algorithm.

Let TS be a generic tree search algorithm defined as follows. At any expansion step k ≥ 1, let Vk be
the set of nodes that have been expanded (visited) before (excluding) step k, and let the fringe set
Fk :=

⋃
n∈Vk C(n) \ Vk be the set of not-yet-expanded children of expanded nodes, with V1 := ∅

and F1 := {n0}. At iteration k, the search algorithm TS chooses a node nk ∈ Fk for expansion: if
nk ∈ N g , then the algorithm terminates with success. Otherwise, Vk+1 := Vk∪{nk} and the iteration
k + 1 starts. At any expansion step, the set of expanded nodes is a search tree. Let nk be the node
expanded by TS at step k. Then we define the search time N(TS,N g) := mink>0{k : nk ∈ N g} as
the number of node expansions before reaching any node of the target set N g .

A policy is Markovian if the probability of an action depends only on the current state of the
environment, that is, for all n1 and n2 with T (n1) = T (n2),∀a ∈ A : π(a|n1) = π(a|n2). In this
paper we consider both Markovian and non-Markovian policies. For some function cost : N → R
over nodes, we define the cost of a state s as cost(s) := minn∈N (s) cost(n). Then we say that a tree
search algorithm with a cost function cost(n) expands states in best-first order if for all states s1 and
s2, if cost(s1) < cost(s2), then s1 is visited before s2. We say that a state is expanded at its lowest
cost if for all states s, the first node n ∈ N (s) to be expanded has cost cost(n) = cost(s).
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Algorithm 1: Levin tree search.

1 def LevinTS()
2 V := ∅
3 F := {n0}
4 while F 6= ∅
5 n := argminn∈F

d0(n)
π(n)

6 F := F \ {n}
7 s := T (n)
8 if s ∈ Sg
9 return true

10 if is_Markov(π)
11 if ∃n′ ∈ V : (T (n′) = s) ∧ (π(n′) ≥ π(n))
12 # s has already been visited with
13 # a higher probability: State cut
14 continue
15 V := V ∪ {n′}
16 F := F ∪ C(n)
17 return false

Algorithm 2: Sampling and execution of
a single trajectory.

def sample_traj(depth)
n := n0
for d := 0 to depth

if T (n) ∈ Sg
return true

a ∼ π(.|n)
n := na

return false
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Figure 1: A ‘chain-and-bin’ tree.

3 Levin tree search: policy-guided enumeration

First, we show that merely expanding nodes by decreasing order of their probabilities can fail to
reach a goal state of non-zero probability.

Theorem 1. The version of TS that chooses at iteration k the node nk := argmaxn∈Fk π(n) may
never expand any node of the target set N g , even if ∀n ∈ N g, π(n) > 0.

Proof. Consider the tree in Fig. 1. Under the left child of the root is an infinite ‘chain’ in which each
node has probability 1/2. Under the right child of the root is an infinite binary tree in which each
node has two children, each of conditional probability 1/2, and thus each node has probability 2−d.
Before testing a node of depth at least 2 in the right-hand-side binary tree (with probability at most
1/4), the search expands infinitely many nodes of probability 1/2. Defining the target set as any set
of nodes with individual probability at most 1/4 proves the claim.

To solve this problem, we draw inspiration from Levin search [Levin, 1973, Trakhtenbrot, 1984],
which (in a different domain) penalizes the probability with computation time. Here, we take
computation time to mean the depth of a node. The new Levin tree search (LevinTS) algorithm is a
version of TS in which nodes are expanded in order of increasing costs d0(n)/π(n) (see Algorithm 1).

LevinTS also performs state cuts (see Lines 10–15 of Algorithm 1). That is, LevinTS does not
expand node n representing state s if (i) the policy π is Markovian, (ii) it has already expanded
another node n′ that also represents s, and (iii) π(n′) ≥ π(n). By performing state cuts only if these
three conditions are met, we can show that LevinTS expands states in best-first order.

Theorem 2. LevinTS expands states in best-first order and at their lowest cost first.

