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Abstract

Computation of invariants, which are approximate reachabil-
ity information for state-space search problems such as AI
planning, has been considered to be more scalable when us-
ing a schematic representation of actions/events rather than
an instantiated/ground representation. A disadvantage of
schematic algorithms, however, is their complexity, which
also leads to high runtimes when the number of schematic
events/actions is high. We propose algorithms that reduce the
problem of finding schematic invariants to solving a smaller
ground problem.

Introduction

Invariants are a form of approximate reachability informa-
tion for state-space search problems (Blum and Furst 1997;
Gerevini and Schubert 1998), which can be used as a
pruning method for search algorithms for planning (Rinta-
nen 2012), and also have a close connection to admissi-
ble heuristics used with informed search (Rintanen 2006;
2008). Many of the early algorithms used a ground repre-
sentation of actions (Blum and Furst 1997; Rintanen 1998).
The number of ground instances of schematic actions can
be impractically high. Also, invariants for action sets in-
duced by a small set of schematic actions can often be com-
pactly represented as a small number of schematic invari-
ants. This motivates the introduction of invariant algorithms
that directly work with the schematic action/event represen-
tation and produce invariants in a schematic form (Gerevini
and Schubert 1998; Rintanen 2000). In their most general
forms, however, such algorithms are quite complex to im-
plement and to prove correct, and there is also a significant
performance penalty for handling a schematic representa-
tion. This performance penalty makes schematic algorithms
uncompetitive when the number of schematic actions is high
but the number of ground instances is low. In such cases al-
gorithms working with the grounded representation can dra-
matically outperform schematic algorithms.
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In this work we devise algorithms that share the bene-
fits of both approaches: the algorithms are simple and effi-
cient to implement (similar to invariant algorithms based on
grounding), and scale well even when the number of ground
instances is high (similarly to schematic algorithms.) Care-
ful implementation can ensure that runtimes are never (sub-
stantially) higher than corresponding ground algorithms.

Our novel idea is to devise hybrid algorithms, which per-
form the basic invariance tests with a ground method, but
ground the actions and formulas only with respect to a small
number of objects, roughly matching what takes place in
schematic algorithms which partially instantiate schematic
actions and formulas through unification and substitution
operations. The challenge here is to keep the number of
objects as small as possible – to guarantee efficiency and
scalability – but not too small, to guarantee correctness and
to identify as many and as strong invariants as possible.

This idea is, in effect, exploiting the structural symmetry
of the state space generated by schematic actions. The set
of schematic candidate invariants obtained from the initial
state (as opposed to the (ground) facts holding in the initial
state), is symmetric, and the schematic formulas (approxi-
mately) representing the sets of states reachable by a given
number of steps are similarly symmetric in the sense that
if φ is a ground instance of a schematic formula, then any
permutation of its objects that respects typing also is.

The main outcome from the work is a substantial im-
provement in the scalability of the invariant algorithm for
temporal planning by Rintanen (2014). That algorithm finds
broad classes of invariants and can be easily adapted to a
wide range of temporal modeling languages, but its scalabil-
ity needs to be improved because of the time complexity of
its satisfiability tests. In earlier work, Smith & Weld (1999)
extended Blum & Furst’s (1997) planning graph method to
temporal planning, but – similarly to Rintanen (2014) – the
method works with ground actions and has reduced scala-
bility, and additionally, it is defined for a limited tempo-
ral language only. Bernardini & Smith (2011) proposed a
schematic algorithm with a very good scalability, but, it finds
at-most-one invariants only, and is defined for a syntactically
limited modeling language with no easy avenues to general-
ization. At-most-one invariants have limited utility with ex-
pressive modeling languages that support multi-valued (not
only Boolean) discrete state variables.
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Background

In the presentation we only consider a simple typed
schematic language for expressing actions and invariants.1

Definition 1 (Types) Let O be a set of objects. Let there be
a finite set T of types, and to each type t ∈ T a non-empty set
D(t) ⊆ O of objects is associated by the domain function
D : T → O.

