
LP Heuristics over Conjunctions: Compilation, Convergence, Nogood Learning

Marcel Steinmetz and Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

{steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

Two strands of research in classical planning are
LP heuristics and conjunctions to improve approx-
imations. Combinations of the two have also been
explored. Here, we focus on convergence proper-
ties, forcing the LP heuristic to equal the perfect
heuristic h∗ in the limit. We show that, under rea-
sonable assumptions, partial variable merges are
strictly dominated by the compilation ΠC of ex-
plicit conjunctions, and that both render the state
equation heuristic equal to h∗ for a suitable set C
of conjunctions. We show that consistent poten-
tial heuristics can be computed from a variant of
ΠC , and that such heuristics can represent h∗ for
suitable C. As an application of these convergence
properties, we consider sound nogood learning in
state space search, via refining the set C. We de-
sign a suitable refinement method to this end. Ex-
periments on IPC benchmarks show significant per-
formance improvements in several domains.

1 Introduction
In classical planning, LP heuristics approximate cost-to-goal
through linear constraints. The state equation heuristic [van
den Briel et al., 2007a; Bonet, 2013] formulates LP con-
straints over the number of action occurrences needed. Apart
from integrating additional sources of information [Bonet and
van den Briel, 2014; Pommerening et al., 2014], a successful
approach are potential heuristics [Pommerening et al., 2015;
Seipp et al., 2015], based on the dual of the state equation.
The solution of that dual LP defines weights for variable val-
ues. Computed just once on the initial state, these weights de-
fine a consistent heuristic function for the entire state space.

Another research line uses variable-value (fact) conjunc-
tions to improve approximations [van den Briel et al., 2007b].
The compilation ΠC renders a set C of conjunctions explicit,
forcing delete relaxed plans to converge to real plans in the
limit, i. e., for suitable C [Haslum, 2009; 2012; Keyder et
al., 2014]. This leads to powerful heuristics, and in particu-
lar enables sound forward-search nogood learning, where the
heuristic is iteratively refined based on the dead-end states
encountered [Steinmetz and Hoffmann, 2017].

Here, we consider LP heuristics over conjunctions. This is
not novel per se: partial variable merges enhance the state
equation heuristic by constraints over conjunctions [Bonet
and van den Briel, 2014]; potential heuristics can be defined
over conjunctions as well [Seipp et al., 2016a; Pommerening
et al., 2017]. We contribute new results pertaining to the use
of the ΠC compilation, to convergence properties, and to the
exploitation of convergence for nogood learning.

Seipp et al. [2016a] examined the size of conjunctions
needed for a potential heuristic to find a plan without search.
Pommerening et al. [2017] designed potential heuristics over
arbitrary sets of conjunctions. While they provide an effi-
cient construction method for potential heuristics over fact
pairs, they also showed that the construction over fact triples
is already computationally hard. Here, we show that for
tasks in transition normal form (TNF) [Pommerening and
Helmert, 2015], partial variable merges are strictly dominated
by the compilation ΠC , and that both render the state equation
heuristic equal to h∗ for suitable C. We show that consistent
potential heuristics can be constructed from ΠC . 1 We show
that, together with a (trivial to compute) upper bound U∗ ∈ R
on h∗(s) for solvable s, one can choose C so that the ΠC po-
tential heuristic equals h∗.

We exploit these properties, motivated by the success of
LP heuristics in the Unsolvability-IPC [Seipp et al., 2016b],
in forward-search nogood learning. Convergence is essential
here: Nogood learning using a heuristic h requires a refine-
ment method that, given a dead-end state s not pruned by h
so far, guarantees to refine h into h′ that prunes s. We design
such a refinement method for LP heuristics, choosing new
conjunctions suitable for the state equation and hence also
the potential heuristic. Experiments on IPC benchmarks show
significant performance improvements in several domains.

Throughout the paper, we omit many technical details. We
refer the reader to the TR [Steinmetz and Hoffmann, 2018].

2 Preliminaries
We consider planning tasks in FDR notation [Bäckström
and Nebel, 1995; Helmert, 2009]. A task is a tuple Π =

1This does not contradict Pommerening et al.’s [2017] hardness
result as ΠC may grow exponentially in |C|. From this perspective,
our result can be viewed as a way of identifying feasible potential
heuristics over conjunctions: where ΠC is small.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4837

〈V ,A, sI , s∗〉. V is a set of variables v, each associated with
a finite domain Dv . A state is a complete assignment to V .
sI is the initial state. The goal s∗ is a partial variable assign-
ment. A is a finite set of actions. Each action a ∈ A is associ-
ated with a precondition prea and an effect eff a, both partial
variable assignments, and a non-negative cost costa ∈ R+

0 .
We assume that prea(v) 6= eff a(v) when both are defined.

A fact is a variable-value pair p = 〈v, dv〉. For partial vari-
able assignments P , we denote by V(P) the set of variables
for which P is defined. For variables v 6∈ V(P), we also write
P (v) = ⊥. We often treat (partial) variable assignments P
as sets of facts {〈v, P (v)〉 | v ∈ V(P)}. We say that two
assignments P and P ′ are compatible, written P ||P ′, if for
all v ∈ V(P) ∩ V(P ′) we have P (v) = P ′(v).

