
Faster Stackelberg Planning via Symbolic Search and Information Sharing

Álvaro Torralba,1 Patrick Speicher,2 Robert Künnemann,2 Marcel Steinmetz,3 Jörg Hoffmann 3

1 Aalborg University, Denmark
2 CISPA Helmholtz Center for Information Security, Germany
3 Saarland University, Saarland Informatics Campus, Germany

alto@cs.aau.dk, {patrick.speicher,robert.kuennemann}@cispa.saarland, {steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

Stackelberg planning is a recent framework where a leader
and a follower each choose a plan in the same planning task,
the leader’s objective being to maximize plan cost for the
follower. This formulation naturally captures security-related
(leader=defender, follower=attacker) as well as robustness-
related (leader=adversarial event, follower=agent) scenarios.
Solving Stackelberg planning tasks requires solving many re-
lated planning tasks at the follower level (in the worst case,
one for every possible leader plan). Here we introduce new
methods to tackle this source of complexity, through sharing
information across follower tasks. Our evaluation shows that
these methods can significantly reduce both the time needed
to solve follower tasks and the number of follower tasks that
need to be solved in the first place.

Introduction
Stackelberg planning (Speicher et al. 2018a) is a recent
framework inspired by Stackelberg security games (Tambe
2011; Shieh et al. 2014). It models a single exchange of ad-
versarial plan choice between two agents, leader and fol-
lower, acting in the same planning task. The leader’s ob-
jective is to maximize the follower’s plan cost. Solutions
form a Pareto front containing pairs of leader/follower plans.
This captures security-related scenarios like network secu-
rity, where the leader must make it as hard as possible for an
attacker to harm the system. It can also capture robustness-
related scenarios, by assessing the impact of an adversarial
event (constructed by the leader) on the cost of the follower’s
plan (the agent acting in the domain at hand). Stackelberg
planning has been used in large-scale studies to evaluate the
efficacy of new protocol proposals for the email infrastruc-
ture (Speicher et al. 2018b) and for the web (Tizio 2018)
where performance and flexibility are key features.

Previous work by Speicher et al. (2018a) introduced a
search algorithm in the space of leader actions, where each
node corresponds to solving a follower task. Thus, one may
need to solve exponentially many follower subtasks, each of
which is a cost-optimal classical planning task.

We introduce Symbolic Leader Search (SLS), a new al-
gorithm for solving Stackelberg planning tasks. SLS aims to
effectively reuse as much information as possible between

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the different subtasks. We achieve this (1) by recognizing
that most follower subtasks can be solved with bounded
cost suboptimal planning techniques, which are often more
efficient than optimal planning algorithms; and (2) by us-
ing a symbolic representation to share information across
searches. Instead of considering the subtasks in isolation,
SLS symbolically represents all possible follower subtasks
that the leader can reach with a given cost. Not only does
this avoid the explicit enumeration of all possible states in
the leader state space, which can potentially provide an ex-
ponential advantage in terms of memory and time, but it also
allows for sharing information, e.g., by reusing upper bound
functions for cost-bounded planning algorithms.

Besides this algorithmic contribution, we also introduce
an extension of Stackelberg planning, using soft goals and
net-benefit planning at the follower level. They generalize
the follower’s goal and naturally occur both in the security-
related and robustness-related scenarios. In the former, we
can now model attackers that wish to inflict maximal dam-
age (e.g., sum of users associated to compromised domains).
In the latter, we can now model agents that maximize the
achievable benefits subject to the damage inflicted by the ad-
versarial event. Solving such more general Stackelberg plan-
ning tasks is, in principle, straightforward: we can use the
well-known compilation from net-benefit to classical plan-
ning (Keyder and Geffner 2009).

Our empirical evaluation shows that SLS outperforms
previous approaches for Stackelberg planning. The improve-
ment is consistent, and is particularly pronounced in tasks
with large leader action spaces and in net-benefit Stackel-
berg planning where follower subtasks are inherently harder
to solve. We thus significantly extend the scope of Stackel-
berg planning tools.

Background
Classical Planning
A SAS+ classical planning task is a tuple (V,A, I,G) where
V is a set of variables of finite domain (Bäckström and Nebel
1995). A state is a value assignment to all variables in V ,
and a partial state p is an assignment to a subset of vari-
ables Vp ⊆ V . Given a (partial) state s, and a set of variables
V ⊆ Vs, s|V denotes the projection of s onto V . Given two
pairs of partial states s, t with disjoint variables, we define

their union s ∪ t as a partial state over Vs ∪ Vt that agrees
with both s and t. A partial state s satisfies another p (writ-
ten s |= p) if s[v] = p[v] for all v ∈ Vp ∪ Vs. I is the initial
state, and G is a partial state that represents the goal. A is a
set of actions, where each action a ∈ A has a precondition,
pre(a), and an effect eff (a), which are partial states. An ac-
tion a is applicable in a state s iff s |= pre(a). The resulting
successor of applying a in s is s[[a]] = s|V\Veff (a)

∪ eff (a).
A plan is a sequence of actions that go from I to any state

s s.t. s |= G. Moreover, each action has a cost c(a) ∈ R+
0 ,

and the cost of a plan is the summed up cost of all its actions.
A plan is optimal if it has a minimum cost.

