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Abstract. The utility of including loops in plans has been long recog-
nized by the planning community. Loops in a plan help increase both its
applicability and the compactness of representation. However, progress
in finding such plans has been limited largely due to lack of methods
for reasoning about the correctness and safety properties of loops of ac-
tions. We present novel algorithms for determining the applicability and
progress made by a general class of loops of actions. We first develop these
methods for abacus programs, and then show that plans in a wide variety
of domains can be treated as abacus programs. These methods can be
used for directing the search for plans with loops towards greater appli-
cability while guaranteeing termination, as well as in post-processing of
computed plans to precisely characterize their applicability. Experimen-
tal results demonstrate the efficiency of these algorithms.

1 Introduction

Recent work in planning has highlighted the benefits of using loops in plan
representation [1–3]. Plans with loops present two very appealing advantages:
they can be more compact, and thus easier to synthesize, and they often solve
many problem instances, offering greater generality.

Loops in plans, however, are inherently unsafe structures because it is hard
to determine the general conditions under which they terminate and achieve the
intended goals. It is therefore crucial to determine when a plan with loops can
be safely applied to a problem instance. Unfortunately, there is currently very
little understanding of when the applicability conditions of plans with loops can
even be found, and if so, whether this can be done efficiently.

This paper presents methods for efficiently determining the conditions under
which plans with some classes of simple and nested loops can solve a problem
instance. These methods can also be used to determine the utility of adding
a loop during plan generation. We initially assume that planning actions come
from a simple, but powerful class of action operators, which can only increment
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or decrement a finite set of registers by unit amounts. Then we show that many
interesting planning problems can be directly translated into plans with such
actions.

The class of actions considered in this work is captured by abacus programs–
an abstract computational model as powerful as Turing machines. The halting
problem for abacus programs is thus undecidable. That is, finding closed-form
applicability conditions, or preconditions for such plans is undecidable. Despite
this negative result, we show that closed-form preconditions can be found very
efficiently for structurally restricted classes of abacus programs, and demonstrate
that such structures are sufficient to solve interesting planning problems. Finally,
we show how a recently proposed approach for finding plans with loops can be
interpreted as generating abacus programs of this very class. This method can be
used to translate plans with simple and nested loops in many planning domains
into abacus programs, thus allowing applicability conditions to be computed for
a broad range of planning problems.

We start with a formal description of abacus programs. This is followed by a
formal analysis of the problem of finding preconditions of abacus programs with
simple loops and a class of nested loops. We then show how plans with loops
can be translated into abacus programs, and conclude with a demonstration of
the scope and efficiency of these methods.

2 Abacus Programs

Abacus programs [4] are finite automata whose states are labeled with actions
that increment or decrement a fixed set of registers. Formally,

Definition 1. (Abacus Programs) An abacus program 〈R,S, s0, sh, `〉 consists
of a finite set of registers R, a finite set of states S with special initial and halting
states s0, sh ∈ S and a labeling function ` : S \ {sh} 7→ Act. The set of actions,
Act, consists of actions of the form:
– Inc(r, s): increment r ∈ R; goto s ∈ S, and
– Dec(r, s1, s2): if r = 0 goto s1 ∈ S else decrement r and goto s2 ∈ S

We represent abacus programs as bipartite graphs with edges from states
to actions and from actions to states. In order to distinguish abacus program
states from states in planning, we will refer to a state in the graph of an abacus
program as a “node”. The two edges out of a decrement action are labeled = 0
and > 0 respectively (see Fig. 1).

Given an initial valuation of its registers, the execution of an abacus program
starts at s0. At every step, an action is executed, the corresponding register is
updated, and a new node is reached. An abacus program terminates iff its execu-
tion reaches the halt node. Abacus programs are equivalent to Minsky Machines
[5], which are as powerful as Turing machines and thus have an undecidable
halting problem:

Fact 1 The problem of determining the set of initial register values for which
an abacus program will reach the halt node is undecidable.
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Fig. 1. A simple abacus machine for
the program: while (r1 > 0) {
r1 −−;r2 + +}

Nevertheless, for some abacus programs
halting is decidable, depending on the com-
plexity of the loops. A simple loop is a cy-
cle. A simple-loop abacus program is one all
of whose non-trivial strongly connected com-
ponents are simple loops. In the next section
we show that for any simple-loop abacus pro-
gram, we can efficiently characterize the ex-
act set of register values that lead not just to
termination, but to any desired “goal” node
with a desired set of register values (Th. 1).

