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Abstract
The performance of domain-independent planning
systems heavily depends on how the planning task
has been modeled. This makes task reformulation
an important tool to get rid of unnecessary com-
plexity and increase the robustness of planners with
respect to the model chosen by the user. In this pa-
per, we represent tasks as factored transition sys-
tems (FTS), and use the merge-and-shrink (M&S)
framework for task reformulation for optimal and
satisficing planning. We prove that the flexibility of
the underlying representation makes the M&S re-
formulation methods more powerful than the coun-
terparts based on the more popular finite-domain
representation. We adapt delete-relaxation and
M&S heuristics to work on the FTS representation
and evaluate the impact of our reformulation.

1 Introduction
Classical planning deals with the problem of finding a se-
quence of actions that achieve a set of goals, given a model
of the world that describes an initial state and a set of avail-
able actions. For representing the problem, different planning
formalisms can be used, the most common being STRIPS or
finite-domain representation (FDR). The choice of formal-
ism does not change the complexity of the problem, which is
PSPACE-complete [Bylander, 1994; Bäckström and Nebel,
1995]. However, it may impact the so-called accidental com-
plexity, when the structure of the task is disguised by how
it is encoded [Haslum, 2007]. Accidental complexity can be
dealt with by reformulating the planning task prior to solv-
ing it. There are several reformulation methods based on,
e.g., downward-refinable abstractions [Haslum, 2007] or tun-
nel macros [Coles and Coles, 2010], which can be combined
to reduce the size of FDR tasks [Tozicka et al., 2016].

Merge-and-Shrink (M&S) is a general framework to gen-
erate abstractions, originally defined in the model-checking
area [Dräger et al., 2006; Dräger et al., 2009], that can be
used to derive an admissible heuristic [Helmert et al., 2007;
Helmert et al., 2014] and/or detect unsolvability [Hoffmann
et al., 2014]. Further work on the topic noticed that this can
be understood as applying transformations to a set of tran-
sition systems [Sievers et al., 2014] and hence as a method

to transform planning tasks in the factored transition system
(FTS) representation [Torralba and Kissmann, 2015]. How-
ever, these methods perform the search on an FDR task, only
using M&S to derive heuristics or remove irrelevant actions.

In this paper, we use M&S as a task reformulation method
on FTS tasks. We show that some of the M&S transforma-
tions originally devised for constructing abstraction heuristics
can also be used for optimal and satisficing reformulation. To
do so, we provide algorithms that transform solutions for the
reformulated task into plans for the original task. We also
show that our M&S reformulations dominate their counter-
parts based on FDR representations, i.e., a suitable combina-
tion of existing M&S transformations can always do the same
(and sometimes more) simplifications to any task.

To search on the FTS representation, planning algorithms
and heuristics originally devised for STRIPS or FDR tasks
must be adapted. As the FTS formalism is slightly more
expressive than FDR, this is similar to adapting algorithms
to support (a limited form of) disjunctive preconditions and
conditional effects. We adapt heuristic search methods with
M&S and delete-relaxation heuristics for the FTS represen-
tation. Our experimental study shows the potential of these
reformulations to reduce the state space and speed-up the
search. Full proofs and additional experimental results are
included in a technical report [Torralba and Sievers, 2019].

2 Representation of Planning Tasks
A planning task is a compact representation of a TS. A tran-
sition system (TS) is a tuple Θ = 〈S,L, T, sI ,S?〉 where S
is a finite set of states, L is a finite set of labels each associ-
ated with a label cost c(`) ∈ R+

0 , T ⊆ S × L × S is a set
of transitions, sI ∈ S is the initial state, and S? ⊆ S is the
set of goal states. We use s ∈ Θ to refer to states in Θ and
s `−→ t ∈ Θ to refer to its transitions. An s-plan for a state s
is a path from s to any s∗ ∈ S?. Its cost is the summed label
costs of all labels of the path. The perfect heuristic, h∗(s), is
the cost of a cheapest s-plan. An s-plan is optimal iff its cost
equals h∗(s). A plan for Π is an sI -plan.