Optimal planning is the problem of finding an optimal
plan for any given planning task. Cost-bounded planning is
the problem of, given a planning task and a cost bound B,
returning a plan that has cost lower or equal to B or, if no
such plan exists, returning “unsolvable”.

Symbolic search is a well-known approach for exhaustive
state space exploration in model-checking (McMillan 1993)
and cost-optimal planning (Edelkamp and Kissmann 2009;
Torralba et al. 2017). In symbolic search, Binary Decision
Diagrams (BDDs) (Bryant 1986) are used to compactly rep-
resent sets of states as functions that map variable assign-
ments to true or false, depending on whether such an assign-
ment belongs to that set or not. We use the term V -BDD to
denote a set of partial assignments over a specific subset of
variables V ⊆ V . BDDs offer a compact representation that
often has an exponential gain in memory efficiency over list-
ing all states in the set. Moreover, standard BDD operations
can be used to operate on sets of states, e.g., the union of two
sets of states corresponds to the disjunction of their BDDs
(S ∨S′), and their intersection corresponds to the respective
conjunction (S ∧ S′). The runtime of these operations de-
pends on the BDD size, but not on the number of states in
the set, translating the gain in memory to a gain in time.

Stackelberg Planning
A Stackelberg planning task is a tuple (V , AL, AF , I,
G). The set of actions is split into the leader actions AL
and the follower actions AF . The set of variables V can
thus be categorized into three subsets. Leader (VL) and fol-
lower (VF) variables are those that appear in the effect of a
leader/follower action. The subtask variables (VT ⊆ VL) are
those leader variables that appear in the goal or in the pre-
condition of a follower action. Note that these subsets may
overlap. We assume w.l.o.g. that VG ⊆ VF .

Each sequence of leader actions πL that is applicable on
I corresponds to an assignment to VT , which is I[[πL]]|VT .
Given an assignment X to VT , one can construct a planning
task ΠX = (VF , AX , IX ,G) that corresponds exactly to the
follower subtask. All such tasks are defined over the same set
of variables, VF , and contain the subset of follower actions
AX ⊆ AF such that preconditions over variables in VT \VF
are satisfied by X . The initial state IX is X|VF ∪ I|VF \VT .

A pair (πL, πF) is a Stackelberg plan if πL is a se-
quence of leader actions applicable on I, and πF is an
optimal plan for the follower subtask ΠI[[πL]]. A Stackel-
berg plan (πL1 , π

F
1) is dominated by another (πL2 , π

F
2) if

c(πL1) ≥ c(πL2) ∧ c(πF1) ≤ c(πF2). The domination is
strict if one of the inequalities is strict. The Stackelberg
planning problem is computing a Pareto front, i.e., a set
of non strictly-dominated Stackelberg plans which dominate
all other Stackelberg plans.

Let ΠS be a Stackelberg planning task, and PF a Pareto
front of ΠS . We define the set of cost entries of PF as
c(PF) = {(c(πL), c(πF)) | (πL, πF) ∈ PF}. Note that,
even though there are many possible Pareto fronts for a plan-
ning task, they all have the same set of cost entries. More-
over, it is sufficient to include a single plan (πL, πF) in
the Pareto front for each cost entry. Therefore, each task
has a unique Pareto front size defined as |PF (ΠS)| =
|c(|PF (ΠS)|)|.

Stackelberg tasks are solved by performing a search in
the space of leader actions, and solving the corresponding
follower subtask at every node. Previous work by Speicher
et al. (2018a) proposed to use iterative-deepening search
(IDS) on the leader state space. This allows for a simple
but important optimization, caching the plan of the parent
and testing whether the same plan is a solution for any suc-
cessor. This avoids many unnecessary calls to the follower
subsolver, greatly speeding the search.

Another important enhancement is upper-bound pruning.
Given a global upper bound on the follower cost, we can
prune any leader state that has leader cost greater than any
other state with a follower cost equal to the upper bound.
This upper bound can be determined whenever VL ∩ VF =
∅.1 In that case, all follower subtasks have the same ini-
tial state and, therefore, a follower task, Π+, can be defined
where all actions that can be disabled by the leader have been
removed. As removing actions can only increase a task’s so-
lution cost, the follower cost of Π+ is an upper bound on the
follower cost of any other follower subtask.

Symbolic Leader Search
As in previous work by Speicher et al. (2018a), our main
algorithm, symbolic leader search, SLS performs an explo-
ration on the space of actions for the leader, using classical
planning algorithms to solve the follower subtasks that re-
sult from leader plans. Thus, we can divide the overall algo-
rithm into two parts: the search on the leader space and the
follower subtasks. To solve the follower subtasks, previous
work considered an optimal planner using explicitA∗ search
with the LM-cut heuristic (Helmert and Domshlak 2009).
We also consider symbolic bidirectional blind search (Tor-
ralba et al. 2017), which, as we will discuss in the following
subsections, has a synergy with SLS due to employing back-
ward search and a symbolic representation.