The objects of different types do not need to be disjoint,
but in this work we assume that if D(t) ∩ D(t′) �= ∅, then
either D(t) ⊆ D(t′) or D(t′) ⊆ D(t).

Definition 2 (Terms) Let V be a set of schema variables
and O a set of objects. Terms (over O and V ) are objects
o ∈ O and variables v ∈ V . Each variable has a type
τvar(v) ∈ T .

Definition 3 (Predicates) Let P be a set of predicate sym-
bols. Each predicate p ∈ P has arity ar(p) ∈ N and an
associated type τpre(p) ∈ T ar(p), the latter given by the typ-
ing function τpre.

Definition 4 (State Variables) Let p ∈ P be a predi-
cate symbol of arity n = ar(p) and of type τpre(p) =
(t1, . . . , tn). Then schematic state variables are of the form
p(s1, . . . , sn) where each si is either an object o ∈ D(ti)
or a variable v with τvar(v) = ti. The set gnf(P, τpre, D)
of (ground) state variables consists of all p(o1, . . . , on) such
that p ∈ P , ar(p) = n, and oi ∈ D(ti) where τpre(p) =
(t1, . . . , tn).

In this work we only consider Boolean state variables, like
is common in classical planning, but clearly we could con-
sider any numeric and multi-valued types just as well.

Definition 5 (States) Let P be a set of predicates and D a
domain function. A state is a mapping from gnf(P, τpre, D)
to {0, 1}, indicating the truth-value of every state variable.

Definition 6 (Schematic Formulas) Let O be a set of ob-
jects, V a set of variables, and P a set of predicates with
arities ar(p) for every p ∈ P . The following are schematic
formulas over O and V .

1. schematic state variables p(s1, . . . , sn) over V and O

2. φ1 ∧ φ2, if φ1 and φ2 are schematic formulas
3. φ1 ∨ φ2, if φ1 and φ2 are schematic formulas
4. ¬φ, if φ is a schematic formula

Definition 7 (Schematic Effects) Let p(s1, . . . , sn) be a
schematic state variable. Then p(s1, . . . , sn) and
¬p(s1, . . . , sn) are schematic effects.

Definition 8 (Schematic Actions) A schematic action over
O and V is a pair 〈c, e〉 where

• c is a schematic formula over O and V , and
• e is a set of schematic effects over O and V .

We define prec(〈c, e〉) = c.
1Extensions to more expressive languages are possible. In our

implementations, e.g. numeric variables are currently handled by
eliminating them before invariant synthesis.

Definition 9 A problem instance in planning Π =
〈O, T,D, P, τpre, A, I〉 consists of
• a finite set O of objects,
• a finite set T of types,
• a domain function D,
• a finite set P of predicates,
• a typing function τpre,
• a finite set A of schematic actions over O and V ,
• and an initial state I .

We do not need goals, as our interest is in reachable states,
not finding particular action sequences.

Definition 10 Candidate invariants are schematic formulas
(with free variables) of the forms

χ→(l1 ∨ l2)
χ→ l1

where χ is a (possibly empty) conjunction of inequalities
x �= x′ where x and x′ are schema variables referring to
objects, and the li are (Boolean) schematic state variables
or negated schematic state variables (literals).

Example 1 The formula ¬in(p, b)∨¬outdoors(p) says that
an object cannot be simultaneously inside a building and
outdoors, and b1 �= b2 → (¬in(p, b1) ∨ ¬in(p, b2)) that it
cannot be simultaneously inside two different buildings.

Definition 11 (Substitutions) For sets V of schema vari-
ables and sets O of objects, a function σ : V → V ∪ O
is a substitution.

Definition 12 (Application of Substitutions) For formu-
las φ, (schematic) actions a, and other syntactic objects,
we define φσ and aσ as the syntactic objects respectively
obtained from φ and a by replacing every occurrence of
v ∈ V by σ(v).

Definition 13 (Substitution Composition) Let V and Q be
sets of schema variables and O a set of constant symbols
(object names). Let σ : V → V ∪ O and σ′ : V → Q ∪ O
be substitutions. Then σσ′ : V → Q ∪ O is the substitution
defined by σσ′(v) = σ′(σ(v)) (also denoted by σ′ ◦ σ.)