An abstraction is a function α mapping states in Θ to a
set of abstract states Sα. The abstract state space Θα is
〈Sα, L, Tα, sIα,S?α〉, where α(s) `−→ α(s′) ∈ Tα iff s `−→ s′

in Θ, sIα = α(sI), and S?α = {α(s) | s ∈ S?}.
An FDR task is a tuple ΠV = 〈V,A, sI ,G〉. V is a finite

set of variables v, each with a finite domain Dv . A partial



state is a function s on a subset V(s) of V , so that s(v) ∈ Dv

for all v ∈ V(s); s is a state if V(s) = V . sI is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a ∈ A is a tuple 〈prea, eff a, c(a)〉 where prea
and eff a are partial states, called its precondition and effect,
and c(a) ∈ R+

0 is its cost. An action a is applicable in a
state s if ∀v∈V(prea)s(v) = prea(v). Applying it yields the
successor state sJaK with sJaK(v) = eff a(v) if v ∈ V(eff a)
and sJaK(v) = s(v) otherwise.

The state space of an FDR task ΠV is a TS Θ =
〈S,L, T, sI ,S?〉 where S is the set of all states, sI = sI ,
s ∈ S? iff ∀v∈V(G)G(v) = s(v), L = A, and s a−→ sJaK ∈ T
if a is applicable in s.

An FTS task is a set of TSs {Θ1, . . . ,Θn} with a common
setL of labels. The synchronized product Θ1⊗Θ2 of two TSs
is another TS with states S = {(s1, s2) | s1 ∈ Θ1∧s2 ∈ Θ2},
labels L = L1 = L2, transitions T = {(s1, s2) `−→ (s′1s

′
2) |

s1
`−→ s′1 ∈ Θ1 ∧ s2

`−→ s′2 ∈ Θ2}, initial state sI = (sI1 , s
I
2 ),

and goal states S? = {(s1, s2) | s1 ∈ S?1 ∧ s2 ∈ S?2}.
The state space of an FTS task ΠT = {Θ1, . . . ,Θn} is

defined as Θ = Θ1 ⊗ · · · ⊗ Θk. Whenever it is not clear
from context, we will use subscripts to differentiate states in
the state space (s, s′, t ∈ Θ) and in the individual components
(si, s′i, ti ∈ Θi). Given s ∈ Θ, we write s[Θi] to refer to the
projection of s onto Θi. A solution π for an FTS task is a
sequence s0

`1−→ s1
`2−→ . . . `k−→ sk such that sk ∈ S?.

There is a close connection between FTS and FDR tasks,
since TSs in an FTS task correspond to FDR variables with
domain equal to the set of states of the TS. Then, states in
FDR (which are assignments of values to variables) corre-
spond to states in the FTS representation, which are an as-
signment of states si to each Θi. Given an FDR task ΠV it
is simple to construct the corresponding FTS task, which we
call the atomic representation of ΠV . There is a TS Θv for
every variable v, with one state sv ∈ Θv per value in Dv .
For every action a ∈ A, there is an outgoing transition from
sv if v 6∈ V(prea) or prea(v) = sv which leads to sv if
v 6∈ V(eff a) or tv if eff a(v) = tv .

As running example, consider a task where a truck can
drive between four locations with a limited amount of fuel
and with the restriction that the engine can only be turned
on with a full tank. This can be encoded as an FDR task
with three variables V = {vt, vf , vs} with domains Dt =
{A, B, C, D}, Df = {2, 1, 0}, and Ds = {off, rd, on} that
represent the position of the truck, the amount of fuel avail-
able, and the status of the engine (off, ready, on), respectively.
In the atomic FTS task, shown in Fig. 1a, there are hence
three TSs Θvt ,Θvf ,Θvs , one for each variable. The task
has an action DRx-y,f1-f2 with precondition {vt = x, vf =
f1, vs = on} and effect {vt = y, vf = f2} for every pair
of connected locations (x, y), and every f1, f2 ∈ Df s.t.
f2 = f1 − 1. These actions induce transitions from x to y
in Θvt , from f1 to f2 in Θvf , and a self-looping transition
at state on in Θvs . Furthermore, there exist actions check-
fuel, CF, with precondition {vf = 2, vs = off} and effect
{vs = rd} and ON with precondition {vs = rd} and effect
{vs = on}. All actions have unit cost. The initial state of the
FDR task is sI = {vt = A, vf = 2, vs = off} and its goal is
G = {vt = D}, which translates to (A, 2, off) being the initial
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(a) Atomic task: truck position (Θvt ), fuel (Θvf ), and status (Θvs ).
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(d) After merging and pruning
unreachable states.