SLS focuses on how to reuse information among sub-
tasks. Outside of the subsolver, SLS (1) exploits the follower
cost of previous follower subtasks that have been optimally
solved as a bound for subsequent calls to the follower solver;

1This is a natural property whenever the leader has higher-level
actuators than the follower: e.g. changing a road network versus
moving in it; changing a network configuration versus trying to
break into it. In these cases, the effect of leader actions (e.g., block
a road, update a server) cannot be undone by the follower.

Algorithm 1: Symbolic Leader Search (SLS)
Input: Stackelberg Task ΠS = (V , AL, AF , I, G)
Output: Pareto front

1 cL ← 0, cF ← −1 ;
2 F+ ← GlobalUpperBound(ΠS) ;
3 Solved ← ∅;
4 ParetoFront ← ∅;
5 while cF < F+ ∧ cL <∞ do
6 SL ← UniformCostSearchLayer(cL) ;
7 ST ← SL|VT ∧ ¬Solved ;
8 while ST 6= ∅ do
9 ΠF ← ChooseSubtask(ST) ;

10 plan, lb, ub ← Planner(ΠF , cF , lb, ub) ;
11 if plan not found then
12 cF ←∞ ;
13 ST ← ∅ ;
14 else
15 cF ← max(cF , cost(plan)) ;
16 sol , ub ← RegressPlan(plan, ub) ;
17 ST ← ST ∧ ¬sol ;
18 Solved ← Solved ∨ sol ;
19 AddIfNotDominated(ParetoFront , cL, cF) ;
20 cL ← nextL;
21 return ParetoFront ;

and (2) keeps track of the set of follower subtasks that are
solved by some previously found plan. Inside the subsolver,
three sources of information are exploited: a lower bound
cF on the follower cost on other subtasks with the same or
lower leader cost, and two functions lb and ub. These func-
tions allow for reusing information across follower subtasks
and are discussed in detail in the next subsection.

SLS (see Algorithm 1) enumerates the leader search space
layer by layer, using symbolic uniform-cost search on the
space of leader actions over the set of leader variables. After
exhausting a layer, the uniform cost search returns a set of
leader states SL that is reachable with leader cost cL. These
states are represented as a VL-BDD, avoiding their explicit
enumeration, so that the algorithm can scale in tasks with
large leader state spaces. Exploring the leader space layer
by layer allows us to keep track of several global variables,
namely cL, cF , the current Pareto front, and Solved . cL is
the current leader cost. As all layers of leader cost up to cL
have already been fully explored, the Pareto front up to that
point has already been computed and can be reported up
front, providing the user with partial results before the en-
tire search is finished. Moreover, we also keep track of the
current follower bound cF , which is the highest optimal so-
lution cost for any solved subtask with leader cost cL or less.
All subtasks with an optimal follower cost lower or equal to
cF do not contribute to the final Pareto front, so optimal so-
lutions are not needed for them. Finally, we keep track of a
set of solved subtasks, Solved , which are known to have an
optimal cost lower or equal than the current cF bound.

In each iteration, the first step is to obtain the set of can-
didate subtasks that could possibly add a new entry in the
Pareto front, ST , represented as a VT -BDD. This is done

with standard BDD operations (see line 7), projecting SL
onto those leader variables that are relevant for the follower
(VT), and subtracting all previously solved subtasks.

While there are follower subtasks in ST that remain to
be solved, one of them is chosen and solved by the follower
solver. If the follower task is unsolvable, then we have found
the last entry of the Pareto front (with F =∞) and the algo-
rithm ends. Otherwise, we update the value of cF . The func-
tion RegressPlan returns the set of follower subtasks for
which the same plan can be applied, as detailed in the next
section. Different strategies could be applied, as long as it
is guaranteed that the current subtask belongs to this set, so
that no subtask is solved more than once. Once again, while
there may be exponentially many such subtasks, we take ad-
vantage of a compact BDD representation to keep this com-
putation tractable. All those subtasks are removed from ST

with a single BDD operation (line 17), possibly avoiding the
enumeration of exponentially many leader states.

One important detail when using BDDs is the variable or-
dering, since the size of the BDD (and therefore the mem-
ory and running time of the algorithm) can be heavily af-
fected by exponential factors under different variable order-
ings (Bryant 1986; Kissmann and Hoffmann 2014). We split
the variables into three partitions ordered from top to bot-
tom: (i) leader-only variables VL \ VF , (ii) common vari-
ables VL ∪ VF , and (iii) follower-only variables VF \ VL.
The intuition is that this simplifies the operations that project
out these sets of variables (e.g., in line 7 of Algorithm 1).
The order inside each partition is decided independently by
a standard algorithm used to optimize BDD variable order-
ings in planning (Kissmann and Edelkamp 2011), only con-
sidering leader variables for partition (i), and only consider-
ing follower actions for partitions (ii) and (iii). This is im-
portant when the follower solver employs symbolic bidirec-
tional search, as taking into account leader variables when
optimizing the order of follower variables may be harmful
for the performance of the follower subsolver.