Invariants from Limited Grounding

Earlier works can be divided to those that ground all
schematic actions (Blum and Furst 1997; Rintanen 1998;
2008), and to those that work with ungrounded actions
(Gerevini and Schubert 1998; 2000; Edelkamp and Helmert
2000; Rintanen 2000; Lin 2004).

The most general algorithms from both categories are
at least in some cases slow. The ground algorithms
are slow when there are thousands of ground actions or
more. Schematic algorithms are slow when the number of
schematic actions is high (sometimes even just some dozens
or hundreds) or the actions are complex, even when the num-
ber of ground instances is low. Ground algorithms are eas-
ier to implement efficiently, whereas handling schematic ac-
tions can be quite complicated due to the necessity of us-
ing concepts such as substitution and unification, and the far
bigger effort in implementing these very efficiently.



This suggests combining the strengths of the two ap-
proaches: algorithms that generate schematic invariants
only, by means of ground instances of actions, but without
generating all of the ground instances.

We show that when the goal is to produce schematic in-
variants (which might not cover all invariants, or not even all
invariants that could be identified with an algorithm working
on the ground action set), instead of producing all ground
instances of schematic actions, it is sufficient to produce a
substantially smaller set of ground instances. We need to
make sure that this approach is correct and finds enough
invariants to be useful. First note that there can never be
too many objects to instantiate the schematic actions and too
many ground instances.2

Lemma 1 Assume a formula φ is an invariant of a problem
instance Π. Let Π′ be a problem instance such that
1. Π′ has the same schematic actions,
2. O ⊂ O′, and
3. I(x) = I ′(x) for all state variables x of Π.
Then any schematic formula φ for which some ground in-
stances are not invariants of Π, also has ground instances
w.r.t. Π′ that are not invariants of Π′.

Proof: Consider a reachable state of Π that falsifies a ground
instance of φ. Let π be an action sequence that reaches that
state. Since all these actions are also ground actions of Π′,
and the initial state of Π is included in the initial state of
Π′, also this action sequence reaches a state that falsifies a
ground instance of φ in the state-space of Π′. �

Increasing the number of objects, therefore, never leads
to identifying too many invariants, which are not invariants
of the original problem instance. Decreasing the number
of objects, conversely, does lead to more invariants, which
might not hold for the original problem instance.

Example 2 Consider the blocks world. If there is only one
block, then ¬on(x,y) is an invariant.

Hence, in this work our main goal is to find lower bounds
on the number of objects so that, even with the reduced ob-
ject sets, the schematic invariants found also hold for the
original (unreduced) problem instance.

Consider an invariant P (x, y) ∨ Q(y, z), with x, y and z
all having the same type. We consider five cases: the first
is x = y = z, the second is that all are different, and the
remaining three are when one of x = y, y = z and x = z
holds. These cases can be obtained by instantiating x, y, z
with a, b and c in five different ways. This makes it seem that
it might be sufficient to instantiate a candidate invariant in
all possible ways with as many objects as there are variables
in the candidate invariant. If the variables were of different
and disjoint types, then the number of objects of each type
would be analogously the number of variables of that type,
as equality between variables of different types cannot hold.

2The result doesn’t hold for some other forms of schematic ac-
tions, for example ones that include existential quantification in
preconditions. Such a precondition could explicitly require that
there are at most n different objects.

Next we formalize these ideas, and then apply them to a
class of invariants algorithms based on fixpoint iteration and
satisfiability tests.

Schematic actions can directly refer to named objects,
which we call fixed, as they occur in all ground instances
of the schematic action, and might not be interchangeable
with non-fixed objects.