Figure 1: Example FTS task where a truck must drive from A to D
with a fuel capacity of 2 and the restriction to first check the fuel
capacity and turn on the engine. Transitions with wildcards (*) have
multiple labels, e.g., DRA-B,* stands for DRA-B,2-1 and DRA-B,1-0.
Each subfigure corresponds to a reformulation (see Section 3).

state (marked with incoming arrows) and all (D, ∗, ∗) being
goal states (marked with double circles) of the FTS task.

The reverse transformation from an FTS to an FDR task is
not as straightforward and it may require to introduce more
FDR actions than there are labels in the FTS task. The reason
is that transitions in the individual TSs are more expressive
than the precondition-effect tuple of FDR actions because
they can encode a limited form of angelic non-determinism,
disjunctive preconditions, and conditional effects. Consider
the task shown in Fig. 1b, an FTS task of the same planning
task that uses label DR for all drive actions. Translating this
task to FDR requires re-introducing multiple actions to repre-
sent DR for different pairs of locations and amounts of fuel.
One reason is the non-determinism where there are multiple
transitions with the same label and source state, but differ-
ent targets. For example, in the state (A, 2, on), we can ap-
ply two transitions with label DR to reach either (C, 1, on) or
(B, 1, on). The non-determinism is angelic because the re-
sult is chosen by the planner at will. Also, the transitions in
Θvf encode a disjunctive precondition (DR is applicable for
vf = 2 or vf = 1) and conditional effects (the result of DR is
vf = 1 iff vf = 2 holds in the source state).

3 M&S Task Reformulation Framework
A task reformulation is a transformation of a task such that
any solution for the new task can be transformed into a so-



lution for the original task. We follow the definition of task
reduction introduced by Tozicka et al. [2016] but without re-
quiring the reformulated task to be smaller than the input task.
Most of the reformulations we consider aim to reduce the size
of the task, but reformulations that make the task bigger may
be useful as well, e.g., if it makes the search space smaller.
Definition 1 (Task reformulation). A task reformulation ρ is
a partial function from tasks to tasks s.t.:

1. ρ(Π) is solvable if and only if Π is solvable, and

2. there exists a plan reconstruction function←−ρ that maps
each solution π of ρ(Π) to a solution←−ρ (π) of Π.

A task reformulation is polynomial if both ρ and←−ρ can be
computed in polynomial time in the size of the input task and
the reconstructed plan. It is optimal if, given an optimal plan
π of ρ(Π), ←−ρ (π) is an optimal plan of Π. We are interested
in polynomial reformulations for optimal and satisficing plan-
ning. Note that we explicitly allow the reformulated plan to
be exponentially larger than the input task. This is necessary
for domains (e.g. Towers of Hanoi) where the original plan
is exponentially long, but a reformulation with a solution that
implicitly encodes the plan can be found in polynomial time.

3.1 Merge-and-Shrink Transformations
There are multiple M&S transformations that can be used to
reformulate an FTS task ΠT = {Θ1, . . . ,Θn} with labels L.
A transformation is exact if it preserves the set of solutions
and hence is an optimal reformulation.