Cost-Bounded Follower Solvers
A core idea of our approach is that it is not necessary to com-
pute the optimal solution for every follower subtask to obtain
the optimal Pareto front, as done previously. Instead, it suf-
fices to compute the optimal solution for those subtasks that
belong to the optimal Pareto front (i.e., at most one for each
leader cost). For all other follower subtasks, it is enough to
find any solution of lower or equal cost than any entry in the
Pareto front with lower or equal leader cost. For this, one
can use specialized bounded cost search algorithms (Thayer
et al. 2012; Haslum 2013; Stern et al. 2014; Dobson and
Haslum 2013) using the current cF -bound. In practice, this
is often much more efficient, even when the bound is the op-
timal follower cost (and therefore an optimal solution must
be found anyway), since we can avoid proving optimality.

More precisely, our follower subtask solvers receive as in-
put a classical planning task Π, and a cost bound B. The
corresponding solution is a plan of cost B or less if one
exists. Otherwise, it must return an optimal plan if one ex-
ists or “unsolvable” otherwise. Note that this is somewhere
between cost-bounded and optimal planning. A straightfor-

LM- cut

 Symbolic bi-
 directional search

FF

plan

ub

lb

compute

ex
tr

ac
t

parameter to follower solver

parameter to follower solver

(upper bound pruning)

Figure 1: Computation and use of lower and upper bounds.

ward approach is to use a cost-bounded planner and run an
optimal planner in case it fails to find a solution.

To transform any search-based follower solver into a cost-
bounded version, we consider two functions that map states
of the follower task to numerical values: lb and ub:

• lb is an admissible estimate, i.e., it provides a lower bound
on the goal distance from every state.

• ub is an upper bound on solution cost such that for all
non-goal states s, ub(s) ≥ mina∈AF c(a) + ub(s[[a]]).
This property ensures that a plan can be reconstructed in
polynomial time in the size of the task and the plan length
if there are no 0-cost actions.2

We assume that lb and ub are represented symbolically, as
a function from upper bounds to VF -BDDs. That is, for each
possible return value, we keep a BDD that represents the set
of follower states with this value. This is a common way to
represent heuristics in symbolic search planning (Kissmann
and Edelkamp 2011). Figure 1 summarizes how these func-
tions are obtained, as detailed in the next sections, and used.

We modify all search algorithms to use ub as follows.
During the search, any time a state s is generated, we check
whether g(s) + ub(s) ≤ F , where g(s) is the cost of the
path from I to s. If so, we stop the search and return a plan
of cost g(s) + ub(s) passing through s. As ub is represented
symbolically, this is also possible in symbolic search.

To aggressively look for a solution below the cost bound
B, we use a greedy best-first search with the FF heuris-
tic (Hoffmann and Nebel 2001) and a time limit of 1s, prun-
ing any node whose g-value plus the lower bound lb is
greater than B. Due to the time limit and the inadmissible
heuristic, this is an incomplete configuration, so if it finishes
without finding a solution within the bound, we run one of
the optimal solvers on the same subtask.

Even though using lb is straightforward for A∗-based
solvers by taking the minimum among the heuristic and the
value of lb, we do not use it here for practical reasons: ex-
tracting lb requires using the symbolic bidirectional search
solver and none of our configurations use it with LM-cut. We
do not use lb to bolster the symbolic search solver, as it per-
forms blind search without using heuristics, and experimen-
tal analysis show that using heuristics is not always helpful
in such setting (Speck, Geißer, and Mattmüller 2020).

2In tasks with 0-cost actions, ub also needs to account for the
number of 0-cost actions but we omit such details for simplicity.

Transferring Bounds Across Subtasks
The similarity between follower subtasks can be directly ex-
ploited by sharing lower and upper bounds on solution cost
among them. As they share a common set variables and
a common goal, we can define dominance across follower
subtasks in the following way:

Definition 1. Let Π1 and Π2 be two planning tasks with a
common set of variables. We say that Π1 dominates Π2 if
h∗1(s) ≤ h∗2(s) for all states s.

A sufficient criterion to identify that a task dominates an-
other is to compare the set of actions.

Proposition 1. Let Π1 = 〈VF , A1, I1, G〉 and Π2 =
〈VF , A2, I2, G〉 be two tasks with a common set of variables
and goal, s.t. A2 ⊆ A1. Then, Π1 dominates Π2.

Whenever dominance is established, we can use it to
transfer bounds.

Proposition 2. Let Π1 and Π2 be two tasks such that Π1

dominates Π2. Then any lower bound function for Π1 is a
lower bound for Π2, and any upper bound function for Π2

is an upper bound for Π1.

It is well known that symbolic backward search provides
the exact goal distance on all states around the goal. This
has been used in the past in order to compute admissible
heuristics (Torralba, López, and Borrajo 2018). Therefore,
whenever symbolic bidirectional search is used as a solver,
we use the perimeter created by the backward search as a
lower and upper bound that can be transferred to other tasks.

This is mainly useful to obtain lower bound functions for
the FF solver, as follower subtasks are explored by increas-
ing leader cost and, typically, leader actions tend to disable
actions for the follower and not to enable them (since the
objective of the leader is to increase follower cost). If that is
the case, the initial task that is optimally solved at the begin-
ning of the algorithm dominates all other tasks and therefore
any symbolic backward search performed on it can be used
as a lower bound function on all subsequent subtasks.

Moreover, we can also transfer any backward search on
Π+ as an upper bound function to all other subtasks. To
boost this effect, whenever the upper-bound pruning opti-
mization is enabled, we force symbolic bidirectional search
to choose the backward direction for up to 30 seconds.