The invariant algorithm we apply our results first to for
classical planning, based on a syntactic regression operation
and satisfiability tests (Rintanen 2008). The regression op-
eration regra(φ) produces for an action a and formula φ a
weakest precondition that has to be satisfied for φ to hold
after a. For grounded actions a = (c, e) from Definition 8
where c is a ground formula and e is a set of state variables,
regra(φ) is defined as the formula c ∧ φ′ where φ′ is ob-
tained from φ by replacing x by the constant � (for true) if
x ∈ e and by constant ⊥ (for false) if ¬x ∈ e. An action a is
relevant for φ if the effects of a and φ share a state variable.

Let prmst(a) be the number of schema variables of type t
in action a. Let prmst(p) be the number of terms of type t
in schematic atomic formulas with predicate p.

Next we give a lower bound on the number of objects of
each type that are needed in computations of invariants by
partial grounding, when the invariants are disjunctions of at
most N literals. This is stated in Lemma 2, for the number
of objects of a given type in the formula to test if a candidate
invariant holds. Intuitively, the formula indicates the maxi-
mum possible number of instantiated objects of type t in the
candidate invariant minus the occurrences eliminated from
it by the action plus the occurrences in that action.

Definition 14 (Limited Instantiation) For a given action
set A, predicate set P , domain function D, type t, and in-
teger N ≥ 1, define

LN
t (A,P ) =max(maxa∈A prmst(a),maxp∈P prmst(p))

+(N − 1) · (maxp∈P prmst(p))

Lemma 2 Let a be a ground instance of a schematic action
in A and φ a ground instance of a schematic disjunction of
N literals, both formed from state variables with predicates
from P . Assume a is relevant for φ. Then there are at most
LN
t (A,P ) different non-fixed objects of type t in regra(φ).

The following theorem shows that we can always limit to
domains of small size, limited by LN

t (A,P ) and the num-
ber of fixed objects, without sacrificing correctness: if a
(schematic) candidate invariant gets falsified with a ground
action set that contains all ground actions (as on line 5 in
Figure 1), then it will be falsified also with the (possibly
much smaller) set.

Theorem 3 Let A be a set of schematic actions, D a domain
function for the types T , D′ a domain function such that for
every t ∈ T , either D′(t) = D(t) or

1. D′(t) ⊂ D(t),
2. |D′(t)| ≥ LN

t (A,P ),
3. D′(t) includes all fixed objects of type t, and
4. D′(t0) ⊂ D′(t1) iff D(t0) ⊂ D(t1), for all {t0, t1} ⊆ T .



Let C be a set of schematic formulas (without occurrences
of objects), CD the ground instances of C w.r.t. D, and CD′

the ground instances of C w.r.t. D′.
Let φ be a schematic disjunction of at most N literals.

Assume CD ∪ {regraσ(φσ)} is satisfiable for some ground
instance aσ of a ∈ A and a ground instance φσ of φ w.r.t.
D, for some σ : V → O, and aσ is relevant for φσ.

Then CD′ ∪{regraσ′(φσ′)} is satisfiable for some σ′ with
range of σ′ included in D′.

Proof: Let v be a valuation such that v |= CD ∪
{regraσ(φσ)}. We will construct a substitution σ′ and then
a valuation v′ such that v′ |= CD′ ∪ {regraσ′(φσ′)}.

Let R(t), for all t ∈ T , be any subset of D(t) of same
cardinality as D′(t) that includes all objects of type t in
regraσ(φσ). Such sets R(t) exist because of the assumption
that |D′(t)| ≥ LN

t (A,P ) and because of Lemma 2.
Let R =

⋃
t∈T R(t). Let π a bijective mapping π : R →⋃

t∈T D′(t) such that for all o ∈ R and t ∈ T , π(o) ∈ D′(t)
iff o ∈ D(t). Such a mapping exists because the cardinali-
ties of R(t) and D′(t) are the same.

Define σ′ = σπ. Define a valuation v′ by v′(π(x)) =
v(x) for every state variable x occurring in aσ and φσ.
Clearly, for every such x, v |= x iff v′ |= π(x), and hence
v′ |= regrσ′(φσ′).