Label reduction reduces the set of labels by mapping some
of them to a common new one [Sievers et al., 2014]. It is
exact if for any pair of labels `, `′ ∈ L reduced to the same
label, c(`) = c(`′) and ` and `′ induce the same transitions
in all but (at most) one Θi, 1 ≤ i ≤ n. The task of Fig. 1b
is the result of repeatedly applying exact label reduction on
the atomic task of Fig. 1a. By itself, it does not affect the
search space, but it reduces the amount of labels increasing
the efficiency and effectiveness of other transformations.

Shrinking consists of replacing one TS Θi ∈ ΠT by an
abstraction thereof. This results in an abstraction of the origi-
nal task, possibly introducing spurious plans that do not have
any counterpart in the original task. Therefore, not all shrink
transformations are suitable for task reformulation. How-
ever, using refinable abstraction hierarchies is a long standing
idea in planning [Sacerdoti, 1974; Bacchus and Yang, 1994;
Knoblock, 1994]. We compute refinable abstractions via
shrinking strategies based on bisimulation [Milner, 1971].
Definition 2 (Bisimulation). Let Θ = 〈S,L, T, sI ,S?〉 be
a TS. An equivalence relation ∼ on S is a goal-respecting
bisimulation iff s ∼ t implies that (a) s ∈ S? ↔ t ∈ S?, and
(b) {[s′] | s `−→ s′ ∈ T} = {[t′] | t `−→ t′ ∈ T} for all ` ∈ L
where [s] denotes the equivalence class of s.

Bisimulation shrinking aggregates all states in the same
equivalence class of the coarsest bisimulation of some Θi ∈
ΠT . This is a symmetry-reduction technique that preserves
all plans and as such is an exact transformation [Helmert et
al., 2014; Sievers et al., 2015]. In our example (cf. Fig. 1b),
states B and C of Θvt are bisimilar in Θvt and are hence
combined into a new state BC by bisimulation shrinking (cf.

Fig. 1c). Note that shrinking B and C is only possible after
label reduction, since otherwise their outgoing labels differ.

When preserving optimality is not necessary, it suffices
to guarantee that any abstract plan can be refined into a
real plan. Hoffmann et al. [2014] used shrinking strate-
gies with this property for proving unsolvability with M&S.
We re-define these strategies using a different nomenclature
based on the notion of weak bisimulation [Milner, 1971;
Milner, 1990]. The key idea is to consider τ -labels which
are “internal” to a TS in the sense that they can always
be taken in Θi without changing other TSs. The set of τ -
labels for Θi consists of those labels ` having a transition
sj

`−→ sj ∀sj ∈ Θj ∀Θj , j 6= i. Other definitions are pos-
sible; ours is more general than that of own-labels used by
Hoffmann et al. [2014], whereas there are stronger notions
based on dominance [Torralba, 2017; Torralba, 2018]. We
use τ==⇒ to denote a (possibly empty) path using only τ -labels,
and s `==⇒ s′ as a shorthand for s τ==⇒ `−→ τ==⇒ s′.

Following the observation by Haslum [2007] that it suffices
to focus on paths with labels that either are outside relevant
(i.e., have some effect on other variables) or reach the goal,
we devise a variant of weak bisimulation that ignores some
irrelevant paths. We say that a label ` is outside relevant for a
transition system Θi if there exists some Θj with i 6= j such
that sj

`−→ tj for some sj 6= tj . A path si
`==⇒ s′i is relevant

for Θi if ` is outside relevant for Θi, or there does not exist
si

τ==⇒ s′′i such that s′i ∼ s′′i . Otherwise, it is safe to ignore
such path in weak bisimulation because the alternative τ -path
can always be used to reach s′′ instead.

Definition 3 (Weak Bisimulation). Let Θ be a TS with a set τ
of τ -labels, and a set Trel of relevant paths. An equivalence
relation ∼ on S is a goal-respecting weak bisimulation iff
s ∼ t implies (∃s′∈S?s τ==⇒ s′) ↔ (∃t′∈S?t τ==⇒ t′), and
∀`∈L{[s′] | s `==⇒ s′ ∈ Trel} = {[t′] | t `==⇒ t′ ∈ Trel}.