Proof. Let us first consider the case where the policy is non-Markovian. Then, LevinTS does not
perform state cuts (see Line 10 of Algorithm 1). Let n1 and n2 be two arbitrary different nodes
(sequences of actions), with cost(n1) < cost(n2). Let n12 be the closest common ancestor of n1 and
n2; it must exist since at least the root is one of their common ancestors. Then all nodes on the path
from n12 to n1 have cost less than cost(n1) and thus than cost(n2), due to the monotonicity of d0
and π and thus of cost, which implies by recursion from n12 that all these nodes and thus also n1
are expanded before n2. Hence, if T (n1) = T (n2), this proves that all states are visited first at their
lowest cost. Furthermore, if T (n1) 6= T (n2), this proves that states of lower cost are visited first.

Now, if the policy is Markovian, then we need to show that state cuts do not prevent best-first order
and lowest cost. Let n1 and n2 be two nodes representing the same state s, where n1 is expanded
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before n2. Assume that no cut has been performed before n2 is expanded. First, since no cuts
were performed, we have from the non-Markovian case that d0(n1)

π(n1)
≤ d0(n2)

π(n2)
. Secondly, consider a

sequence of actions a1:k taken after state s, and let n1k = n1a1:k be the node reached after taking
a1:k starting from n1 and similarly for n2k. Since the environment is deterministic, this sequence
leads to the same state sk, whether starting from n1 or from n2. Since the policy is Markovian,
π(n1k|n1) = π(n2k|n2). Then from the condition (iii) of state cuts,

if π(n1) ≥ π(n2),
d0(n1k)

π(n1k)
=
d0(n1)

π(n1)

1

π(n1k|n1)
+

k

π(n1)π(n1k|n1)

≤ d0(n2)

π(n2)

1

π(n1k|n1)
+

k

π(n2)π(n1k|n1)
=
d0(n2k)

π(n2k)
,

so the state sk has a lower or equal cost below n1 than below n2. Since this holds for any such a1:k,
n2 can be safely cut, and by recurrence all cuts preserve the best-first ordering and lowest costs of
states. The rest of the proof is as in the non-Markovian case.

LevinTS’s cost function allows us to provide the following guarantee, which is an adaptation of Levin
search’s theorem [Solomonoff, 1984] to tree search problems.
Theorem 3. Let N g be a set of target nodes, then LevinTS with a policy π ensures that the number
of node expansions N(LevinTS,N g) before reaching any of the target nodes is bounded by

N(LevinTS,N g) ≤ min
n∈N g

d0(n)

π(n)
.

Proof. From Theorem 2, the first state of Sg to be expanded is the one of lowest cost, and with one of
the nodes of lowest cost, that is, with cost c := minn∈N g d0(n)/π(n). Let Tc be the current search
tree when ng is being expanded. Then all nodes in Tc that have been expanded up to now have at
most cost c. Therefore at all leaves n ∈ L(Tc) of the current search tree, d0(n)/π(n) ≤ c. Since
each node is expanded at most once (each sequence of actions is tried at most once) the number of
nodes expanded by LevinTS until node ng is at most

N(LevinTS,N g) = |N (Tc)| ≤
∑

n∈L(Tc)

d0(n) ≤
∑

n∈L(Tc)

π(n)c ≤ c = min
n∈N g

d0(n)

π(n)

where the first inequality is because each leaf of depth d0 has at most d0 ancestors, the second
inequality follows from d0(n)/π(n) ≤ c, and the last inequality is because

∑
n∈L(Tc) π(n) ≤ 1,

which follows from
∑
n′∈C(n) π(n

′) = π(n), that is, each parent node splits its probability among its
children, and the root has probability 1.

The upper bound of Theorem 3 is tight within a small factor for a tree like in Fig. 1, and is almost an
equality when the tree splits at the root into multiple chains.