It remains to show that v′ |= CD′ . Take any ψ′ ∈ CD′ .
Now ψ′ = π(ψ) for some ψ ∈ CD because CD contains all
ground instances of C w.r.t D, and π(ψ) ∈ CD′ ⊆ CD. By
assumption, v |= ψ. Since ψ′ = π(ψ), also v′ |= ψ′. �

Notice that the theorem does not apply to very small do-
mains where the number of objects of a given type is lower
than the number of parameters of that type in the actions
or invariants, meaning that two or parameters have to be in-
stantiated with the same object. Of course, in these cases the
number of ground instances of actions and formulas is small
anyway, even without reducing the number of objects.

What is remarkable in Theorem 3 is that LN
t (A,P ) is in-

dependent of the number of objects in the problem instance.
It only depends on the number and size of the actions, and
the length N of invariant formulas sought (which is in prac-
tice constant N = 2). This is why the approach is scalable to
large instances obtained by increasing the number of objects
while the number of schematic actions stays small.

Theorem 3 can be used in an algorithm that represents
(candidate) invariants as schematic formulas, a modifica-
tion of the algorithm given by Rintanen (2008), see Figure
1. The set A of actions consists of, instead of all possible
ground actions, only of a subset induced by the small do-
mains D′(t), t ∈ T as indicated in Theorem 3. On line 1,
those schematic formulas of some limited syntactic form3

that are true in the initial state are identified. On line 6 a
schematic formula c that cannot be guaranteed to hold in all
reachable states – because some ground instance cσ could
possibly become false – is replaced with a set weaken(c) of
logically weaker formulas c ∨ l. Or if c was already of the

3For example, disjunction of two literals, possibly with some
equality constraints, as in Example 1.

1 C := schematic formulas true in the initial state;
2 repeat
3 C0 := C;
4 foreach a ∈ A and c ∈ C do
5 if C0 ∪ {regra(¬cσ)} ∈ SAT for some cσ
6 then C := (C\{c}) ∪ weaken(c);
7 end
8 until C = C0;
9 return C;

Figure 1: Algorithm for invariants for classical planning

weakest possible form, weaken(c) = ∅. After running the
algorithm, the schematic invariants C can be grounded ac-
cording to the original domain function, or used as is with
the original problem instance.

Using Ground Algorithm (Almost) As Is

Next we consider another way of using limited grounding,
which relies even more on the original algorithm which uses
both ground actions and ground formulas. The cost of sim-
plicity in this case is a (moderate amount) of additional com-
putation. The idea is to compute ground invariants with a
limited set of ground state variables, and only in the end ex-
tract the schematic invariants from the set of ground invari-
ants. The computation is more expensive than that of Figure
1, but as the ground action and ground invariant sets are still
small, it is still cheap enough to be practically useful.

The only modification to the ground algorithm is that
the set of literals describing the initial state is replaced by
ground instances (with limited grounding) of all schematic
formulas (of a given form) that are true in the initial state of
the original problem. After the ground algorithm terminates,
schematic invariants for the original problem are extracted
from the ground invariants obtained.

This idea is based on the following property.

Lemma 4 (Invariance Modulo Renaming) For all rounds
of the proposed algorithm, if φσ ∈ C for some substitution
σ′, then φσ′ ∈ C for any other substitution such that

1. for all x and fixed objects h, σ(x) = h iff σ′(x) = h, and
2. for all x and y, σ(x) = σ(y) iff σ′(x) = σ′(y).

At all steps of the algorithm, permuting the non-fixed ob-
jects in any formula in the current candidate invariant set
yields another member in the set.

Example 3 Assume h is the only fixed object, and there is
only one type to which a, b, c and h all belong. If p(a, a, a) is
a ground invariant, then p(x, x, x) is a schematic invariant.
If p(a, b, c) is a ground invariant, then (x �= y) ∧ (x �= z) ∧
(y �= z)→p(x, y, z) is a schematic invariant. If p(a, b, h) is
a ground invariant, then p(x, y, h) is a schematic invariant.