Plan Reuse Strategies
Inspired by a technique presented by Kolobov, Mausam, and
Weld (2012) for probabilistic planning, we use the well-
known notion of regression to generalize from individual
follower plans. Generalization in our case pertains to two
parts: (1) allowing for early termination of subsequent calls
to the follower subsolver, and (2) removing entire follower
subtasks from consideration.

Algorithm 2 depicts the function RegressPlan. It is
called whenever a follower subtask has been solved in the
leader search and a follower plan 〈a1, . . . , an〉 have been
found. (If the follower subtask was unsolvable, the leader
search terminates anyway.) RegressPlan then identifies
a condition Ci at every step 1 ≤ i ≤ n along the found plan

Algorithm 2: RegressPlan
Input: Stackelberg Task (V , AL, AF , I, G)
Input: Follower plan: 〈a1, . . . , an〉
Input: Previous upper bound function: ub
Output: Set of solved states and updated ub function

1 g ← 0 ;
2 Cn+1 ← G ;
3 ub[g]← ub[g] ∨ BDD(Cn+1) ;
4 for i ∈ [n...1] do
5 Ci ← regressVF∪VT (Ci+1, ai) ;
6 g ← g + c(a) ;
7 ub[g]← ub[g] ∨ BDD(Ci) ;
8 return BDD(C1|VT), ub ;

such that for every state s, s |= Ci implies that 〈ai, . . . , an〉
is a follower plan for s. The conditions are computed by
traversing the plan back to front, and computing in each step
the regression of the respective action with the previously
computed condition. In the regression, we must take into
account all relevant variables VF ∪ VT to correctly com-
pute these conditions. VF alone identifies states within all
follower tasks, while VT provides the context, i.e., it con-
strains the follower subtasks to those in which the actions in
the plan have not been disabled by the leader.

For the purpose of (1), the extracted conditions feed di-
rectly into the follower-cost upper bound ub. For every
state that satisfies Ci, we have now found a plan with cost
c(〈ai, . . . , an〉). The ub function is updated with appropri-
ate BDD operations (lines 3 and 7). When a new follower
subtask sT ∈ ST is chosen to be solved, ub is transformed
into an upper bound function for the corresponding follower
subtask by computing (ub[g] ∧ BDD(sT |VT \VF))|VF for
each follower cost g. This restricts the upper bounds to those
computed plans whose conditions projected onto the leader
preconditions are still satisfied. In a final step, the resulting
BDDs are projected onto VF to obtain the VF -BDD that
represents states of the follower subtask.

Regarding (2), consider the condition C1 computed for
the entire plan 〈a1, . . . , an〉. Since all variables of VF \ VT
in C1 must necessarily be assigned to their respective values
in I,C1 projected onto VT hence identifies all subtasks with
follower plan 〈a1, . . . , an〉. At this point, we know, however,
that any new entry in the Pareto front must have an optimal
follower plan cost higher than the cost of this plan. Hence,
all subtasks identified by C1|VT can safely be pruned. Note
that C1|VT always represents the subtask that was solved by
the last call to the follower sub-solver. This property is re-
quired (and sufficient by itself) to guarantee the termination
of the overall leader search.

Net-Benefit Stackelberg Planning
Previous work on Stackelberg planning assumed that all fol-
lower goals must be achieved. However, for many applica-
tions, this is too restrictive. Consider, for example, the ro-
bustness of a road network in a logistics-like scenario. The
follower’s goal is to deliver packages from their respective

pick-up location to different target locations. As soon as the
leader blocks any pick-up or delivery location, the follower
task becomes unsolvable. Consequently, all configurations
where a package cannot be delivered have the same util-
ity, regardless of how many packages still can. This limits
the scope of the robustness analysis. It is more interesting to
identify how many packages can still be delivered given the
damage inflicted by the leader.

Similar in the pentesting scenario. Here, the follower tries
to compromise a set of assets, i.e., computers holding sensi-
tive information. Prior work by Speicher et al. (2018a) con-
sidered the goal of accessing all assets. In that case, once
one of the assets has been protected, the follower cost is in-
finite, even if other assets can be compromised. Vice versa,
if the attacker’s goal is to access any assets, then a defense
measure that protects a single asset is regarded equally good
as one that protects many more. In practice, assets hold dif-
ferent kinds of information that are valuated during risk as-
sessment (Tsiakis and Stephanides 2005). Therefore, it is
desirable to quantify the leaked information by associat-
ing a utility to each piece of information. This is used in
various DAG-based modelling approaches (Kordy, Piètre-
Cambacédès, and Schweitzer 2014), which are typically
used on the local network level, or when quantifying the
potential impact of compromised infrastructure in the inter-
net, e.g., name servers (Ramasubramanian and Sirer 2005)
or content delivery networks (Simeonovski et al. 2017).

Net-benefit Stackelberg planning allows the specification
of soft goals, each being a partial state goal with an asso-
ciated utility. The goal of the follower is to find a plan that
maximizes utility minus cost. This is a natural way to model
problems where the follower has more than a single goal.