4 Luby tree search: policy-guided unbounded sampling

Multi-sampling When a good upper bound dmax is known on the depth of a subset of the target
nodes with large cumulative probability, a simple idea is to sample trajectories according to π (see
Algorithm 2) of that maximum depth dmax until a solution is found, if one exists. Call this strategy
multiTS (see Algorithm 3). We can then provide the following straightforward guarantee.
Theorem 4. The expected number of node expansions before reaching a node in N g is bounded by

E[N(multiTS(∞, dmax),N g)] ≤ dmax

π+
dmax

, π+
dmax

:=
∑
n∈N g

d0(n)≤dmax

π(n) .

Proof. Remembering that a tree search algorithm does not expand children of target nodes, the result
follows from observing that E[N(multiTS,N g)] is the expectation of a geometric distribution with
success probability π+

dmax
where each failed trial takes exactly dmax node expansions and the success

trial takes at most dmax node expansions.
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Algorithm (3) Sampling of nsims trajecto-
ries of fixed depths dmax ∈ N1.

def multiTS(nsims, dmax)
for k := 1 to nsims

if sample_traj(dmax)
return true

return false

Algorithm (4) Sampling of nsims trajectories of depths
that follow A6519, with optional coefficient dmin ∈ N1.

def LubyTS(nsims, dmin=1)
for k := 1 to nsims

if sample_traj(dmin ∗ A6519(k))
return true

return false

This strategy can have an important advantage over LevinTS if there are many target nodes within
depth bounded by dmax with small individual probability but large cumulative probability.

The drawback is that if no target node has a depth shorter than the bound dmax, this strategy will never
find a solution (the expectation is infinite), even if the target nodes have high probability according to
the policy π. Ensuring such target nodes can be always found leads to the LubyTS algorithm.

LubyTS Suppose we are given a randomized program ρ, that has an unknown distribution p over
the halting times (where halting means solving an underlying problem). We want to define a strategy
that can restart the program multiple times and run it each time with a different allowed running time
so that it halts in as little cumulative time as possible in expectation. Luby et al. [1993] prove that
the optimal strategy is to run ρ for running times of fixed lengths tp optimized for p; then either the
program halts within tp steps, or it is forced to stop and is restarted for another tp steps and so on.
This strategy has an expected running time of `p, with Lp

4 ≤ `p ≤ Lp = mint∈N1

t
q(t) where q is the

cumulative distribution function of p. Luby et al. [1993] also devise a universal restarting strategy
based on a special sequence2 of running times:

1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 16 1 1 2. . .

They prove that the expected running time of this strategy is bounded by 192`p(log2 `p + 5) and also
prove a lower bound of 1

8`p log2 `p for any universal restarting strategy. We propose to use instead
the sequence3 A6519:

1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 32 1 2. . .

which is simpler to compute and for which we can prove the following tighter upper bound.
Theorem 5. For all distributions p over halting times, the expected running time of the restarting
strategy based on A6519 is bounded by mint t+

t
q(t)

(
log2

t
q(t) + 6.1

)
, where q is the cumulative

distribution of p.

The proof is provided in Appendix B. We can easily import the strategy described above into the tree
search setting (see Algorithm 4), and provide the following result.
Theorem 6. Let N g be the set of target nodes, then LubyTS(∞, 1) with a policy π ensures that the
expected number of node expansions before reaching a target node is bounded by

E[N(LubyTS(∞, 1),N g)] ≤ min
d∈N1

d+
d

π+
d

(
log2

d

π+
d

+ 6.1

)
, π+

d :=
∑
n∈N g
d0(n)≤d

π(n) ,

where π+
d is the cumulative probability of the target nodes with depth at most d.

Proof. This is a straightforward application of Theorem 5: The randomized program samples a
sequence of actions from the policy π, the running time t becomes the depth d0(n) of a node n, the
probability distribution p over halting times becomes the probability of reaching a target node of
depth t, p(t) =

∑
{n∈N g,d0(n)=t} π(n), and the cumulative distribution function q becomes π+

d .

2https://oeis.org/A182105.
3https://oeis.org/A006519. Gary Detlefs (ibid) notes that it can be computed with A6519(n) :=

((n XOR n− 1) + 1)/2 or with A6519(n) := (n AND − n) where −n is n’s complement to 2.
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Compared to Theorem 4, the cost of adapting to an unknown depth is an additional factor log(d/π+
d ).