2.1 Applicability Conditions for Simple Loops

Let S1, a1, . . . , Sn, an, S1 be a simple loop (see Fig. 2). We denote register values
at nodes using vectors. For example, R̄0=〈R0

1, R
0
2, . . . , R

0
m〉 denotes the initial

values of registers R1, . . . , Rm at node S1. Let a(i) denote the index of the register
changed by action ai. Since these are abacus actions, if there is a branch at ai, it
will be determined by whether or not the value of Ra(i) is greater than or equal to
0 at the previous node. We use subscripts on vectors to project the corresponding
registers, so that the initial count of action ai’s register can be represented
as R̄0

a(i). Let ∆i denote the vector of changes in register values for action ai

corresponding to its branch along the loop. Let ∆1..i = ∆1+∆2+ · · ·+∆i denote
the register-change vector due to a sequence of abacus actions a1, . . . , ai. Given
a linear segment of an abacus program, we can easily compute the preconditions
for reaching a particular register value and node combination:

Proposition 1. Suppose S1
a1−→ S2

a2−→ · · ·Sn is a linear segment of an abacus
program where Si are nodes, ai are actions and F̄ is a vector of register values.
A set of necessary and sufficient linear constraints on the initial register values
R̄0 at S1 can be computed under which Sn will be reached with register values F̄ .

Proof. (Sketch) We know F̄ = R̄0 +∆1..n. We only need to collect the conditions
necessary to take all the correct action branches, keeping us on this path. This
can be done by computing the register values at each node Si in terms of R̄0,
and stating the inequality required for the desired branch of the next action.

Proposition 2. Suppose S1, a1, . . . , Sn, an, S1 is a simple loop of an abacus pro-
gram. Then in O(n) time we can compute a set of linear constraints, C(R̄0, F̄ , l),
that are satisfied by initial and final register tuples (R̄0 and F̄ ), and the natural
number (l), iff starting an execution at S1 with register values R̄0 will result in
l iterations of the loop, after which we will be in S1 with register values F̄ .

Proof. Consider the action a4 in the left loop in Fig. 2. Suppose that the condi-
tion that causes us to stay in the loop after action a4 is that Ra(4) > 0. Then the
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Fig. 2. A simple loop with (right) and without (left) shortcuts

loop branch is taken during the first iteration starting with fluent-vector R̄0 if
(R̄0 +∆1..3)a(4) > 0. This branch will be taken in l subsequent loop iterations iff
(R̄0 + k ·∆1..n +∆1..3)a(4) > 0, and similar inequalities hold for every branching
action, for all k ∈ {0, . . . , l − 1}. More precisely, for one full execution of the
loop starting with R̄0 we require, for all i ∈ {1, . . . , n}:

(R̄0 +∆1..i−1)a(i) ◦ 0

where ◦ is one of {>,=} depending on the branch that lies in the loop; (this
set of inequalities can be simplified by removing constraints that are subsumed
by others). Since the only variable term in this set of inequalities is R̄0, we
represent them as LoopIneq(R̄0). Let R̄l = R̄0 + l × ∆1..n, the register vector
after l complete iterations. Thus, for executing the loop completely l times, the
required conditions are LoopIneq(R̄0) ∧ LoopIneq(R̄l−1). These two sets of con-
ditions ensure that the conditions for execution of intermediate loop iterations
hold, because the changes in register values due to actions are constant, and the
expression for R̄l−1 is linear in them. Note that these conditions are necessary
and sufficient since there is no other way of executing a complete iteration of the
loop except by undergoing all the register changes and satisfying all the branch
conditions.

Hence, the necessary and sufficient conditions for achieving the given register-
value after l complete iterations are: C(R̄0, F̄ , l) ≡ LoopIneq(R̄0)∧LoopIneq(R̄l−1)∧
(F̄ = R̄l). Each loop inequality is constant size because it concerns a single reg-
ister. The total length of all the inequalities is O(n) and as described above they
can be computed in a total of O(n) time.