An action a is applicable in a state s if prea ⊆ s, and the
application results in the state sJaK where sJaK(v) = eff a(v)
if v ∈ V(eff a) and sJaK(v) = s(v) otherwise. Action se-
quences π = 〈a1, . . . , an〉 are applied iteratively, and the out-
come state is denoted sJπK. If s∗ ⊆ sJπK, then π is a plan for
s. A plan for Π, or just plan, is a plan for sI . The cost of π is∑n
i=1 costai . A plan is optimal if its cost is minimal among

all plans. If there is no plan for s, then s is a dead-end. If sI
is a dead-end, we say that Π is unsolvable.

The set of all states in Π is denoted S . A heuristic is a
function S 7→ R+

0 ∪ {∞}. The perfect heuristic h∗ assigns
each state s the cost of an optimal plan for s, or ∞ if s is a
dead-end. A heuristic h is admissible if h(s) ≤ h∗(s) for all
s ∈ S; h is consistent if, whenever a ∈ A is applicable in s,
we have h(s) ≤ h(sJaK) + costa.

A notation for regression, defined in the usual way, will be
convenient. The regression of P over a is regr(P, a) = (P \
eff a)∪prea if eff a∩P 6= ∅ and eff a||P and (P \eff a)||prea;
otherwise, regr(P, a) = ⊥.

We will sometimes consider transition normal form (TNF)
[Pommerening et al., 2015]. This imposes that (TNF1)
V(eff a) ⊆ V(prea) for all a ∈ A,2 and (TNF2) V(s∗) = V .
Every task can be transformed into TNF in polynomial time.

We next introduce the ΠC compilation. We follow Haslum
[2012], with small modifications suiting our context.

A conjunction c is a partial variable assignment. To rep-
resent a set C of conjunctions explicitly in a given task Π,
the ΠC compilation introduces a new Boolean variable πc for
each c ∈ C; abusing notation, we identify πc with the fact
〈πc, 1〉. For a partial assignment P , P C := P ∪{〈πc, 1〉 | c ∈
C, c ⊆ P} ∪ {〈πc, 0〉 | c ∈ C, c ∦ P} augments P with the
conjunctions it contains as well as the negation of the con-
junctions it conflicts with. A set of conjunctions C ⊆ C is
compatible if all c, c′ ∈ C are pairwise compatible.
Definition 1. Let Π = 〈V ,A, sI , s∗〉 be a task, and C be a set
of conjunctions. Then ΠC := 〈VC ,AC , sCI , sC∗〉 where VC =
V∪{πc | c ∈ C} andAC contains an action aC for every pair
a ∈ A and compatible C ⊆ C such that: (1) for all c ∈ C,
regr(c, a) 6= ⊥, and (2) for every c′ ∈ C, if regr(c′, a) 6= ⊥
and regr(c′, a) ⊆ (prea∪

⋃
c∈C regr(c, a)), then c′ ∈ C. The

action aC is given by (i) preaC = [prea ∪
⋃
c∈C regr(c, a)]C ,

2This differs slightly from the TNF definition in literature where
V(prea) = V(eff a) is required. We do so for simplicity only. All
our results apply directly to the original version as well.

(ii) eff aC = eff a ∪ {〈πc, 1〉 | c ∈ C} ∪ {〈πc′ , 0〉 | c′ ∈
C, c′||preaC , c

′ ∦ eff a}, and (iii) costaC = costa.

Intuitively, aC represents an occurrence of a that makes all
c ∈ C true. For this to happen, the regression of each c over a
must be true beforehand, as per (i). As per (ii), a conjunction
c′ potentially invalidated by a is false afterwards. Condition
(2) assures consistency: if an occurrence aC always makes
true a conjunction c, then πc must be set to true necessarily.

With the possible C being subsets of C, |AC |may grow ex-
ponentially in |C|. This can be ameliorated (but not overcome
entirely) with mutex information [Keyder et al., 2014]. Com-
patibility of C as postulated here is a special case thereof.

Plan equivalence between Π and ΠC can be easily shown
by adapting Haslum’s [2012] proof to our slightly modified
ΠC definition. An extension of this equivalence result to in-
dividual transitions will become handy later on:

Lemma 1. For every Π and every C, it holds that every con-
sistent heuristic h for Π is consistent in ΠC , and vice versa
every consistent heuristic h for ΠC is consistent in Π.

Proof (sketch). Since every transition in ΠC has a corre-
sponding transition in Π, the first direction is easy. For the
other direction, the definition of ΠC ensures, for every state
s and every applicable action a, that there exists an action
occurrence aC of a such that (sJaK)C = sCJaCK. Hence, con-
sistency in ΠC implies also consistency in Π.

3 The State Equation Heuristic
We introduce the state equation heuristic, and discuss its ex-
tensions to deal with conjunctions.

3.1 Definitions
The state equation (SEQ) describes a relation between
variable-value changes, the net-changes, that every plan must
satisfy. A fact p = 〈v, dv〉 is produced by an action a if
eff a(v) = dv; p is consumed by a if prea(v) = dv and
v ∈ V(eff a). Let s be any state, π be any plan for s, and
p be any fact. Every consumption of p along π requires its
production beforehand. If p is true in s, then p can be con-
sumed once more than it is produced. If p must be true after
the application of π, then pmust be produced more often than
it is consumed. So, let Countπa be the number of occurrences
of action a in π. Denote by Prod(p) (Cons(p)) the set of all
actions that produce (consume) p. Then the SEQ for p is∑

a∈Prod(p)

Countπa −
∑

a∈Cons(p)

Countπa ≥ ∆p(s) (1)

where ∆p(s) = 1 if p 6∈ s and p ∈ s∗; ∆p(s) = −1 if p ∈ s
and p 6∈ s∗; and ∆p(s) = 0 otherwise.