Temporal Planning

This section generalizes the previous ideas to temporal plan-
ning, which is our main application: the cost of computing
temporal invariants is much higher than that of classical in-
variants, and therefore the scalability to large instances is a



1 C := {x ∈ X|I |= x} ∪ {¬x|x ∈ X, I �|= x};
2 repeat
3 C0 := C;
4 foreach a ∈ A and c ∈ C such that
5 (z, l) is an effect of a and l occurs in c do
6 if Sa,c

D,C ∈ TSAT
7 then C := (C\{c}) ∪ weaken(c);
8 end
9 until C = C0;

10 return C;

Figure 2: Algorithm for invariants for temporal planning

much more acute problem. The main reason for the poorer
scalability is that the preservation of a candidate invariant is
tested against the set of all actions rather than a single action,
lifting the asymptotic complexity by O(n) for n (ground)
actions, typically from O(n) to O(n2).

To present our results, we use a simple but general model
which covers an important fragment of temporal planning.
However, everything in this section can be generalized to
more expressive temporal modeling languages.

Definition 15 (Schematic Temporal Effects) A schematic
temporal effect is a pair (z, l) where z > 0 indicates how
much after the time point of the action the effect takes place
and l is a schematic effect (as in Definition 7).

Definition 16 (Schematic Temporal Actions) A schematic
action is a pair 〈c, e〉 where

• c is a schematic formula, and
• e is a set of schematic temporal effects.

An important feature of temporal modeling languages is
concurrency. In this work we only use constraints on concur-
rency that are binary constraints between two actions. This
is in line with most of earlier work temporal planning, in-
cluding all standard benchmark problems. Nevertheless, our
definitions can be trivially generalized to non-binary con-
straints, needed for example for N -ary resources familiar
from scheduling.

Our focus in this section is the iterative algorithm by Rin-
tanen (2014), given in Figure 2, which, besides being a gen-
eralization of the algorithm for classical planning in the pre-
vious section, also covers a wide range of different types of
temporal invariants. This algorithm similarly uses a satisfia-
bility test, for a temporal logic. The greatest difference to the
classical case is that the required satisfiability tests have to
address the possibility of multiple actions taking place con-
currently. This somewhat complicates the formal result, but,
as we will see, leads to a similar upper bound on the number
of objects needed in limited grounding.

For formalizing the satisfiability tests we use temporal
logic operators [z]φ which says that φ is true at time point
z relative to the current time point, the interval operator
[z, z′]φ for the truth of φ over the (closed) interval [z, z′]
relative to the current time point, and the until operator φUψ
which says that φ remains true until ψ is true (if ever). The
always operator � is defined as the open interval operator

] − ∞,∞[. The truth of a temporal formula φ in a given
time point z is given by a temporal valuation v through the
relation v |=z φ. This relation generalizes to arbitrary for-
mulas φ given v |=t x for atomic propositions x.

The satisfiability test includes (ground) formulas that de-
scribe the behavior of all actions, including their precondi-
tions and effects, as well as constraints on their concurrency.
They (explained in (Rintanen 2014)) are as follows.

formula explanation
(1) a→prec(a) action a has precondition prec(a)
(2) a→ [z]l action a has temporal effect (z, l)
(3) l→ lU ∨n

i=1[−zi]ai frame axiom for literal l
(4) ¬a ∨ ¬[z0, z1]a′ exclusion of actions

Here the frame axiom says that l remains true until made
false by action ai taken at a relative (earlier) time point −zi,
where a1, . . . , an are all actions respectively with (zi, l) as
their temporal effect, for some zi ≥ 0. The exclusion for-
mulas indicate that two actions cannot be taken at the same
or nearby time points.

These formulas describe the dynamics of the temporal ac-
tions exactly, but not all of them are needed for the sound-
ness of the invariant computation. Indeed, the satisfiability
tests typically used are incomplete for reasons of efficiency
(polynomial time, rather than solving the NP-hard satisfia-
bility problem exactly.)

Interestingly, for the temporal satisfiability tests needed
in computing invariants, the formulas (1) and (2) can be left
out: this does not sacrifice correctness of the computation,
may reduce the number of invariants identified (because the
consistency checks could become too weak to prove that an
invariant must remain true), but in practice (confirmed ex-
perimentally) does not change the set of invariants found.
The proof of Theorem 5 assumes this.