Net-benefit Stackelberg planning tasks can be handled by
the same algorithms as Stackelberg planning. We simply
compile the utilities of soft goals into action cost, as done in
classical planning (Keyder and Geffner 2009). Namely, for
each soft goal we introduce an auxiliary action that achieves
this fact3 with a cost equal to the utility. These auxiliary ac-
tions remove a flag that is a precondition for all ordinary
actions, so that once an auxiliary action achieves a soft goal,
no ordinary actions are applicable.

Evaluation
We implemented our new SLS algorithm on top of the
Stackelberg framework by Speicher et al. (2018a), built upon
the Fast Downward planning system (Helmert 2006). We ran
our experiments with the Downward Lab toolkit (Seipp et al.
2017) on an Intel Xeon CPU E5-2650 v3, 2.30 GHz. For
each task, we set a 30 minute time limit and a 4 GB memory
limit, ignoring the translate and preprocessing phase which
is equal for all configurations. Our source code, benchmarks,
and results are publicly available (Torralba et al. 2021).

Benchmark Set
We evaluate our algorithms on three benchmark sets:
OLD, NEW, and NET. OLD is the one used by Speicher

3We assume that soft goals are single facts. Otherwise an auxil-
iary fact representing the soft goal needs to be introduced as well.

|PF (ΠS)| LMcut Symbolic Bidirectional
IDS SLS IDS SLS

avg max Π+ — +ub +Π+ + FF Π+ — +ub +Π+ + FF

OLD

Logistics (416) 1.85 3 26 26 26 26 26 18 18 18 18 18
Mystery (218) 1.59 3 168 172 172 172 172 137 145 150 150 151

Pentesting (213) 1.26 2 201 149 149 168 167 150 149 149 168 167
Rovers (474) 1.86 3 30 30 30 30 30 50 70 71 71 71

Sokoban (224) 1.92 2 218 218 218 218 218 191 196 196 196 196
Tpp (132) 2.00 2 4 4 4 4 4 8 9 9 9 9

Visitall (310) 2.32 7 34 31 34 35 34 32 36 38 41 41∑
(1987) 681 630 633 653 651 586 623 631 653 653

NEW

Logistics (140) 2.59 6 65 72 90 89 88 27 30 30 31 31
Nomystery (128) 2.60 7 82 86 84 84 86 73 106 107 107 107
Pentesting (234) 1.71 4 234 234 234 232 234 179 230 233 232 233

Rovers (112) 1.84 3 44 44 44 44 44 77 95 94 94 94
Tpp (130) 2.15 7 70 68 69 70 70 98 114 114 118 118

Transport (140) 4.24 17 40 62 68 65 66 75 100 102 100 99
Visitall (134) 2.95 7 96 97 109 109 110 72 101 104 104 104∑

(1018) 631 663 698 693 698 601 776 784 786 786

NET

Logistics (140) 3.67 16 56 62 78 78 86 19 26 28 29 29
Nomystery (128) 3.29 13 61 62 66 66 65 68 86 87 97 95
Pentesting (234) 3.51 13 180 182 189 214 217 151 179 181 189 188

Rovers (112) 3.51 9 37 40 40 43 43 54 86 87 92 92
Tpp (130) 2.35 13 61 54 56 55 55 96 101 103 116 116

Transport (140) 5.45 34 38 47 52 58 58 66 76 82 89 90
Visitall (134) 4.06 13 57 58 64 68 69 53 73 75 83 79∑

(1018) 490 505 545 582 593 507 627 643 695 689

Table 1: Maximum and average size of the Pareto front |PF (ΠS)| on solved instances and coverage using LMcut and symbolic
bidirectional search subsolvers. We enable SLS’s features one by one: reusing upper bounds (ub), upper bound pruning (Π+)
and cost-bounded search with the FF heuristic (FF). We highlight the best configurations for each subsolver.

et al. (2018a). We include it to have a direct comparison with
the same instances. It contains instances of classical plan-
ning IPC domains, but extended with n leader actions that
disable preconditions of some follower actions. For each in-
stance, we chose the versions (n = 2, 4, 8, . . . , 512) out of
19 versions Speicher et al. considered. Upper bound pruning
is applicable on all instances. All of them (with the excep-
tion of the Pentesting domain, cf.) involve the transportation
of some objects to some locations. But the number of loca-
tions is small compared to the number of objects or goals,
and thus succinct leader plans are often sufficient to render
the follower’s goal unsolvable. The left-hand side of Table 1
shows the maximum and average size of the Pareto front for
each instance. Most solved instances in the OLD set have
very small Pareto front. Note that a Pareto front size of 1
means that the only Pareto-optimal choice for the leader is
doing nothing. A size of 2 indicates that it has only one other
option, which is typically to make some follower goal(s) un-
reachable with few actions.

NEW extends the previous benchmark set with instances
better suited for the evaluation of Stackelberg planning al-
gorithms. We base our new instance set on the same do-
mains, but increase the number of locations relative to the
number of objects and goals. To do this, we generated in-
stances of those domains with a size chosen s.t. the baseline

planner can solve the instance in ≈10-60 seconds. Then, we
scaled the number of locations. This provides the follower
with more paths to the goal, and the leader with more op-
tions to increase the follower’s cost, leading to larger Pareto
fronts. We also replaced Mystery by the more modern No-
mystery domain, and Sokoban (which does not admit a high
number of locations without making the task significantly
easier) with Transport. Compared to other domains, Trans-
port features a more realistic road map, where locations are
assigned coordinates in a plane and the action cost to travel
between locations is their straight-line distance. This leads
to larger Pareto fronts than any other domain.