The state equation heuristic hSEQ is defined via an LP. The
LP contains one variable Counta ∈ R+

0 for every action a.
For every fact p the LP contains the constraint given by Equa-
tion (1) for p, choosing the right hand side ∆p(s) according
to the state s for which hSEQ(s) is being computed. The ob-
jective function is to minimize

∑
a∈A Counta · costa. If the

LP has an optimal solution, then hSEQ(s) gives the respective

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4838

the objective value. Otherwise hSEQ(s) = ∞. As every plan
must satisfy Equation (1) for every p, hSEQ is admissible.

An important weakness of the state equation heuristic is
that prevail conditions of actions, i. e., preconditions prea(v)
where v 6∈ V(eff a), are disregarded completely.

Example 1. Consider the transportation example in Figure 1.

A B C

Figure 1: Initial state in the transportation example.

There are two variables t and p, indicating the position of
the truck respectively package. The truck can move freely on
the depicted map through move actions. The package can
be loaded or unloaded at the current truck position. All ac-
tions have cost 1. The initial state is given by sI = {〈t =
B〉, 〈p = A〉}, the goal is s∗ = {〈p = C〉}. The hSEQ value
for this state is 2, accounting only for loading and unloading
the package. Truck movements are not counted since loading
and unloading the package prevail the truck position.

3.2 The State Equation over Conjunctions
The weakness just discussed can be addressed by considering
net-changes over conjunctions instead of single facts.

Example 2. Consider the set of conjunctions C = {c1, c2}
for c1 = {〈t = A〉, 〈p = A〉} and c2 = {〈t = C〉, 〈p = T 〉}.
Loading the package at A now requires and consumes πc1 ,
and unloading the package at C consumes πc2 . To produce
πc1 , the truck has to move to location A. To produce πc2 , the
truck has to move to C. Further, to satisfy Equation (1) for
t = B, the truck needs to move back fromA toB. This results
in the perfect heuristic value 5; indeed, hSEQ[ΠC](sI) = 5.

Bonet and van den Briel [2014] designed partial variable
merges to extend hSEQ to conjunctions. We now compare this
technique to the computation of hSEQ in ΠC , and we show
convergence of both to h∗ for Π in TNF. For space reasons,
we give a summary only. The TR contains the details.

Like the ΠC-compilation, partial variable merges consider
a set of conjunctions C. But conjunctions c, c′ ∈ C are put
into relation only when they instantiate the same variables,
V(c) = V(c′). Hence the name “partial variable merges”:
Bonet and van den Briel start from the simpler idea of pre-
merging entire variable subsets V ⊆ V , extending Π by a
new variable representing this product; they improve over that
idea by considering only particular value tuples within the
product. As a result, their LP encoding grows polynomially
in |C|, but might lose information relative to ΠC because no
constraints are included across (conjunctions over) different
variable subsets V, V ′.

Specifically, partial variable merges are based on notions
of potential producers and consumers, i. e., actions whose ap-
plications can achieve respectively invalidate c: PProd(c) =
{a ∈ A | regr(c, a) 6= ⊥} and PCons(c) = {a ∈ A | c ∦
eff a, c||prea}. This complication arises because the impact
of an action a on a conjunction c depends on the context in
which a is applied: on the action occurrence.

While ΠC enumerates possible action occurrences, variable
merges handle each subset of C sharing the same variables V

separately. Denote by Π|V the product of V (which corre-
sponds to the projection of Π onto V). To represent those
Π|V states P where P 6∈ C, an abstract state > is intro-
duced. The transitions within Π|V are abstracted by inserting
> whenever the start or end state of a transition is not con-
tained in C. Equation (1) for a conjunction c is then defined
by summing over a ∈ PProd(c) respectively a ∈ PCons(c),
with a separate occurrence-counter variable Countx→x

′

a for
every abstract transition x → x′ induced by a. Finally, these
separate counters are related back to the main action coun-
ters by adding the constraint that the sum over Countx→x

′

a is
≤ Counta. We denote the resulting heuristic by hCSEQ.

Theorem 1. For every Π in TNF, every set of conjunctions C,
and every state s, it holds that hSEQ[ΠC](s) ≥ hCSEQ(s).

Proof (sketch). Let Seq[ΠC] be the LP underlying
hSEQ[ΠC](s), and SeqC that underlying hCSEQ(s). Every so-
lution to Seq[ΠC] can be transformed into a solution to SeqC,
with equal objective value. The proof is technical but straight-
forward.

Theorem 2. There exists families of Π and C s.t., to obtain
hC
′SEQ ≥ hSEQ[ΠC], C′ must be exponentially larger than C.