Weak bisimulation shrinking maps all weakly bisimilar
states into the same abstract state. In our example (cf.
Fig. 1b), ON is a τ -label in Θvs , therefore states rd and on
of Θvs are weakly bisimilar (both have a single relevant path

DR==⇒ [on]) resulting in Θvs as shown in Fig. 1c.
Another useful abstraction transformation consists of re-

moving TSs with a core state. We say that a state sC is a
core for Θi if (1) for every outside relevant label ` there ex-
ists sC `==⇒ sC , (2) there is a τ -path from the initial state to
sC , and (3) there is a τ -path from sC to a goal state. Such a
TS can be abstracted away because all outside relevant labels
can always be reached via a τ -path through sC .

Merging replaces two TSs by their synchronized product.
Fig. 1d shows the FTS task that results from merging Θvf

and Θvs of the FTS task shown in Fig. 1c. Merging is an
exact transformation [Helmert et al., 2014], which comes at
the price that the size of the task grows quadratically with ev-
ery merge, so it increases exponentially with the number of
merges. In practice, we limit the maximum size of any TS
in the reformulated task, forbidding any merge that goes be-
yond this limit. As label reduction, by itself merging does not
change the reachable search space. However, it often enables



additional label reduction, shrinking, and/or pruning. In our
example of Fig. 1d, CF has become a τ -label, so 2off and 2ro
could be reduced by weak bisimulation.

Finally, there are multiple pruning techniques defined in
the M&S framework. If a state si is unreachable (from the
initial state) or irrelevant (cannot reach a goal) in any Θi, it
can be pruned [Helmert et al., 2014]. If a label ` is dead
(i.e., there is no transition labeled with ` in any Θi ∈ ΠT )
or irrelevant (i.e., all transitions labeled with ` are self-loop
transitions), then it can be pruned [Sievers et al., 2014]. If
a TS Θi ∈ ΠT is the only one with a goal defined, i.e., there
are no non-goal states in Θj ∈ ΠT with j 6= i, all outgoing
transitions from goal states in Θi can be removed [Hoffmann
et al., 2014]. If a TS has only one state and no dead labels, it
can be pruned. All these pruning techniques preserve at least
one optimal plan and are therefore exact transformations.

3.2 Plan Reconstruction
M&S iteratively applies the transformations described above
on a task ΠT = {Θ1, . . . ,Θk}, resulting in a sequence
of reformulation steps ρ1, . . . , ρn producing a sequence of
planning tasks ΠT0 , . . . ,Π

T
n where ΠT0 = ΠT , and ΠTi =

ρi(Π
T
i−1) for i ∈ [1, n]. We can run any planning algorithm

to find a plan πρn = sρn1
`ρn1−−→ sρn2

`ρn2−−→ s3, . . . of the final
task ΠTn . The plan reconstruction procedure is then tasked to
compute a plan π = s1

`1−→ s2
`2−→ . . . for the original task

ΠT from πρn and the sequence of reformulations.
Performing a reconstruction ←−ρi for each step ρi has some

overhead because it requires to store each intermediate task.
We avoid this by combining sequences of reformulations that
correspond to merge, label reduction, and bisimulation trans-
formations. Pruning-based transformations can be ignored by
the plan reconstruction procedure because the plan found is
still valid for the original task without any modifications. Plan
reconstruction can be done for the entire transformation at
once without storing information about the intermediate plan-
ning tasks. Therefore, we have a sequence of transformations
ΠT ρ1−→ ΠT1

ρ2−→ ΠT2 . . . with only two types of reformula-
tions to consider: merging + label reduction + bisimulation
shrinking (ρMLB ), and weak bisimulation shrinking (ρτB ).