NET is a set of net-benefit instances, discussed below.

Evaluation of SLS
Table 1 shows overall coverage. Of course, the choice of the
underlying classical planner depends on the domain, e.g.,
LM-cut works best on Logistics and Sokoban, whereas sym-
bolic bidirectional search is superior on Rovers, Transport
and TPP. Our new algorithm, SLS, clearly outperforms the
baseline, IDS (Speicher et al. 2018a), with both solvers. The
only exception is the Pentesting domain where the symbolic
representation suffers due to the huge number of variables.
The time spent at the leader search level is a low percent-
age of the total time, indicating that the main bottleneck is

10−1 100 101 102 103

10−1

100

101

102

103

u
n
s.

uns.

Time IDS (s)

T
im

e
S

L
S

-u
b

(s
)

100 101 102 103 104

100

101

102

103

104

u
n
s.

uns.

Optimal sub-solver calls IDS

O
p

ti
m

a
l

su
b

-s
o
lv

er
ca

ll
s

S
L

S
-u

b

|PF (ΠS)|
1
2
3
4+

Figure 2: Total time and optimal follower searches for IDS
and SLS-ub with symbolic bidirectional search.

the time spent by the follower subsolvers. This means that
the advantage of SLS mainly comes from two factors: (1)
the number of calls to the follower subsolver, and (2) the
speedup provided by sharing the bound functions.

Our ablation analysis, enabling an optimization at a time,
provides insights on what the main reasons for the advan-
tage of SLS are. The main difference between IDS and the
basic version of SLS is that the latter explores the leader
space with symbolic search layer by layer, reusing all previ-
ously found plans, instead of only the parent’s plan. Hence
the performance difference between both is mainly due to
the number of calls to the subsolver. Moreover, using the ub
function is almost always beneficial, speeding up each call
to the follower subsolver by allowing an early termination.

Figure 2 shows a comparison of the baseline IDS, and
SLS-ub in terms of runtime and number of subsolver calls.
The plot displays a clear trend regarding the planner perfor-
mance with respect to the Pareto front size. Whenever, the
Pareto front size has only 1 or 2 entries, few follower sub-
searches are needed by both algorithms. In those tasks, the
overall running time is only determined by how efficient the
follower subsolver is and there is little room of improvement
for reducing the number of calls to the subsolver or reusing
information among different calls. Tasks with a Pareto front
of 3 or more, however, require a much higher number of sub-
solver searches. By better reusing information among them,
SLS-ub significantly reduces the number of searches, and
the total time often by more than an order of magnitude.

Figure 3 shows in detail the effect of enabling upper-
bound pruning (Π+) and cost-bounded FF search. Both have
up to 30s of pre-processing in the form of symbolic back-
ward search to obtain upper (ub) and lower (lb) bounds.
However, as the results of Table 1 indicate, this often pays
off in terms of coverage and it is also slightly beneficial in
runtime on instances where SLS-ub uses more than 100s.

Evaluation of Net-benefit Planning
To analyze the gap in difficulty between standard and net-
benefit Stackelberg planning, we introduce the NET instance
set. The instances are the same as in NEW, but consider each
goal fact to be an individual soft goal with a utility of 10000.
This is significantly higher than the cost of any leader plan
in these domains, so that the follower maximizes the num-

10−1 100 101 102 103

10−1

100

101

102

103

u
n
s.

uns.

Time SLS-ub (s)

T
im

e
S
L

S
-u

b
-Π

+
-F

F
(s

)

100 101 102

101

102

u
n
s.

uns.

Optimal sub-solver calls SLS-ub

O
p
ti

m
al

su
b
-s

ol
ve

r
ca

ll
s

S
L

S
-u

b
-Π

+
-F

F

|PF (ΠS)|
1
2
3
4+

Figure 3: Total time and optimal follower searches of SLS-
ub and SLS-ub-Π+-FF with symbolic bidirectional search.

10−1 100 101 102 103
10−1

100

101

102

103

u
n
s.

uns.

Time New (s)
T
im

e
N
e
t
(s
)

100 101 102

100

101

102

u
n
s.

uns.

Optimal sub-solver calls New

O
p
ti
m
al

su
b
-s
ol
ve
r
ca
ll
s
N
e
t

Logistics
Nomystery
Pentesting
Rovers
Tpp
Transport
Visitall

Figure 4: Comparison of NEW and NET instances when us-
ing SLS-ub with symbolic bidirectional search.

ber of achieved goals, while reducing its cost. Rather than
modifying the PDDL encoding, we implemented the soft-
goal compilation as a final step in Fast Downward’s transla-
tor (Helmert 2009). Therefore, NET and NEW instances use
the same variable representation so this constitutes a very
direct evaluation of the impact on having soft goals.