Proof (sketch). This happens, e. g., in a transportation exam-
ple where n packages must be transported from B to A, and
truck-load capacity is 1. In hSEQ[ΠC], considering all con-
junctions of size up to 3 makes visible that no two packages
can be in the truck at the same time, yielding hSEQ[ΠC] = h∗.
The partial variable merges in hCSEQ, however, cannot ac-
count perfectly for the interactions across packages unless all
of them are considered jointly in the same Π|V .

For general tasks Π, the relation between hSEQ[ΠC] and
hCSEQ is however not so clear anymore. Complications stem
from actions a affecting variables v without precondition on
v. ΠC cannot relate the consumption of any conjunction c
where v ∈ V(c) with a’s action occurences. In contrast,
hCSEQ can do so by enumerating the missing preconditions
through different transitions. The TR contains an example.

We now turn to convergence properties. It is easy to show
that partial variable merges can force hCSEQ to converge.

Theorem 3. For every planning task Π with V(s∗) = V ,
there exists a set of conjunctions C s.t. hCSEQ = h∗.

Proof (sketch). A suitable C is C := S . The LP underlying
hCSEQ then boils down to an LP encoding of shortest paths in
the state space graph.

Corollary 1. For every planning task Π in TNF, there exists
a set of conjunctions C s.t. hSEQ[ΠC] = h∗.

4 Potential Heuristics
Equation 1 depends on the state s considered. So SEQ based
heuristics need to solve an LP in every search state. Potential
heuristics solve an LP only once, in the initial state. The LP
solution is used to compute weights (potentials) that, when
combined in a linear fashion, define an admissible heuristic.

Formally, assume a given set C of conjunctions. A potential
heuristic hPot

C,w is then defined by a weight function w : C 7→

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4839

R, with hPot
C,w(s) =

∑
c∈C,c⊆s w(c). The computational cost

of evaluating such a heuristic on a state s is small. But how
to find a suitable w guaranteeing admissibility?

For singleton conjunctions, Pommerening et al. [2015] de-
signed an LP encoding guaranteeing consistency and value
≤ 0 on goal states (goal-awareness), which implies admissi-
bility. Pommerening et al. [2017] extended this LP to general
conjunctions. For pairs of facts, the size of their LP encoding
is still polynomially bounded in the size of Π. For arbitrary
conjunctions, however, the LP representation may require an
exponential number of variables. In fact, Pommerening et
al. [2017] have shown that for conjunctions of size larger than
two, the construction of desired potential heuristics is com-
putationally hard. Here we explore this direction further. We
show that, for arbitrary C, the ΠC compilation can be used to
compute consistent and goal-aware potential heuristics. We
analyze the convergence properties of this approach.

4.1 Potential Heuristics Over Arbitrary C
We show that Pommerening et al.’s [2015] approach for sin-
gleton conjunctions, applied to ΠC , yields the desired w.

We assume that Π is in TNF. hPot
C,w is consistent if∑

c∈C,c⊆s w(c) ≤
∑
c∈C,c⊆sJaK w(c)+costa, or equivalently∑

c∈C,c⊆s,c 6⊆sJaK w(c) −
∑
c∈C,c 6⊆s,c⊆sJaK w(c) ≤ costa. If

all conjunctions are singletons, c = {p}, then because of
(TNF1) this inequality is equivalent to∑
{p}∈C:a∈Cons(p)

w(p)−
∑

{p}∈C:a∈Prod(p)

w(p) ≤ costa (2)

Moreover, by (TNF2) there is only a single goal state. So the
weights w ensure goal-awareness if∑

{p}∈C:p∈s∗
w(p) ≤ 0 (3)

These equations define an LP, that we denote Pot[Π], whose
variables represent the weights w. Any solution to Pot[Π]
yields an admissible potential heuristic.

The objective function in Pot[Π] can be freely chosen. Var-
ious possible objectives have been explored [Seipp et al.,
2015]. Here, we employ two of these: (O1) maximizing the
heuristic value of an individual state s (through maximizing
the weights of the conjunctions true in s); and (O2) maximiz-
ing the average heuristic value over all states (through maxi-
mizing the sum of all weights normalized by the frequency of
the conjunctions). (O1) yields a connection to state equation
heuristics. We use (O2) to encode the perfect heuristic as a
potential heuristic. (Weight maximization requires an upper
bound in the presence of dead-ends; we will discuss this as
part of convergence in Section 4.2.)

The LP-based weight computation above requires Π to be
in TNF. We use the standard transformation method [Pom-
merening and Helmert, 2015] to obtain a TNF version ΠCTNF
from ΠC . Pommerening and Helmert [2015] have shown that
this TNF transformation does not affect consistent and goal-
aware fact potential heuristics, i. e., a fact potential heuris-
tic is consistent and goal-aware for ΠC if and only if it is
for ΠCTNF. In other words, every w computed from Pot[ΠCTNF]
gives a consistent and goal-aware potential heuristic hPot

C,w for
ΠC . Lemma 1 leads to the desired result:

Theorem 4. Let Π be any task, and C be any set of con-
junctions. Let w be any solution to Pot[ΠCTNF]. Then hPot

C,w is
consistent and goal-aware in Π.

In other words, we can compute an admissible potential
heuristic for any conjunction set C via a detour to ΠCTNF.

Pommerening et al.’s [2017] hardness result is reflected in
the worst-case growth of ΠCTNF. But for cases where ΠCTNF
grows polynomially in |C|, Theorem 4 shows that a desired
potential heuristic can be computed in polynomial time. In
this sense, Theorem 4 identifies a sufficient criterion for the
efficient construction of potential heuristics.