We first consider the reconstruction of a reformulation
ρMLB on a task ΠTi , resulting in a task ΠTi+1. The state
space of ΠTi+1 is a bisimulation of the state space of ΠTi ,
so any sequence s1

`1−→ s2
`2−→ . . . in ΠTi has its coun-

terpart α(s) `′1−→ α(s2) `′2−→ . . . in ΠTi+1 and vice versa.
To reconstruct the plan, we need two functions α and λ,
mapping states and labels in ΠTi to states and labels in
ΠTi+1. The α function is computed by M&S heuristics and
compactly represented with the so-called cascading tables
or merge-and-shrink representation [Helmert et al., 2014;
Helmert et al., 2015]. The label mapping is simply the com-
position of all label reduction transformations used by ρMLB .

The plan can be reconstructed step by step, starting from
sI . Given the current factored state s and a step in the abstract
plan α(s) `′−→ t′, find a transition s `−→ t such that α(t) = t′

and λ(`) = `′. Note that the straightforward approach of enu-
merating all transitions applicable from s is not guaranteed to
terminate in polynomial time because, unlike in FDR tasks

where the number of successors is bounded by the number of
actions, in FTS there may be exponentially many successors
in the size of the task. However, one can use the cascading ta-
bles representation to retrieve a factored state t = (t1, . . . , tn)
such that s `−→ t, `′ = λ(`) and α(t) = t′. This works as fol-
lows: First, for each transition system Θi, obtain the set S′i
of target states ti such that si

`−→ ti for any label ` such that
`′ = λ(`). Then, traverse the cascading tables and, for each
intermediate table that maps states of two transition systems
Θi,Θj to an abstract TS Θγ = γ(Θi ⊗Θj), compute the set
of abstract states Sγ = {sγ | ∃si∈S′

i,sj∈S′
j
sγ = γ((si, sj))},

mapping each sγ ∈ Sγ to one such (si, sj) pair. This allows
us to keep track of one factored state for each abstract state.
After all cascading tables have been traversed, it suffices to
return the factored state t associated with the abstract state t′.

Proposition 1. Label reduction, merging (up to a size limit),
pruning and bisimulation shrinking are optimal and polyno-
mial reformulations.

Proof. It is well-known that all these techniques can be com-
puted in polynomial time [Helmert et al., 2014; Sievers et al.,
2014]. Each step of the plan can be reconstructed by travers-
ing the cascading-tables representation, which is polynomial
in the size of the input task.

We now consider the reconstruction of a reformulation
ρτB on a task ΠTi = {Θ1, . . . ,Θk} where ρτB applies
weak bisimulation shrinking to some TS in ΠTi . We
assume WLOG that Θ1 is the shrunk TS, so ΠTi+1 =

{ατB (Θ1),Θ2, . . . ,Θk}. As ατB is induced by a weak
bisimulation on the states of Θ1, then for any state s in ΠTi
and any transition ρτB (s) `−→ tρ in the reformulated task,
there exists a path s `==⇒ t in the original task such that
ρτB (t) = tρ. Therefore, to reconstruct the plan for ΠTi from
a plan for ΠTi+1 one must re-introduce the τ -label transitions
until reaching a state where ` is applicable and this results
in some t such that ρτB (t) τ==⇒ tρ. The search can be done
locally in Θ1 because τ -labels have self-loop transitions in
other TSs. To do so, we first look for all states u1 such that
u1

`−→ ( τ−→)∗t1 in Θ1 and (ατB (t1), s[Θ2], . . . , s[Θn]) = tρ.
Then, we run uniform-cost search from s[Θ1] using only tran-
sitions with τ -labels until we reach such an u1. Note that this
runs in polynomial time in the size of the input task.

This procedure has similarities with red-black plan re-
pair [Domshlak et al., 2015], the plan reconstruction of the
merge values reformulation [Tozicka et al., 2016], or decou-
pled search [Gnad and Hoffmann, 2018]. These algorithms
repair an abstract/relaxed plan by introducing additional ac-
tions to enable the preconditions ignored by the relaxed plan.
Our case is slightly more complex because the same label
may have multiple targets so one must ensure the remaining
abstract plan is applicable in the resulting state.