Definition 17 (Formulation of A Problem Instance)
We define the set MD as formulas (3) and (4) for all
ground instances of actions in a given instance of temporal
planning with domain function D.

Definition 18 (Instances of Candidate Formulas)
Schematic formulas of the forms l and l ∨ [0, z[l′, where l
and l′ are atomic propositions x (state variables) or their
negations ¬x, are candidate invariants. For a set C of such
formulas, CD denotes the set of all ground instances of C
with with respect to domain function D.

Definition 19 (Invariance Test (Rintanen 2014)) The in-
variance test for a given action a ∈ A and formula c such
that a has effect (z, l) and one of the literals in c is l, is the
following set of formulas.4

Sa,c
D,C = {�φ|φ ∈ MD}

∪{]−∞, 0]φ | φ ∈ CD}
∪{]0,∞[a′ | a′ ∈ A}
∪{[0]a, [0]prec(a), [z]¬c}

The counterpart of Definition 14 for the temporal case is
the following, where we limit to invariants with 2 literals

4We added [0]prec(a) to compensate for the removal of formu-
las (1) a→prec(a). This is critical to obtain the same invariants.



only, and have to acknowledge the involvement of two ac-
tions in falsifying a candidate invariant, rather than one.

Definition 20 (Limited Instantiation for Temporal Planning)

For a given action set A, predicate set P , domain function
D and type t, define

L◦
t (A,P ) = 2(max(max

a∈A
prmst(a)),max

p∈P
prmst(p))

Next is the counterpart of Theorem 3.

Theorem 5 Let A be a set of schematic temporal actions,
D a domain function for the types T , D′ a domain function
such that for every t ∈ T , either D′(t) = D(t) or

1. D′(t) ⊂ D(t),
2. |D′(t)| ≥ L◦

t (A,P ),
3. D′(t) includes all fixed objects of type t, and
4. D′(t0) ⊂ D′(t1) iff D(t0) ⊂ D(t1), for all {t0, t1} ⊆ T .

Let c be a schematic candidate invariant. Assume Saσ,cσ
D,C

is satisfiable for some schematic action a and a schematic
candidate invariant c for some σ with range D, and aσ is
relevant for cσ. Then Saσ′,cσ′

D′,C is satisfiable for some σ′ with
range in D′.

Proof: Given a satisfying valuation v for Saσ,cσ
D,C , we will

construct a satisfying valuation v′ for Saσ′,cσ′
D′,C . The starting

point is aσ and cσ, analogously to the proof of Theorem
3. An additional component is a possible second action a′σ
which may be involved in falsifying the second literal in cσ.

For the simplicity of presentation the proof is given for
cσ = x ∨ [0, d]x′, with other syntactic forms of cσ proved
analogously. We assume that aσ has effect (z,¬x) (assump-
tion that aσ is relevant for cσ).

If v |=0 ¬x′ and aσ does not make x′ true, then taking
aσ alone falsifies cσ. Otherwise v |=0 x′ and some action
a′ (possibly a′ = a) makes x′ false between time points 0
and z + d, with a′ taken at some time point z′ ≤ 0. This is
the case we address in the rest of the proof sketch. The first
case is similar and simpler.

Let L consist of all state variables in aσ, a′σ and cσ.
Let R(t), for all t ∈ T be any subset of D(t) of same
cardinality as D′(t) that includes all objects of type t in
L. Such sets R(t) exist because of the assumption that
|D′(t)| ≥ L◦

t (A,P ) and because – with assumption that
aσ is relevant for cσ – a, a′ and c together have at most
L◦
t (A,P ) parameters.
Let R =

⋃
t∈T R(t). Let π a bijective mapping π : R →⋃

t∈T D′(t) such that for all o ∈ R and t ∈ T , π(o) ∈ D′(t)
iff o ∈ D(t). Such a mapping exists because the cardinali-
ties of R(t) and D′(t) are the same.