It should be noted that not every admissible poten-
tial heuristic over conjunctions C can be constructed from
Pot[ΠCTNF]. This is the case because Equation (2) in Pot[ΠCTNF]
does no longer form a necessary condition for the consistency
in Π: Pot[ΠCTNF] enforces consistency over occurences aC
where C does not fully specify the action application context,
while this context is always completely defined when consid-
ering Π’s transitions. The TR contains a detailed example.

4.2 Convergence
Does there always exist C for which hPot

C,w obtained from
Pot[ΠCTNF] is perfect? The answer is “yes”, under objective
(O2) maximizing the average heuristic value. The presence
of dead-end states causes complications though.

Obviously, the value h∗(s) = ∞ for a dead-end s can-
not be produced as part of the solution to an LP. Instead, the
weights in the LP may diverge: Pot[Π] is not guaranteed to
have a solution optimal for (O2). To see this, consider that
no transition path starting from a dead-end ever reaches the
goal; so, for conjunctions c true only in dead-ends, the weight
can be made arbitrarily high while still satisfying consistency.
Intuitively, the LP encoding imposes constraints on solution
paths over conjunctions, and diverges where such a path does
not exist. For that reason, Seipp et al. [2015] introduce a
modified LP with the additional constraints w(c) ≤ U , where
U ∈ R is a parameter. We denote that LP by Pot[Π, U].

Intuitively, U is a cut-off value on the cost of solutions con-
sidered in the LP. Convergence is achieved below U :

Theorem 5. Let Π be any task in TNF, and U ∈ R+
0 . Then

there exists a set C of conjunctions s.t., with w being a solu-
tion to Pot[ΠCTNF, U] optimal for (O2), hPot

C,w(s) = h∗(s) for
all states s with h∗(s) ≤ U .

Proof (sketch). A set of conjunctions satisfying the claim is
again C := S , the set of all states in the task. Pot[ΠCTNF, U]
then boils down to an LP encoding of paths in the state space
of Π, with Equation 2 bounding the value of a state by its
successor states. Objective (O2) makes sure that, up to U , the
exact shortest path length is returned.

A simple trick now suffices to obtain h∗ globally. We
pessimistically interpret the cut-off U as a dead-end indica-
tor, defining hPot

C,w,U (s) := hPot
C,w(s) if hPot

C,w(s) < U and
hPot
C,w,U (s) := ∞ otherwise. We then need to choose a cut-

off that will never apply on solvable states, U > h∗(s)
for all s with h∗(s) < ∞. This is the case for U∗ :=(∏

v∈V |Dv| ·maxa∈A costa
)

+ 1.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4840

Corollary 2. Let Π be any task in TNF. Then there ex-
ists a set C of conjunctions s.t., with w being a solution to
Pot[ΠCTNF, U

∗] optimal for (O2), hPot
C,w,U∗ = h∗.

For the simpler purpose of detecting all dead-end states,
it is not necessary to use the exceedingly large constant U∗.
Following previous work on potential heuristics for dead-end
detection [Seipp et al., 2016b], we instead consider the task
Π0 identical to Π except that all actions are assigned cost
0. Clearly, h∗[Π0](s) = ∞ iff h∗(s) = ∞, i. e., h∗[Π0]
detects all dead-ends in Π. But all solvable states s have
h∗[Π0](s) = 0, so setting U∗ to any number > 0 results in
hPot
C,w,U∗ that converges to h∗[Π0] as per Corollary 2. We will

denote potential heuristics constructed this way as uPot
C,w.

4.3 Relation to the State Equation
Pommerening et al. [2015] have shown that Pot[Π] under ob-
jective (O1) for a state s is the dual of the state equation LP
for s. By the strong duality theorem for linear programs, the
two heuristics therefore have identical values on s.

Beyond individual states, the heuristics differ though: on
states other than s, the potential heuristic merely gives a lower
bound on hSEQ(s). In fact, there exist tasks and conjunction
sets where no potential heuristic hPot

C,w equals hSEQ[ΠC] on all
states. The TR specifies such an example.

5 Refining the State Equation
We have shown that LP heuristics converge to h∗ for suitable
conjunctions C. As an application of this property, for the
rest of the paper we consider proving unsolvability, through
nogood learning (dead-end detection) using LP heuristics.
This is motivated by the success of LP heuristics in the
Unsolvability-IPC [Seipp et al., 2016b]. Convergence is es-
sential as the heuristic must be able to represent arbitrary sets
of dead-end states in the limit.

The key step in nogood learning with a heuristic h is refine-
ment: given a dead-end state s not pruned by h so far, refine
h into h′ that prunes s. Whether this can be done, and how
to best do it in practice, depends crucially on which heuristic
h is used. Steinmetz and Hoffmann [2017] have shown how
to select new conjunctions for critical-path heuristics. Here
we introduce a new refinement method selecting conjunctions
suitable to refine the state equation.

To provide an overview, we next describe the forms of no-
good learning we use in our experiments. Then we introduce
our refinement method.

5.1 Nogood Learning
We start with C containing the singleton conjunctions. We
experiment with three different forms of nogood learning:
CISeq : Proves the task unsolvable on the initial state. We it-

eratively apply refinement, adding new conjunctions into
C, until hSEQ[ΠC](sI) =∞.