The proof of Theorem 5 suggests that the term log d is due to not knowing the lower bound on d,
and the term − log π+

d is due to not knowing the upper bound. If a good lower bound dmin on the
average solution length is known, one can also multiply A6519(n) by dmin to avoid sampling too
short trajectories as in Algorithm 4; this may lessen the factor log d while still guaranteeing that a
solution can be found if one of positive probability exists. In particular, in the tree search domain,
the sequence A6519 samples trajectories of depth 1 half of the time, which is wasteful. Conversely,
in general it is not possible to cap d at some upper bound, as this may prevent finding a solution
as for multiTS. Hence the factor − log π+

d remains, which is unfortunate since π+
d can easily be

exponentially small with d.

5 Strengths and weaknesses of LevinTS and LubyTS

Consider a “needle-in-the-haystack problem” represented by a perfect full and infinite binary search
tree where all nodes n have probability π(n) = 2−d(n). Suppose that the set N g of target nodes
contains a single node ng at some depth d. According to Theorem 3, LevinTS needs to expand no
more than d0(ng)2d(n

g) nodes before expanding ng . For this particular tree, the number of expansions
is closer to 2d(n

g)+1 since there are only at most 2d(n
g)−1 nodes with cost lower or equal to cost(ng).

Theorem 6 and the matching-order lower bound of [Luby et al., 1993] suggest LubyTS may expand
in expectation O(d(ng)22d(n

g)) nodes to reach ng. This additional factor of d(n)2 compared to
LevinTS is a non-negligible price for needle-in-a-haystack searches. For multiTS, if the depth bound
dmax is larger than d0(ng), then the expected search time is at most and close to dmax2

d(ng), which is
a factor d(n) faster than LubyTS, unless dmax � d(ng).

Now suppose that the set of target nodes is composed of 2d−1 nodes, all at depth d. Since all nodes
at a given depth have the same probability, LevinTS will expand at least 2d and at most 2d+1 nodes
before expanding any of the target nodes. By contrast, because the cumulative probability of the
target nodes at depth d is 1/2, LubyTS finds a solution in O(d log d) node expansions, which is an
exponential gain over LevinTS. For multiTS it would be dmax, which can be worse than d log d due
to the need for a large enough dmax.

LevinTS can perform state cuts if the policy is Markovian, which can substantially reduce the
algorithm’s search effort. For example, suppose that in the binary tree above every left child
represents the same state as the root and thus is cut off from the search tree, leaving in effect only 2d
nodes for any depth d. If the target set contains only one node at some depth d, even when following
a uniform policy, LevinTS expands only those 2d nodes. By contrast, LubyTS expands in expectation
more than O(2d) nodes. LevinTS has a memory requirement that grows linearly with the number of
nodes expanded, as well as a log factor in the computation time due to the need to maintain a priority
queue to sort the nodes by cost. By contrast, LubyTS and multiTS have a memory requirement that
grows linearly with the solution depth, as they only need to store in memory the trajectory sampled.
LevinTS’s memory cost could be alleviated with an iterative deepening [Korf, 1985] variant with
transposition table [Reinefeld and Marsland, 1994].

6 Mixing policies and avoiding zero probabilities

For both LevinTS and LubyTS, if the provided policy π incorrectly assigns a probability too close
to 0 to some sequences of actions, then the algorithm may never find the solution. To mitigate such
outcomes, it is possible to ‘mix’ the policy with the uniform policy so that the former behaves slightly
more like the latter. There are several ways to achieve this, each with their own pros and cons.