Define σ′ = σπ.
We define a temporal valuation v′ that corresponds to aσ′

and a′σ′ (possibly) changing the values of x and x′ to false
and all other state variables unchanged.

1. v′ |=z π(x′′) iff v |=0 x′′, for every z and x′′ ∈ L\{x, x′}
2. v′ |=z ¬a′′σ′ for all z and a′′σ ∈ A\{aσ, a′σ}
3. v′ |=0 a and v′ |=z ¬a for all z �= 0

year problem |Alim| max |A|
2014 driverlog 160 105300
2014 floortile 396 600
2014 matchcellar 6 1326
2014 parking 600 6468
2014 satellite 64 33034
2014 storage 320 6468
2014 tms 34 1104
2014 turnandopen 640 17450

Table 1: Number of ground actions

4. v′ |=z′ a′ and v′ |=z ¬a′ for all z �= z′

5. v′ |=0 π(x) iff v |=0 x

6. v′ |=0 π(x′) iff v |=0 x′

7. Values of x and x′ change in v′ only at the time points
determined by aσ′ and a′σ′.
The proof that v′ satisfies CD′ over the interval ]0,−∞]

is as in Theorem 3. The rest of Sa,c
D′,C is straightforward

because of the action variables only aσ′ and a′σ′ are true,
and only x and x′ change. �

Evaluation

In most of standard temporal planning benchmark problems
the majority of schematic state variables and actions have
at most one parameter of each type, sometimes 2, which
by Theorem 5 leads to a low number of ground instances,
well within the capabilities of the target algorithm (Rinta-
nen 2014). Table 1 shows the numbers of ground instances
for some of the problems from the 2014 planning competi-
tion. For each problem class we give the reduced number
|Alim| of ground actions as justified by Theorem 5 and the
highest number max |A| of ground actions of all instances
in the class (after simplifications by the planner front-end).

We have plotted the runtimes of the algorithm by Rinta-
nen (2014) for the problems from the 2008, 2011 and 2014
competitions in Figure 3. Obviously, the number of actions
(and state variables) is a decisive factor in the performance
of the algorithm, with runtimes of each iteration approxi-
mately O(n3) in the size of the ground instance. A decrease
in the number of ground actions and state variables deci-
mates runtimes: at 250 ground actions they are never over
10 seconds. With 50 actions it is at most 3 seconds.

Figure 4 demonstrates – with applicable problem in-
stances from the competitions 2008, 2011 and 2014 – the
runtime reduction obtained by grounding a temporal plan-
ning problem only partially according to Theorem 5, obtain-
ing schematic invariants from the fully grounded instance,
instantiating them with the limited domains, and running
Rintanen’s (2014) algorithm to obtain ground invariants,
which are finally lifted to the original problem instance. Ex-
cept for some of the smallest instances the reductions are
rather consistent, and in many cases dramatic. Runtimes for
some of the instances reported in (Rintanen 2014) were over
4 hours, and now all runtimes are some seconds.



 1

 10

 100

 1000

 10000

 10  100  1000  10000  100000

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

actions

Number of actions vs. runtime

Figure 3: Runtime vs. number of ground actions
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Figure 4: Reduction in runtime

For most of the benchmarks, the obtained invariants are
the same for both algorithms. Exceptions are Crewplanning,
Elevator and some variants of Openstacks, which all contain
critical information in the initial state that cannot be effec-
tively utilized without grounding: for Crewplanning this is
data on the succession of days, and for Elevator and Open-
stacks it is action durations which vary between ground in-
stances of some of the schematic actions.

Conclusion

We have shown how limited grounding of schematic actions
leads to simple schematic algorithms for finding invariants
in classical and temporal planning. Schematic algorithms
are efficient when the number of action schemas is low.
However, such algorithms are complicated and rather dif-
ficult to implement, especially when good scalability is de-
sired, and start to fail when the number of action schemas
is high, even when the number of instances is low. Our
hybrid approach which only produces a (potentially very
small) subset of all ground instances of a schematic action
set, scales up well and is as easy to implement as algorithms
that only use ground actions and invariants.
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