If a TS Θi with a core state sC was abstracted away, its
corresponding path must be reconstructed as well. For each
transition in the abstract plan with label `, we find the shortest
si

`==⇒ s′i from the current state si (initialized to the initial
state of Θi in the first iteration, and to the final state in the path



of the previous iterations afterwards), and s′i
τ==⇒ sC . Note

that to keep the plan shorter, we do not enforce the τ -path to
go via the core state, but rather the condition above suffices
to ensure that the rest of the plan can be reconstructed.

Proposition 2. Weak bisimulation shrinking is a polynomial
reformulation.

Proof. The coarsest weak bisimulation of a TS can be com-
puted by computing the bisimulation of the transitive closure
of the TS over τ . Each step of the plan reconstruction corre-
sponds to an uniform-cost search on each TS. Both operations
take polynomial time in the size of the TS.

Consider the following plan of the task shown in Fig. 1c:
(A, 2, off) CF−−→ (A, 2, ro) DR−−→ (BC, 1, ro) DR−−→ (D, 0, ro). To
reconstruct the plan for the task prior to weak bisimulation
shrinking (cf. Fig. 1b), we execute it and, when DR cannot
be applied in rd, we insert a τ -transition with ON resulting
in the plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DR−−→
(BC, 1, on) DR−−→ (D, 0, on). Then, we reconstruct the plan
for the atomic task of Fig. 1a step by step, resulting in a
plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DRA-B,2-1−−−−−→
(B, 1, on) DRB-D,1-0−−−−−→ (D, 0, on).

4 Relation to FDR Reformulation Methods
The M&S reformulations are closely related to previous FDR
reformulation methods like the generalize actions [Tozicka
et al., 2016], fluent merging [Seipp and Helmert, 2011], and
abstraction-based reformulations [Helmert, 2006b; Haslum,
2007; Tozicka et al., 2016]. To compare reformulation meth-
ods over different formalisms, we consider that a method
dominates another if it can perform the same reformulations.

Definition 4 (Dominance of Reformulation Methods). An
FTS task reformulation method X dominates an FDR refor-
mulation method Y if, given an FDR task ΠV and a reformu-
lation ρY ∈ Y applicable over ΠV , there exists a reformula-
tion ρX ∈ X such that it is applicable in atomic(ΠV) and
ρX(atomic(ΠV)) = atomic(ρY (ΠV)). We say that the dom-
ination is strict if there exists ρX ∈ X such that it is applica-
ble in atomic(ΠV) but there does not exist any ρY ∈ Y ap-
plicable in ΠV and ρX(atomic(ΠV)) = atomic(ρY (ΠV)).

The generalize actions reformulation reduces the number
of FDR actions by substituting two actions by a single one
if they are equal except for a precondition on a binary vari-
able. Formally, whenever there is a variable w with do-
main Dw = {x, y}, and two actions a1, a2 s.t. V(prea1) =
V(prea2), ∀v ∈ (V(prea1) \ {w}) prea1(v) = prea2(v),
prea1(w) = x, prea2(w) = y, and eff a1 = eff a2. Then,
a1 and a2 can be replaced by a′ where eff a′ = eff a1 and
prea′(v) = prea1(v) ∀v ∈ (V(prea1) \ {w}).

Theorem 1. Exact label reduction strictly dominates the gen-
eralize actions reformulation.

Proof Sketch. If generalize actions replaces a1 and a2 in ΠV

by a′, then there are labels `1 and `2 in atomic(ΠV) that cor-
respond to a1 and a2 and a TS Θw that corresponds to w in
ΠV . As a1 and a2 have the same effects and preconditions
on all variables except v, then `1 and `2 are equal except for

Θw so they can be reduced. Label reduction is more general
because it may result in transitions with different targets from
the same state and label, which is not possible in FDR.