Note that an exit during the first iteration amounts to a linear segment of
actions and is handled by Prop. 1. Further, the vector F̄ can include symbolic ex-
pressions. Initial values R0 can be computed using Rl = F ; these expressions for
R0 can be used as target values for subsequent applications of Prop. 2. Therefore,
when used in combination with Prop. 1, the method outlined above produces
the necessary and sufficient conditions for reaching any node and register value
in an abacus program:

Theorem 1. Let ΠA be a simple-loop abacus program. Let S be any node in the
program, and F̄ a vector of register values. We can then compute a disjunction of
linear constraints on the initial register values that is a necessary and sufficient
condition for reaching S with the register values F̄ .



Computing Applicability Conditions for Plans with Loops 5

Proof. Since ΠA is acyclic except for simple loops, it can be decomposed into a
set of segments starting at the common start-node, but consisting only of linear
paths and simple loops (this may require duplication of nodes following a node
where different branches of the plan merge). By Prop. 1 and 2, necessary and
sufficient conditions for each of these segments can be computed. The disjunctive
union of these conditions gives the overall necessary and sufficient condition.

2.2 Nested Loops Due to Shortcuts

Due to the undecidability of the halting problem for abacus programs, it is im-
possible to find preconditions of abacus programs with arbitrarily nested loops.
The previous section demonstrates, however, that structurally restricted classes
of abacus programs admit efficient applicability tests. Characterizing the precise
boundary between decidability and undecidability of abacus programs in terms
of their structural complexity is an important open problem.

In this section, we show that methods developed in the previous section can
be extended to a class of nested loops caused due to non-deterministic actions.
Non-deterministic actions are common in planning but do not exist in the original
definition of abacus domains. In the representation of Def. 1, we define a non-
deterministic action in an abacus program NSet(r, s1, s2) as follows:

– NSet(r, s1, s2): set r to 0 and goto s1 ∈ S or set r to 1 and goto s2 ∈ S.

We assume that the register r is new, or unused by deterministic actions. A
non-deterministic action thus has two outgoing edges in the graph representa-
tion, corresponding to the two possible values it can assign to a register value.
Either of these branches may be taken during execution. Although the original
formulation of abacus programs is sufficient to capture any computation, the
inclusion of non-deterministic actions allows us to conveniently express sensing
actions encountered in partially observable planning domains.

Definition 2. (Complex Loops) A complex loop in a graph is a non-trivial
strongly connected component that is not a simple loop.

Definition 3. (Shortcuts) A shortcut in a simple loop is a linear segment of
nodes (without branches) starting with a branch caused due to a non-deterministic
action in the loop and ending at any subsequent node in the loop in the direction
of the loop, but not after a designated start node. The origin of every shortcut
must occur at or after the start node.

In Fig. 2, S2 can be treated as a start node. The definition above constrains
shortcuts to originate from a branch of a non-deterministic action; shortcuts
beginning with branches of deterministic, register-decrementing actions are con-
sidered in sections 2.5 and 2.5.

In terms of graph structure, simple loops with shortcuts categorize the class of
graphs with cycle rank [6] one. This class of graphs captures many common con-
trol flows, including those with doubly nested loops and nested for loops such as:



6 Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein

for i=1 to n do {for j=1 to k do {xyz}}. Actions which create shortcuts
in such loops can be easily transformed into non-deterministic actions followed
by actions with the original conditions.

2.3 Applicability Conditions for Monotone Shortcuts

In the rest of this paper we consider a special class of simple loops with shortcuts,
where the shortcuts are monotone:

Definition 4. (Monotone Shortcuts) The shortcuts of a simple loop are mono-
tone if the sign (positive or negative) of the net change, if any, in a register’s
value is the same due to every simple loop created by the shortcuts.

For ease of exposition we require that the start nodes of all shortcuts in a
simple loop occur either at the common start node, or before the end node of any
other shortcut, making shortcuts non-composable (i.e., only one shortcut can be
taken in every iteration). Non-composability allows us to easily count the simple
loops caused due to shortcuts independently. For instance, we can view the loop
with shortcuts in Fig. 2 as consisting of 3 different simple loops. Which loop is
taken during execution will depend on the results of non-deterministic actions
a3 and a5. Additionally, we will only consider the case where non-deterministic
actions occur on the outer, simple loop. Composable shortcuts and branches
caused due to non-deterministic actions on shortcuts can be handled similarly
by considering all possible completions of the loop independently, as simple loops.
However, this may result in exponentially many simple loops in the worst case.