Bayes mixing of policies If π1 and π2 are two policies, we can build their Bayes average π12 with
prior α ∈ [0, 1] and 1− α such that for all sequence of actions a1:t, π12(a1:t) = απ1(a1:t) + (1−
α)π2(a1:t). The conditional probability of the next action is given by

π12(at|a<t) = w1(a<t)π1(at|a<t) + w2(a<t)π2(at|a<t)

with w1(a<t) = 1− w2(a<t) =
απ1(a<t)

απ1(a<t) + (1− α)π2(a<t)
= α

π1(a<t)

π12(a<t)
,
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where w1(a<t) is the ‘posterior weight’ of the policy π1 in π12. This ensures that for all nodes
n, π12(n) ≥ απ1(n) and π12(n) ≥ (1 − α)π2(n) which leads to the following refinement for
Theorem 3 for example (and similarly for LubyTS):

N(LevinTS,N g) ≤ min

{
1

α
min
n∈N g

d0(n)

π1(n)
,

1

1− α
min
n∈N g

d0(n)

π2(n)

}
.

In particular, with α = 1/2, LevinTS with π12 is within a factor 2 of the best between LevinTS with
π1 and LevinTS with π2. More than two policies can be mixed together, leading for example to a
factor K compared to the best of K policies when all prior weights are equal. This is very much like
running several instances of LevinTS in parallel, each with its own policy, except that (weighted) time
sharing is done automatically. For example, if the provided policy π is likely to occasionally assign
too low probabilities, one can run LevinTS with a Bayes mixture of π and the uniform policy, with a
prior weight α closer to 1 if π is likely to be far better than the uniform policy for most instances.

Local mixing of policies, fixed rate Bayes mixing of two policies splits the search into 2 (mostly)
independent searches. But one may want to mix at a more ‘local’ level: Along a trajectory a1:t, if the
provided policy π assigns high probability to almost all actions but a very low probability to a few
ones, we may want to use a different policy just for these actions, and not for the whole trajectory.
Thus, given two policies π1 and π2 and ε ∈ [0, 1], the local-mixing policy π12 is defined through its
conditional probability π12(at|a<t) := επ1(at|a<t) + (1− ε)π2(at|a<t). Then for all a1:t,

π12(a1:t) ≥ ε|K1|(1− ε)t−|K1|︸ ︷︷ ︸
penalty

∏
k∈K1

π1(ak|a<k)
∏
k/∈K1

π2(ak|a<k) ,

where K1 is the set of steps k where π1(ak|a<k) > π2(at|a<k). This can be interpreted as ‘At each
step t, π must pay a factor of ε to use policy π1 or a factor of 1− ε to use π2’. This works well for
example if ε ≈ 0 and K1 is small, that is, the policy π2 is used most of the time. For example, π1 can
be the uniform policy, π1(at|a<t)=1/|A|, and π2 is a given policy that may sometimes be wrong.

Local mixing, varying rate The problem with the previous approach is that ε needs to be fixed
in advance. For a depth d, a penalty of the number of node expansions of 1/(1 − ε)d ≈ eεd

is large as soon as d > 1/ε. If no good bound on d is known, one can use a more adaptive
1− εd(a1:t) = (t/(t+ 1))γ with γ ≥ 0: This gives

∏t
k=1(t/(t+ 1))γ = 1/(t+ 1)γ , which means

that the maximum price to pay to use only the policy π2 for all the t steps is at most (t+ 1)γ , and the
price to pay each step the policy π1 is used is approximately (t+ 1)/γ. The optimal value of ε can
also be learned automatically using an algorithm such as Soft-Bayes [Orseau et al., 2017] where the
‘experts’ are the provided policies, but this may have a large probability overhead for this setup.