CSSeq : Forward-search nogood learning as per Steinmetz
and Hoffmann [2017], using hSEQ[ΠC]. A depth-
oriented search calls refinement when backtracking out
of a state s then known to be a (undetected) dead-end.
The refined hSEQ[ΠC] may generalize to dead-ends not
yet encountered, reducing the future search space.

CSPot : Similar to CSSeq, but using potential heuristics. We
maintain a collection of such heuristics. The refinement
steps work as before, finding a larger set C suitable for
hSEQ[ΠC]; but now we also add a new potential heuristic
uPot
C,w (optimal under (O1) for s considered in the refine-

ment) into the collection. To check whether a new state
is a dead-end, only the potential heuristics are evaluated,
which does not require any LP solving.

5.2 Refinement Method
We assume Π to be in TNF. Let C be any set of conjunctions,
and s any dead-end where hSEQ[ΠC](s) 6= ∞. We need to
extend C to C′ ⊇ C such that hSEQ[ΠC

′
](s) =∞. We do so by

iteratively finding a conjunction x 6∈ C whose SEQ constraint
is not satisfied by a current LP solution. We set C := C ∪
{x}. If hSEQ[ΠC](s) = ∞, we stop; else, we iterate. By
Corollary 1, the termination condition must hold eventually.

It remains to show how to choose x. Denote by Seq[ΠC]
the LP underlying hSEQ[ΠC](s). The refinement is based on
a concrete solution Count to Seq[ΠC]. Consider (1) the ΠC

actions selected by Count, i. e., {aC ∈ AC | CountaC >
0}. Additionally consider (2) two auxiliary actions as and
a∗, representing in ΠC the current state and the goal, i. e.,
preas = ∅, eff as = sC , prea∗ = sC∗ , and eff a∗ = ∅. We de-
note byACCount the actions of (1) and (2). Our key observation
is that we can find an action aC0

0 ∈ ACCount whose precondi-
tion is not supported by ACCount : (*) for all aC ∈ ACCount ,
regr(pre

a
C0
0
, aC) 6⊆ preaC . (Recall that the actions in ΠC

represent action occurrences in the original task, carrying the
context of application.)

We show (*) as follows. Consider the graph with nodes
ACCount and edges aC → aC0

0 for every aC0
0 and aC where

regr(pre
a
C0
0
, aC) ⊆ preaC . In this graph, every path from as

to a∗ would correspond to a plan for s. Since s is a dead-end,
such path cannot exist. Hence there exists at least one node
which is not connected to as. If (*) is not satisfied for any
aC0
0 , then every node must have an incoming edge. But then,

those actions in ACCount that are disconnected from as must
form at least one cycle, i. e., omitting the “C” superscripts
for readability, there must be a1, . . . , an ∈ ACCount \ {as}
s.t. regr(preai+1

, ai) ⊆ preai and regr(prea1 , an) ⊆ prean .
As Π is in TNF, every fact produced along a1, . . . , an is also
consumed, and vice versa. Thus we can obtain another fea-
sible solution Count′ to the LP such that ai 6∈ ACCount′ for at
least one i, by reducing the values Countai appropriately. Re-
peatedly applying this step will eventually remove all cycles,
leaving us with the desired action aC0

0 .
Let P now denote the precondition of aC0

0 , projected onto
the original variables V . Consider ΠC

′
for C′ = C ∪ {P},

and the πP -variable corresponding to P . Since Π is in TNF,
〈πP , 1〉 is consumed by aC0

0 . However, by (*) Count does
not include any action that produces 〈πP , 1〉. In other words,
Count violates the constraint corresponding to 〈πP , 1〉 in
Seq[ΠC

′
]. Hence P 6∈ C and we can set x := P .

We employ two optimizations. 1) we minimize P , starting
with x = P and greedily removing facts p from x so long as

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4841

0 500 1,000 1,500

0

20

40

60

CISeq (best seed)

CISeq (med seed)

CISeq (worst seed)

Seq

CISeq (seeds combined)

Figure 2: Coverage (in %) over time (in s) for different variable
orders in conjunction generation, see text.

the necessary properties are preserved. 2) we consider not a
single aC0

0 , but all actions with that profile, and add a conjunc-
tion x for each. This results in fewer refinement iterations.

6 Experiments
Our implementation is in Fast Downward (FD) [Helmert,
2006]. We use the UIPC’16 benchmarks, as well as unsolv-
able resource-constrained (RCP) benchmarks [Nakhost et al.,
2012; Steinmetz and Hoffmann, 2017]. All experiments were
run on machines equipped with Intel Xeon E5-2660 CPUs,
with runtime (memory) limits of 30 minutes (4 GB).

Similar to earlier works on the ΠC-compilation [Keyder et
al., 2014], we cope with the worst-case explosion by impos-
ing a size limit M on the ratio |AC |/|A|. Once ΠC reaches
the limit M , we disable the generation of new conjunctions.
We experimented with M ∈ {2, 4, 8, . . . , 1024,∞}, where
for M =∞ the size of ΠC is not limited.