Suppose an abacus program Π is a simple loop with m monotone shortcuts
and a chosen start node Sstart. We consider the case of l complete iterations of
Π counted at its start node, with k1, . . . , km representing the number of times
shortcuts 1, . . . ,m are taken, respectively. The final, partial iteration and the
loop exit can be along any of the shortcuts, or the outer simple loop, and can
be handled as a linear program segment. Let k0 be the number of times the
underlying simple loop is executed without taking any shortcuts. Then,

k0 + k1 + . . . km = l. (1)

Determining Final Register Values We denote the loop created by
taking the ith shortcut as loopi, and the original simple loop taken when none of
the shortcuts are taken as loop0. The final register values after the l =

∑m
i=0 ki

complete iterations can be obtained by adding the changes due to each simple
loop, with ∆loopi denoting the change vector due to loopi:

F̄ = R̄0 +
m∑

i=0

ki∆
loopi (2)

Cumulative Branch Conditions For computing sufficient conditions on
the achievable register values after k0, . . . , km complete iterations of the given
loops, the approach is to treat each loop as a simple loop and determine its
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preconditions. Note that every required condition for a loop’s complete iteration
stems from a comparison of a register’s value with zero. We therefore want
to determine the lowest possible value of each register during the k0, k1, . . . km

iterations of loops 0, . . . ,m, and constrain that value to be greater than zero.
For every register Rj , we first identify the index of simple loop which can cause
the greatest negative change in a single, partial iteration starting at Sstart, as
min(j), and the value of this change as δmin(j). For readability we will use ̂ to
denote min(j) .

Let R+ and R− be the sets of registers undergoing net positive and nega-
tive changes respectively, by any loop. For Rj ∈ R+, the lowest possible value
is R0

j + δb. The required constraint on Rj is simply R0
j + δb ≥ 0 (“≥” be-

cause “>” must hold before the decrement), since the value of Rj can only
increase after the first iteration. For Rj ∈ R−, the lowest possible value is
R0

j +
∑

i 6=b ki∆
loopi + (kb − 1)∆loopb + δb, achieved when loopb is executed at

the end, after all the iterations of the other loops. Therefore, we get:

∀Rj ∈ R−
{
R0

j +
m∑

i=0

ki∆
loopi +δb−∆loopb ≥ 0

}
∀Rj ∈ R+

{
R0

j + δb ≥ 0
}

These conditions can be extended to include equality conditions for the first and
last iteration of each loop. Together with Eqs. (1-2), these inequalities provide
sufficient conditions binding reachable register values with the number of loop
iterations and the initial register values. However, the process for deriving them
assumed that for every j, loopb will be executed at least once. In [7], we show how
these constraints can be made more accurate by using a disjunctive formulation
for selecting the loop causing the greatest negative change among those that are
executed at least once. The accuracy of the resulting conditions can be analyzed
in terms of order independence:

Definition 5. (Order Independence) A simple loop with shortcuts is order inde-
pendent if for every initial valuation of the registers at Sstart, the set of register-
values possible at Sstart after any number of iterations does not depend on the
order in which the shortcuts are taken.

Theorem 2. Let Π be an abacus program, all of whose strongly connected com-
ponents are simple loops with monotone shortcuts. Let S be any node in the
program, and F̄ a vector of register values. We can then compute a disjunction
of linear constraints on the initial register values for reaching S with the regis-
ter values F̄ . If all simple loops with shortcuts in Π are order independent, the
obtained precondition is necessary and sufficient.