7 Experiments: computer-generated Sokoban

We test our algorithms on 1,000 computer-generated levels of Sokoban [Racanière et al., 2017] of
10x10 grid cells and 4 boxes.4 For the policy, we use a neural network pre-trained with A3C (details
on the architecture and the learning procedure are in Appendix A). We picked the best performing
network out of 4 runs with different learning rates. Once the network is trained, we compare the
different algorithms using the same network’s fixed Markovian policy. Note that for each new level,
the goal states (and thus target set) are different, whereas the policy does not change (but still depends
on the state). We test the following algorithms and parameters: LubyTS(256,1), LubyTS(256,32),
LubyTS(512, 32), multiTS(1, 200), multiTS(100, 200), multiTS(200, 200), LevinTS. Excluding
the small values (i.e., nsims = 1 and dmin = 1), the parameters were chosen to obtain a total
number of expansions within the same order of magnitude. In addition to the policy trained with
A3C, we tested LevinTS, LubyTS, and multiTS with a variant of the policy in which we add 1%
of noise to the probabilities output of the neural network. That is, these variants use the policy
π̃(a|n) = (1− ε)π(a|n) + ε 14 where π is the network’s policy and ε = 0.01, to guide their search.
These variants are marked with the symbol (*) in the table of results. We compare our policy tree
search methods with a version of the LAMA planner [Richter and Westphal, 2010] that uses the lazy
version of GBFS with preferred operators and queue alternation with the FF heuristic. This version of

4The levels are available at https://github.com/deepmind/boxoban-levels/unfiltered/test.
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Table 1: Comparison of different solvers on the 1000 computer-generated levels of Sokoban. For
randomized solvers (shown at the top part of the table), the results are aggregated over 5 random
seeds (± indicates standard deviation). (*) Uses π̃ with ε = 0.01.

Algorithm Solved Avg. length Max. length Total expansions
Uniform 88 19 59 94,423,278

LubyTS(256, 1) 753± 5 41.0± 0.6 228± 18.6 63,8481± 2,434
LubyTS(256, 32) 870± 2 48.4± 0.9 1,638.4± 540.7 6,246,293± 73,382
LubyTS(512, 32) 884± 4 54.8± 4.2 3,266.6± 1,287.8 11,515,937± 211,524
LubyTS(512, 32) (*) 896± 2 50.7± 2.5 1,975.6± 904.5 10,730,753± 164,410
MultiTS(1, 200) 669± 5 41.3± 0.6 196.4± 2.2 93,768± 925
MultiTS(100, 200) 866± 4 47.8± 0.5 199.4± 0.5 3260536± 57185
MultiTS(200, 200) 881± 1 47.9± 0.7 196.4± 2.3 5,768,680± 116,152
MultiTS(200, 200) (*) 895± 3 48.8± 0.4 198.8± 1 5,389,534± 45,085

LevinTS 1,000 39.8 106 6,602,666
LevinTS (*) 1,000 39.5 106 5,026,200
LAMA 1,000 51.6 185 3,151,325

Figure 3: Node expansions for Sokoban on log-scale. The levels indices (x-axis) are sorted indepen-
dently for each solver from the easiest to the hardest level. For clarity a typical run has been chosen
for randomized solvers; see Table 1 for standard deviations.

LAMA is implemented in Fast Downward [Helmert, 2006], a domain-independent solver. We used
this version of LAMA because it was shown to perform better than other state-of-the-art planners
on Sokoban problems [Xie et al., 2012]. Moreover, similarly to our methods, LAMA searches for a
solution of small depth rather than a solution of minimal depth.

Table 1 presents the number of levels solved (“Solved”), average solution length (“Avg. length”),
longest solution length (“Max. length”), and total number of nodes expanded (“Total expansions”).
The top part of the table shows the sampling-based randomized algorithms. In addition to the average
values, we present the standard deviation of five independent runs of these algorithms. Since LevinTS
and LAMA are deterministic, we present a single run of these approaches. Fig. 3 shows the number of
nodes expanded per level by each method when the levels are independently sorted for each approach
from the easiest to the hardest Sokoban level in terms of node expansions. The Uniform searcher
(LevinTS with a uniform policy) with maximum 100,000 node expansions per level—and still with
state cuts—can solve no more than 9% of the levels, which shows that the problem is not trivial.