Figure 4 compares SLS-ub on both instance sets, and
other configurations have very similar results in this regard.
The results show that net-benefit instances are often much
harder, though the impact depends on the domain. Higher
impact can be observed in domains like Rovers or Pen-
testing, where the average Pareto front size increased the
most (see Table 1). Many NEW instances of these domains
have tiny Pareto fronts and require very few follower sub-
searches. However, this is no longer true in their net-benefit
counterparts. Coverage results show that SLS is particularly
good on this set beating IDS even on the Pentesting domain,
due to the higher proportion of hard tasks where many fol-
lower subtasks must be solved.

Conclusion

We introduced SLS, an algorithm for solving Stackel-
berg planning tasks. It exploits symbolic leader search and
cost-bounded follower search to share information between
subtasks. SLS thus consistently outperforms previous ap-
proaches, in particular when the leader action space is large
or when we consider soft goals.

Acknowledgments
Álvaro Torralba was employed by Saarland University and
the CISPA Helmholtz Center for Information Security dur-
ing most of the development of this paper. This work was
partially supported by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.

Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers
35(8): 677–691.

Dobson, S.; and Haslum, P. 2013. Heuristics for Bounded-
Cost Search. In Workshop on Heuristic Search and Domain
Independent Planning (HSDIP’17).

Edelkamp, S.; and Kissmann, P. 2009. Optimal Symbolic
Planning with Action Costs and Preferences. In Boutilier,
C., ed., Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI’09), 1690–1695.
Pasadena, California, USA: Morgan Kaufmann.

Haslum, P. 2013. Heuristics for Bounded-Cost Search. In
Borrajo, D.; Fratini, S.; Kambhampati, S.; and Oddi, A.,
eds., Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS’13). Rome,
Italy: AAAI Press.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence 173: 503–
535.

Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.

Keyder, E.; and Geffner, H. 2009. Soft Goals Can Be Com-
piled Away. Journal of Artificial Intelligence Research 36:
547–556.

Kissmann, P.; and Edelkamp, S. 2011. Improving Cost-
Optimal Domain-Independent Symbolic Planning. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the 25th Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI’11), 992–997. San Francisco, CA, USA:
AAAI Press.

Kissmann, P.; and Hoffmann, J. 2014. BDD Ordering
Heuristics for Classical Planning. Journal of Artificial In-
telligence Research 51: 779–804.

Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
Hidden Structure in Factored MDPs. Artificial Intelligence
189: 19–47.

Kordy, B.; Piètre-Cambacédès, L.; and Schweitzer, P. 2014.
DAG-based attack and defense modeling: Don’t miss the
forest for the attack trees. Computer science review 13: 1–
38.

McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.

Ramasubramanian, V.; and Sirer, E. G. 2005. Perils of tran-
sitive trust in the domain name system. In Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement,
35–35.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.

Shieh, E. A.; Jiang, A. X.; Yadav, A.; Varakantham, P.; and
Tambe, M. 2014. Unleashing Dec-MDPs in Security Games:
Enabling Effective Defender Teamwork. In Schaub, T., ed.,
Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI’14), 819–824. Prague, Czech Republic:
IOS Press.

Simeonovski, M.; Pellegrino, G.; Rossow, C.; and Backes,
M. 2017. Who controls the internet? analyzing global threats
using property graph traversals. In Proceedings of the 26th
International Conference on World Wide Web, 647–656.

Speck, D.; Geißer, F.; and Mattmüller, R. 2020. When Per-
fect Is Not Good Enough: On the Search Behaviour of Sym-
bolic Heuristic Search. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’20), 263–271. AAAI Press.

Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.;
and Künnemann, R. 2018a. Stackelberg Planning: To-
wards Effective Leader-Follower State Space Search. In
McIlraith, S.; and Weinberger, K., eds., Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI’18),
6286–6293. AAAI Press.

Speicher, P.; Steinmetz, M.; Künnemann, R.; Simeonovski,
M.; Pellegrino, G.; Hoffmann, J.; and Backes, M. 2018b.
Formally Reasoning about the Cost and Efficacy of Secur-
ing the Email Infrastructure. In Proceedings of the 2018
IEEE European Symposium on Security and Privacy (Eu-
roS&P’18), 77–91.

Stern, R.; Felner, A.; van den Berg, J.; Puzis, R.; Shah,
R.; and Goldberg, K. 2014. Potential-based bounded-cost
search and Anytime Non-Parametric A*. Artificial Intelli-
gence 214: 1–25. ISSN 0004-3702.

Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.

Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster Bounded-Cost Search Using Inadmissible Estimates.
In Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams,
B., eds., Proceedings of the 22nd International Conference

on Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Tizio, G. D. 2018. Pareto-Optimal Defensive Strategies
Against JavaScript Injections. Master’s thesis, University
of Trento, Italy.

Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242: 52–79.

Torralba, Á.; López, C. L.; and Borrajo, D. 2018. Symbolic
perimeter abstraction heuristics for cost-optimal planning.
Artificial Intelligence 259: 1–31.

Torralba, Á.; Speicher, P.; Künneman; Steinmetz, M.; and
Hoffmann, J. 2021. Code, Benchmarks, and Data of Faster
Stackelberg Planning via Symbolic Search and Information
Sharing. https://doi.org/10.5281/zenodo.4320574.
Tsiakis, T.; and Stephanides, G. 2005. The economic ap-
proach of information security. Computers & security 24(2):
105–108.