We refer the reader to [7] for details on these results; we conclude this section
by noting that the conditions developed above capture the tolerable values of ki

under which a desired combination of register values may be achieved.
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2.4 Relaxing Monotonocity

Although non-deterministic actions make it easier to express plans with sensing
actions, they significantly add to the power of abacus programs consisting of
simple loops with shortcuts. Specifically, we show below that reachability in an
abacus program consisting of a simple loop with non-monotone shortcuts is at
least as hard as the problem of reachability in a vector addition system [8]. Vector
addition systems are not as powerful as Turing machines, but still have a hard
reachability problem. Although it has been proved that reachability in vector
addition systems is decidable, known algorithms require non-primitive-recursive
space [9]. We use the formalization of vector addition systems from [8]:

Definition 6. (Vector addition systems) An n-dimensional vector addition sys-
tem (VAS) is a pair (x,W ) where x ∈ Nn is called the start point and W is a
finite subset of Zn. The reachability set of the VAS (x,W ) is the set of all
z, z = x + v1 + · · · + vj where each vi ∈ W and all the intermediate sums,
x+ v1 + · · ·+ vi, 1 ≤ i ≤ j are non-negative.

Proposition 3. Determining the set of register values reachable at the start
node of an abacus program consisting of a simple loop with shortcuts is at least
as hard as the problem of determining the reachable register values in a vector
addition system.

Proof. Suppose (x,W ) is an n-dimensional VAS. We construct an abacus pro-
gram with n registers, one for each dimension in the given VAS. We can then
construct a simple loop with shortcuts so that each of the simple loops created
corresponds to a unique w ∈W . The shortcut corresponding to wi would consist
of sequences of incrementing/decrementing actions for each dimension in wi (see
Fig. 3). For decrementing actions, the zero-branches lead to an exit from the loop
to a trap state. In the resulting abacus program, a given configuration of register
values is reachable at the start state iff there exists an ordering of the simple
loops created by shortcuts which leads to it. In other words, every reachable
register-value configuration corresponds to a sum of the wi’s with none of the
intermediate values being negative.

2.5 Simple Loops with Shortcuts due to Deterministic Actions

We now discuss simple loops with shortcuts in settings with deterministic ac-
tions.

Monotone Shortcuts Let ΠA be an abacus program in the form of a simple
loop with shortcuts originating at deterministic (decrementing) actions. Taking
an initial register valuation as input, Alg. 1 computes a sequence of tuples rep-
resenting the order in which the simple loops created by shortcuts will be taken,
and the number of times each such loop will be executed in this ordering. Such
a sequence is sufficient to calculate all the reachable register values during an
execution of the given program.



Computing Applicability Conditions for Plans with Loops 9

Algorithm 1: Reachability for deterministic, monotone shortcuts
Input: Deterministic abacus program in the form of a simple loop with

monotone shortcuts, an initial register configuration R̄0

Output: Sequence of (loop id, #iterations) tuples.
R̄← R̄01

Iterations ← empty list2

LoopList ← simple loops created by shortcuts3

while LoopList 6= ∅ do4

if no l ∈ LoopList satisfies LoopIneql(R̄) then5

Return Iterations6

end
l← id of loop for which LoopIneql(R̄) holds7

Remove l from LoopList8

lmax ← FindMaxIterations(R̄, l)9

Iterations.append((l, lmax))10

R̄← R̄+ lmax∆
l

11

end
Return Iterations12

NSet  

NSet  

w  1w  2

NSet  w  n

Fig. 3. Reduction of a vector addi-
tion system to a non-deterministic
abacus program.

Alg. 1 relies on the following observa-
tions:

1. Because all the shortcuts are monotone,
if a loop is executed for a certain number
of iterations and then exited, the flow of
control will never return to that loop.

2. For any given configuration of register
values at the start node, at most one
of the simple loops created by shortcuts
may be completely executable. This is
because if multiple simple loops can be executed starting from a given regis-
ter value configuration, then at some action node in the program, it should
be possible for the control to flow along more than one outgoing edge. How-
ever, this is impossible because every action which has multiple outcomes (a
decrementing action) has exactly two branches, whose conditions are always
mutually inconsistent.

The overall algorithm works by identifying the unique loop l whose LoopIneql

is satisfied by the value R̄ (initialized to R̄0) [steps 5-8], calculating the number
of iterations which will be executed for that loop until LoopIneql gets violated
[step 9], updating the register values to reflect the effect of those iterations [step
11] and identifying the next loop to be executed [the while loop, step 4].