For most of the levels, LevinTS (with the A3C policy) expands many fewer nodes than LAMA, but
has to expand many more nodes on the last few levels. On 998 instances, the cumulative number of
expansions taken by LevinTS is ~2.7e6 nodes while LAMA expands ~3.1e6 nodes. These numbers
contrast with the number of expansions required by LevinTS (6.6e6) and LAMA (3.15e6) to solve all
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1,000 levels. The addition of noise to the policy reduces the number of nodes expanded by LevinTS
while solving harder instances at the cost of increasing the number of nodes expanded for easier
problems (see the lines of the two versions of LevinTS crossing at the right-hand side of Fig. 3).
Overall, noise reduces from 6.6e6 to 5e6 the total number of nodes LevinTS expands (see Table 1).
LevinTS has to expand a large number of nodes for a small number of levels likely due to the training
procedure used to derive the policy. That is, the policy is learned only from the 65% easiest levels
solved after sampling single trajectories—harder levels are never solved during training. Nevertheless,
LevinTS can still solve harder instances by compensating the lack of policy guidance with search.

The sampling-based methods have a hard time reaching 90% success, but still improves by more than
20% over sampling a single trajectory. LubyTS(256, 32) improves substantially over LubyTS(256, 1)
since many solutions have length around 30 steps. LubyTS(256, 32) is as good as multiTS(200, 100)
that uses a hand-tuned upper bound on the length of the solutions.

The solutions found by LevinTS are noticeably shorter (in terms of number of moves) than those
found by LAMA. It is remarkable that LevinTS can find shorter solutions and expand fewer nodes
than LAMA for most of the levels. This is likely due to the combination of good search guidance
through the policy for most of the problems and LevinTS’s systematic search procedure. By contrast,
due to its sampling-based approach, LubyTS tends to find very long solutions.

Racanière et al. [2017] report different neural-network based solvers applied to a long sequence of
Sokoban levels generated by the same system used in our experiments (although we use a different
random seed to generate the levels, we believe they are of the same complexity). Racanière et al.’s
primary goal was not to produce an efficient solver per se, but to demonstrate how an integrated
neural-based learning and planning system can be robust to model errors and more efficient than an
MCTS baseline. Their MCTS approach solves 87% of the levels within approximately 30e6 node
expansions (25,000 per level for 870 levels, and 500 simulations of 120 steps for the remaining 130
levels). Although LevinTS had much stronger results in our experiments, we note that Racanière
et al.’s implementation of MCTS commits to an action every 500 node expansions. By contrast, in
our experimental setup, we assume that LevinTS solves the problem before committing to an action.
This difference makes the results not directly comparable. Racanière et al.’s second solver (I2A) is a
hybrid model-free and model-based planning using a LSTM-based recurrent neural network with
more learning components than our approaches. I2A reaches 95% success within an estimated total
of 5.3e6 node expansions (4,000 on average over 950 levels, and 30,000 steps for the remaining 50
unsolved levels; this counts the internal planning steps). For comparison, LevinTS with 1% noise
solves all the levels within the same total time (999 for LevinTS without noise). Moreover, LevinTS
solves 95% of the levels within a total of less than 160,000 steps, which is approximately 168 node
expansions on average for solved levels, compared to the reported 4,000 for I2A. Moreover, it is also
not clear how long it would take I2A to solve the remaining 5%.

8 Conclusions and future works

We introduced two novel tree search algorithms for single-agent problems that are guided by a policy:
LevinTS and LubyTS. Both algorithms have guarantees on the number of nodes that they expand
before reaching a solution (strictly for LevinTS, in expectation for LubyTS). LevinTS and LubyTS
depart from the traditional heuristic approach to tree search by employing a policy instead of a
heuristic function to guide search while still offering important guarantees.

The results on the computer-generated Sokoban problems using a pre-trained neural network show
that these algorithms can largely improve through tree search upon the score of the network during
training. Our results also showed that LevinTS is able to solve most of the levels used in our
experiment while expanding many fewer nodes than a state-of-the-art heuristic search planner. In
addition, LevinTS was able to find considerably shorter solutions than the planner.

The policy can be learned by various means or it can even be handcrafted. In this paper we used
reinforcement learning to learn the policy. However, the bounds offered by the algorithms could also
serve directly as metrics to be optimized while learning a policy; this is a research direction we are
interested in investigating in future works.
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