Figure 2 sheds light on an implementation detail that turns
out to be important. Optimization 1) described in the previ-
ous section leaves open the order in which to remove facts p
from x. We make this choice by fixing a variable order a pri-
ori. That order has a large impact on performance. Figure 2
compares the results for CISeq and x =∞, for five randomly
generated orders, picking the per-instance best, median, and
worst variable order. The variance in coverage is large.

To counteract this brittleness, all our configurations in what
follows combine the five variable orders, maintaining for each
a separate conjunction set. Refinement works on all these
sets, interleaving the individual refinement steps and stopping
as soon as any of them succeeds. As can be seen in Figure 2
(“seeds combined”), this performs almost as well as the hy-
pothetical per-instance best configuration. Considering fewer
orders negatively affects coverage. Coverage remains stable
for up to 10 orders, but starts to drop off eventually due to the
additional overhead introduced with every order.

Table 1 shows our main coverage results, comparing our
techniques to baselines and the state of the art. Here, hC is
the forward-search nogood learning algorithm of Steinmetz
and Hoffmann [2017]; PDB is a component of Aidos [Seipp
et al., 2016b], the winner of UIPC’16, evaluated separately to
consider algorithms rather than systems.

Consider first the comparison of our algorithms to the base-
lines, Seq and Pot in Table 1, that use the same heuristics
but over the singleton conjunctions only, without any refine-
ment. On the UIPC benchmarks, Seq and Pot dominate in the

CSSeq CSPot Seq
Domain # Blind h1 hC PDB Seq Pot 128 256 ∞ 128 256 ∞ I CI

Unsolvability-IPC (UIPC) 2016 Benchmarks

BagBar 20 12 8 0 12 4 12 0 0 0 0 0 0 0 0
BagGri 25 4 3 2 3 14 8 2 2 2 2 2 2 14 2
BagTra 29 7 6 6 7 22 22 19 19 19 19 19 19 22 19
Bottle 25 10 21 9 19 25 25 25 25 25 25 25 25 25 25
CaveDi 25 7 7 8 7 8 8 7 7 2 4 3 2 1 5
Chess 23 5 5 2 5 23 23 23 23 23 23 23 23 23 23
Diagno 20 4 5 9 5 4 4 4 4 2 3 3 2 0 2
DocTra 20 5 7 5 12 6 5 9 9 7 9 9 7 0 7
NoMys 20 2 2 11 11 1 2 12 12 12 11 11 11 0 11
Rovers 20 7 7 12 12 6 7 10 8 8 10 10 10 0 4
TPP 30 17 16 19 24 11 17 17 17 17 17 16 16 2 16
PegSol 15 5 5 4 5 15 15 15 15 15 15 15 15 15 15
PegSol 24 24 24 14 24 24 24 20 20 4 16 14 4 0 4
SlidTil 20 10 10 10 10 10 10 10 10 10 10 10 10 0 0
Tetris 20 10 5 5 10 20 20 20 20 20 20 20 20 20 20∑

336 129 131 116 166 193 202 193 191 166 184 180 166 122 153

Unsolvable Resource-Constrained Planning (RCP) Benchmarks

NoMys 150 27 53 130 149 15 27 137 131 131 140 132 131 0 137
Rovers 150 3 7 142 93 1 3 117 118 117 120 121 121 0 110
TPP 25 6 5 13 20 0 5 9 9 9 8 8 8 0 9∑

325 36 65 285 262 16 35 263 258 257 268 261 260 0 256∑∑
661 165 196 401 428 209 237 456 449 423 452 441 426 122 409

Table 1: Coverage. Best results in bold. h1: search with h1 heuristic
(for dead-end detection). hC : nogood learning as per Steinmetz and
Hoffmann (see text). PDB: dead-end PDB of Aidos, as per Seipp
et al. (see text). Seq and Pot: search with state equation heuristic,
respectively potential heuristic, over singleton conjunctions. Seq, I:
hSEQ on initial state only, w/o learning; CI same but w/ learning.

overall, but are outperformed by our techniques in Document-
Transfer, NoMystery, and Rovers. On the RCP benchmarks,
our techniques are vastly better. These observations hold re-
gardless of our configuration, with the single exception of
CISeq in UIPC Rovers. We remark that the bad performance
of our methods in the BagGripper and BagTransport domains
is only due to the overhead of maintaining five different con-
junction sets (cf. above); when maintaining a single set C, we
get the same coverage here as Seq respectively Pot.

Considering hSEQ on the initial state only, without vs. with
learning (the rightmost two columns), shows that the learned
larger conjunctions yield a dramatic increase in unsolvability-
detection power, despite the quick-or-not-at-all performance
profile observed in Figure 2. Indeed, the number of conjunc-
tions needed to prove sI unsolvable here is typically small.
The maximal ratio |C|/

∑
v∈V |Dv| required is 1.66.

Comparing to the state of the art, UIPC NoMystery is the
only domain where the coverage of (the best of) our new
methods is strictly higher (by the smallest margin, +1) than
that of any competitor. The main advantage of our methods
is that they combine both, the strength of LP heuristics on the
UIPC benchmarks, and that of conjunction-learning on RCP
benchmarks: they are the only configurations with near-top
performance in both benchmark categories. The “

∑∑
” row

of Table 1 illustrates this (but should be taken with a grain of
salt given the different numbers of instances per domain).