The subroutine FindMaxIterations uses the inequalities in LoopIneql (see
prop. 2) to construct the vector equation (R̄+ lmax∆

l +∆1..i−1)a(i) ◦ 0 for every
action in loop l. This system of equations consists of an inequality of the following
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form for every i corresponding to a decrementing action in the loop:

lmax < (R̄a(i) +∆1..i−1
a(i) )/∆l

a(i)

Since R̄ is always known during the computation, the floor of minimum of the
RHS of these equations for all i yield the largest possible value of lmax. Equality
constraints either drop out (if the net change in their register’s value due to the
loop l is zero and they are satisfied during the first iteration), or set lmax = 1
(if the net change in their register’s value is not zero, but it is satisfied during
the first iteration). Note that if there is any loop which does not decrease any
register’s value, it will never terminate. This will be reflected in our computation
by an lmax value of ∞.

Let b be the maximum number of branches in a loop created due to the
shortcut, and L the total number of simple loops generated due to the shortcuts.
The most expensive operation in this algorithm is step 5, where R̄ is tested on
every loop’s inequality (these loop inequalities only need to be constructed once).
Step 5 is executed in O(Lb) time and step 9 in O(b) time. The entire loop may
be executed at most L times, resulting in a total execution time of O(L2b). On
the other hand, if such a program is directly applied on a problem instance and
the program terminates, then the execution time for the program will be of the
order of the largest register value.

Non-monotone Shortcuts and Linear Hybrid Automata Currently, the
complexity and decidability of the problem of reachability for abacus programs
consisting of simple loops with non-monotone, deterministic shortcuts is un-
known. In general, reachability problems for abacus programs can be easily rep-
resented as reachability problems for linear hybrid automata (LHA) [10]. While
a hybrid system is a model of computation which combines discrete state transi-
tions with continuous flows of real-valued variables within each state, in linear hy-
brid automata, the flows of these variables are constrained by linear expressions.
Numerous implementations of approximate and partially decidable algorithms
have been developed for model checking linear hybrid systems. Deterministic
abacus programs with simple loops with shortcuts can be easily represented as
particularly simplified linear hybrid systems, with register changes occurring as
“jump” transitions between discrete states. We have obtained promising results
using LHA analysis tools on these translated representations. A detailed analysis
of their applicability, as well as the impact of monotonicity and our restrictions
based on graph structure on LHA verification algorithms is left for future work.

The following table summarizes known results about determining the set of
states reachable from a given initial state for abacus programs with simple loops
with shortcuts:

Deterministic Non-deterministic

Monotone Shortcuts Alg. 1 Eq.(1-4) [7](order-indep.)
Non-monotone Shortcuts unknown VAS�
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Fig. 4. A sequence of actions in a unary representation of transport domain. Predicate
object is abbreviated as obj.

3 Transforming Plans into Abacus Programs

In the previous section we showed how to find preconditions for a class of abacus
programs. Abacus programs can express any computation, including plans with
PDDL [11] actions. However, a translation of such plans into abacus programs
is unlikely to employ only the kind of loops discussed above. But, if planning
actions can be treated as actions that increment or decrement counters, the
techniques developed above can be directly applied. We have recently developed
an approach to accomplish that called Aranda [12].

We illustrate the relevant concepts of Aranda with an example. Aranda
uses canonical abstraction [13] to create abstract states by collecting elements
satisfying the same sets of unary predicates into summary elements. The set
of predicates satisfied by an element is called the element’s role. Consider a
simplified transport domain where objects need to be moved from L1 to L2 by
a single truck of capacity one. The vocabulary for this domain consists of unary
predicates {atL1, atL2, inT, object, truck}. Fig. 4 shows a sequence of actions
applied on the initial abstract state S1. Summary elements are drawn in the
figure using double circles; S1 has two summary elements, with roles {object,
atL2} and {object, atL1}. A summary element of a certain role indicates that
there may be one or more elements of that role. Singleton elements (such as the
truck with the role {truck, atL1}) are drawn using single circles, and indicate
that there is exactly one element of that role. S1 thus represents a situation with
unknown numbers of objects at L1 and L2, and exactly one truck, at L1.

Planning actions in this framework become actions that increment or decre-
ment role-counts, or the number of elements satisfying certain role(s). Action
loadT(x) in Fig. 4 loads object x into the truck. For such actions which require
arguments, Aranda “draws-out” a representative element of a role from its
summary element if the role is not represented by a singleton. This results in
two cases: either the drawn out element was the only one with its role, or there
are other elements which have this role. This is illustrated by the choose ac-
tion in Fig. 4, which has two possible outcomes corresponding to the number of
elements, or the role-count of the role {object, atL1}. Note that the intermedi-
ate states S2 and S3 after choice and before action application do not differ in
any predicates–the drawn out element is marked with a constant–and thus have
the same role-counts. The combination of choose and loadT on the other hand
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is exactly like an abacus action application except that this combined opera-
tion conducts a comparison with 1 instead of 0 during decrementing, and also
increments another register.

We have characterized a class of domains called extended-LL domains where
the outcomes of any action application resulting in multiple outcomes depend
on whether or not a role-count was greater than or equal to one. Examples of
such domains are linked lists, blocks-world scenarios, and domains with only
unary predicates as in Fig. 4. Formal results relating extended-LL domain plans
to abacus programs are presented in [7].

The next section shows a range of problems which can be represented in
the form of extended-LL domains, and whose actions can be treated as abacus
actions. We also demonstrate our approach on plans with complex loops created
by on-deterministic sensing actions.

4 Example Plans and Preconditions

We implemented the algorithm for finding preconditions for simple loops and
order independent nested loops due to shortcuts, and applied it to various plans
with loops that have been discussed in the literature. Existing approaches solve
different subsets of these problems, but almost uniformly without computing
plan preconditions or termination guarantees. For nested loops, our implemen-
tation takes a node in a strongly connected component as an input and computes
an appropriate start node. It then decomposes the component into independent
simple loops and computes the preconditions.
Transport In the fully observable version of the transport problem (Sri-
vastava et al., 2008) two trucks have to deliver sets of packages through a “Y”-
shaped roadmap. Locations D1, D2 and D3 are present at the three terminal
points of the Y; location L is at the intersection of its prongs. Initially, an un-
known number of servers and monitors are present at D1 and D2 respectively;
trucks T1 (capacity 1) and T2 (capacity 2) are also at D1 and D2 respectively.
The goal is to deliver all objects to D3, but only in pairs with one of each kind. In
the partially observable formulation, objects left at L may get lost, and servers
may be heavy, in which case the forkLift action has to be used instead of the
load action.

The problem is modeled using the predicates {server, monitor, atDi, inTi,
atL, T1, T2}. As discussed in the previous section, role-counts in this represen-
tation can be treated as register values and actions as abacus actions on these
roles. Fig. 5 shows the main loop in a solution plan found by merging plans for
handling various non-deterministic outcomes with the base plan which solved
the fully observable formulation [14]. The base plan first moves a server from D1
to L using T1; T2 then picks up a monitor at D2, moves to L, picks up the server
left by T1 and transports both to D3. In other words, in the fully-observable
version of this problem, outcomes labeled “heavy”, and “server lost” in Fig. 5
are never taken, and the solution plan is a simple loop without the segments
created by these branches. The computed preconditions for this version of the
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move(T2, D3)

unload(T2); move(T2,L); move(T2,D2)

move(T2, D1)

move(T2,L)

move(T2,L)

server lost

load(m, T2: monitor(m)& atD2(m))

#(monitor,atD2)=0

load(s,T2: server(s)& atD1(s))

load(s, T2:server(s) & atL(s))

move(T1, L); unload(T1); move(T1,D1)

forkLift(s, T2)

heavy
forkLift(s, T2)

forkLift(s, T1)heavy

load(s, T1: server(s) & atD1(s)) Stop
#(server,atD1)=0

heavy

Fig. 5. Solution plan for the conditional version of transport

plan (i.e., assuming that those outcomes can never occur) correctly state that
we need to have equal numbers of monitors and servers to reach the goal.