Comparing our configurations against each other, forward-
search nogood learning consistently outperforms proving un-
solvability on the initial state. The large limits M = 256
and M = ∞ are almost consistently worse than M = 128.
Somewhat surprisingly, potential heuristics hardly ever im-
prove over the state equation. Figure 3 elucidates the latter.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4842

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

100 101 102 103 104 105 106
100

101

102

103

104

105

106

Figure 3: Per-state runtime (left) and number of visited states (right),
of CSSeq (x-axes) vs. CSPot (y-axes).

CSSeq has the edge in search space size, due to its higher
pruning power; while potential heuristics are faster. Yet the
former effect tends to be larger than the latter one.

7 Conclusion
LP heuristics yield powerful approximations in planning. We
contributed insights on their definition over conjunctions, per-
taining to the natural approach of using the ΠC compilation,
its relation to previous techniques, convergence, and nogood
learning via conjunction refinement.

Interesting avenues for future work are, e. g., conjunction
refinement for optimal planning during A∗ search, and con-
junction refinement for satisficing planning targeted at Seipp
et al.’s [2016a] descending and dead-end avoiding heuristics.

Acknowledgments
We thank the anonymous reviewers, whose comments helped
to improve the paper. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/5-1, as well as by the German Federal Ministry of Ed-
ucation and Research (BMBF) through funding for CISPA,
under grant no. 16KIS0656.

References
[Bäckström and Nebel, 1995] Christer Bäckström and Bern-

hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Bonet and van den Briel, 2014] Blai Bonet and Menkes
van den Briel. Flow-based heuristics for optimal planning:
Landmarks and merges. In Proc. ICAPS’14, pages 47–55,
2014.

[Bonet, 2013] Blai Bonet. An admissible heuristic for SAS+
planning obtained from the state equation. In Proc. IJ-
CAI’13, pages 2268–2274, 2013.

[Haslum, 2009] Patrik Haslum. hm(P) = h1(Pm): Alter-
native characterisations of the generalisation from hmax to
hm. In Proc. ICAPS’09, pages 354–357, 2009.

[Haslum, 2012] Patrik Haslum. Incremental lower bounds
for additive cost planning problems. In Proc. ICAPS’12,
pages 74–82, 2012.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for PDDL planning tasks. Artificial Intelli-
gence, 173:503–535, 2009.

[Keyder et al., 2014] Emil Keyder, Jörg Hoffmann, and Pa-
trik Haslum. Improving delete relaxation heuristics
through explicitly represented conjunctions. Journal of Ar-
tificial Intelligence Research, 50:487–533, 2014.

[Nakhost et al., 2012] Hootan Nakhost, Jörg Hoffmann, and
Martin Müller. Resource-constrained planning: A Monte
Carlo random walk approach. In Proc. ICAPS’12, pages
181–189, 2012.

[Pommerening and Helmert, 2015] Florian Pommerening
and Malte Helmert. A normal form for classical planning
tasks. In Proc. ICAPS’15, pages 188–192, 2015.

[Pommerening et al., 2014] Florian Pommerening, Gabriele
Röger, Malte Helmert, and Blai Bonet. LP-based heuris-
tics for cost-optimal planning. In Proc. ICAPS’14, pages
226–234, 2014.

[Pommerening et al., 2015] Florian Pommerening, Malte
Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proc.
AAAI’15, pages 3335–3341, 2015.

[Pommerening et al., 2017] Florian Pommerening, Malte
Helmert, and Blai Bonet. Higher-dimensional poten-
tial heuristics for optimal classical planning. In Proc.
AAAI’17, pages 3636–3643, 2017.

[Seipp et al., 2015] Jendrik Seipp, Florian Pommerening,
and Malte Helmert. New optimization functions for poten-
tial heuristics. In Proc. ICAPS’15, pages 193–201, 2015.

[Seipp et al., 2016a] Jendrik Seipp, Florian Pommerening,
Gabriele Röger, and Malte Helmert. Correlation complex-
ity of classical planning domains. In Proc. IJCAI’16, pages
3242–3250, 2016.

[Seipp et al., 2016b] Jendrik Seipp, Florian Pommerening,
Silvan Sievers, and Martin Wehrle. Fast Downward Ai-
dos. In UIPC 2016 planner abstracts, pages 28–38, 2016.

[Steinmetz and Hoffmann, 2017] Marcel Steinmetz and
Jörg Hoffmann. State space search nogood learning:
Online refinement of critical-path dead-end detectors in
planning. Artificial Intelligence, 245:1 – 37, 2017.

[Steinmetz and Hoffmann, 2018] Marcel Steinmetz and Jörg
Hoffmann. LP heuristics over conjunctions: Compi-
lation, convergence, nogood learning (technical report).
Technical report, Saarland University, 2018. Available
at http://fai.cs.uni-saarland.de/hoffmann/papers/ijcai18b-
tr.pdf.

[van den Briel et al., 2007a] Menkes van den Briel, J. Ben-
ton, Subbarao Kambhampati, and Thomas Vossen. An
LP-based heuristic for optimal planning. In Proc. CP’07,
pages 651–665, 2007.

[van den Briel et al., 2007b] Menkes van den Briel, Sub-
barao Kambhampati, and Thomas Vossen. Fluent merging:
A general technique to improve reachability heuristics and
factored planning. In Proc. HDIP’07, pages 20–24, 2007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4843