In the partially observable version, if a server is not found when T2 reaches L,
the plan proceeds by moving T2 to D1, loading a server, and then proceeding to
D3. Note that the shortcut for the “server lost” has a sub-branch, corresponding
to the server being heavy. The plan can be decomposed into 8 simple loops. Of
these, 4, which use the “server lost” branch use one extra server. The computed
preconditions show that every possible loop decrements the role-counts of servers
and monitors at D1 and D2 respectively; however, in order to have all objects
at D3 the conditions now require extra servers to be kept at D1, amounting to
the number of times a server was lost.
Accumulator The accumulator problem [1] consists of two accumulators
and two actions: incr acc(i) increments register i by one and test acc(), tests if
the given accumulator’s value matches an input k. Given the goal acc(2) = 2k−1
where k is the input, Kplanner computes the following plan: incr acc(1); re-
peat {incr acc(1); incr acc(2); incr acc(2)}until test acc(1); incr acc(2). Al-
though the plan is correct for all k ≥ 1, Kplanner can only determine that
it will work for a user-provided range of values. This problem can be modeled
directly using registers for accumulators and asserting the goal condition on the
final values after l iterations of the loop (even though there are no decrement
operations). We get: acc(1) = l + 1; acc(2) = 2l + 1 = 2k − 1. This implies that
l = k − 1 ≥ 0 iterations are required to reach the goal.
Further Test Problems and Discussion We tested our algorithms with
many other plans with loops, for the planning problems: Hall-A, Prize-A(7 &
5), Corner-A [3], Diagonal [7], Recycling, and Striped Tower [12] in addition to
those discussed above. The times taken for computing preconditions were uni-
formly less than 0.06 seconds (see [7] for more details); the runs were conducted
on a 2.5GHz AMD dual core system. At least one of the quantities in the rep-
resentation of each of these problems is taken to be unknown and unbounded.
Our implementation computed correct preconditions for plans with simple loops
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for solving these problems. In all the plans, termination of loops was proved by
non-negativity constraints such as those above.

5 Related Work

Although various approaches have studied the utility and generation of plans
with loops, very few provide any guarantees of termination or progress for their
solutions. Approaches for cyclic and strong cyclic planning [15] attempt to gen-
erate plans with loops for achieving temporally extended goals and for handling
actions which may fail. Loops in strong cyclic plans are assumed to be static,
with the same likelihood of a loop exit in every iteration. The structure of these
plans is such that it is always possible–in the sense of graph connectivity–to exit
all loops and reach the goal. Among more recent work, Kplanner [1] attempts
to find plans with loops that generalize a single numeric planning parameter. It
guarantees that the obtained solutions will work in a user-specified interval of
values of this parameter. Distill [2] identifies loops from example traces but
does not address the problem of preconditions or termination of its learned plans.
Bonet et al. (2009) derive plans for problems with fixed sizes, but the controller
representation that they use can be seen to work across many problem instances.
They also do not address the problem of determining the problem instances on
which their plans will work, or terminate.

Finding preconditions of linear segments of plans has been well studied in
the planning literature. Triangle tables [16] can be viewed as a compilation of
plan segments and their applicability conditions. However, there has been no
concerted effort for finding preconditions of plans with loops. Static analysis of
programs deals with similar problems in proving program correctness. However,
these methods typically work with the weaker notion of partial correctness, where
a program is guaranteed to provide correct results if it terminates. Methods
like Terminator [17] attempt to prove termination, but do not provide precise
preconditions or the number of iterations required for termination. The focus
of such approaches lies in searching for an instance of the set of possible initial
states on which a given program may fail. On the other hand, we want to find
termination conditions and also preconditions when possible, as opposed to just
verifying the correctness of the given plan.

6 Conclusions and Future Work

We presented a formal approach for finding preconditions of plans with a re-
stricted form of loops. We also presented a characterization of the aspects of
complex loops, which make it difficult to find their preconditions. While the pre-
sented approach is the first to address this problem, it is also very efficient and
scalable. In addition to finding preconditions of computed plans, it can also be
used as a component in the synthesis of plans with safe loops.
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A greater understanding of the impact of a plan’s structural complexity on
the hardness of evaluating its preconditions is a natural question for future re-
search. The scope of the presented approach could also be extended by com-
bining it with approaches for symbolic computation of preconditions of action
sequences. The connections with hybrid systems discussed in Section 2.5 also
present promising directions for future work.
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