Fluent merging is an FDR reformulation inspired by the
merge transformation in M&S [Seipp and Helmert, 2011]. It
replaces two variables v1, v2 ∈ V by their product, resulting
in a variable v1,2 with domain Dv1,v2 = Dv1 × Dv2 . How-
ever, adapting the FDR actions is not straightforward since
they would require disjunctive preconditions. For example,
if action a1 has a precondition on v1 but not on v2, then the
action is applicable for several values of Dv1,v2 but not for
all of them. Since FDR does not allow for disjunctive pre-
conditions, multiple copies of the actions are needed to en-
code the preconditions and effects on the new variable. Simi-
larly, auxiliary actions must be added to encode a disjunctive
goal whenever a goal and a non-goal variable are merged. In
this case, the merge transformation does not dominate flu-
ent merging because it does not add such auxiliary labels and
transitions. This is arguably an advantage since adding them
is not expected to be beneficial or, otherwise, an equivalent
reformulation could be defined in M&S.

The use of abstraction for task reformulation in planning
has a long history [Knoblock, 1994]. The key idea is to solve
an abstraction of the problem and then refine the abstract so-
lution by filling the gaps. Not all abstractions are suitable
for this, since they need to ensure that any solution for the
abstract task can be refined into a plan for the original task.
Abstractions with this property are said to be refinable. Ab-
straction reformulations were first applied in FDR by the Fast
Downward planner [Helmert, 2006a]. Their reformulation
abstracts away any root variable in the causal graph (i.e., does
not have dependencies on other variables) whose free domain
transition graph is strongly connected (i.e., one can always
set the variable to any desired value by applying a sequence
of actions). This was generalized by Haslum [2007] into the
safe variable abstraction reformulation under the observation
that (1) it suffices to consider values that are relevant for other
variables (because they are precondition or effect of an action
that has another variable in its effect); and (2) the goal only
needs to be achieved at the end of the plan so the goal value
must be free reachable from other relevant values, but it is not
necessary that other values are reachable from the goal value.

Finally, one can also ignore the difference among some val-
ues of a variable without ignoring it completely: the merge
values reformulation reduces the domain of an FDR variable
by merging several values whenever they can be switched
via actions without any side effects [Tozicka et al., 2016].
Formally, let v be a variable with x, y ∈ Dv , and a1 and
a2 be actions s.t. V(prea1) = V(eff a1) = V(prea2) =
V(eff a2) = {v}, and prea1(v) = eff a2(v) = x, and
prea2(v) = eff a1(v) = y. Then, x may be removed from
Dv , replacing every occurrence of x in A, I , and G by y.

As all these methods, weak bisimulation shrinking obtains
a refinable abstraction, but on the FTS representation, taking
advantage of the flexibility of M&S to compute abstractions.

Theorem 2. Removing transition systems with core states af-
ter applying weak bismulation shrinking strictly dominates
the safe variable abstraction reformulation.



Proof Sketch. If a variable is abstracted away, abstract states
corresponding to the values that appear in the preconditions
of outside relevant actions are all weakly bisimilar. After
shrinking, the resulting abstract state is a core state.

Theorem 3. Weak bisimulation shrinking strictly dominates
the merge values reformulation.

Proof Sketch. If values x, y of variable v are merged, there
exist `1, `2 in atomic(ΠV) corresponding to a1, a2, and a TS
Θv representing v. As v is the only variable in the precondi-
tions and effects of a1 and a2, `1 and `2 are τ -labels in Θv .
Since x τ==⇒ y and y τ==⇒ x, x and y are weakly bisimilar.

5 Search on the FTS Representation
To use our reformulation framework, planning algorithms
must be used to find a solution to the reformulated FTS task.
Heuristic search is a leading approach for solving classical
planning problems [Bonet and Geffner, 2001]. A compila-
tion into an FDR task having an action for each combination
of transitions with the same label in different TSs is possible,
but may incur a big overhead, potentially losing any gains ob-
tained by the reformulation methods. Here, we consider how
to apply heuristic search algorithms to FTS tasks by defining
the successor generation and heuristic evaluation.

Successor generation is the operation that, given a state s,
generates all transitions s l−→ t in the state space of the task.
This typically is done in two steps: (1) generate the set of
actions that are applicable in s and (2) for each such action
obtain the corresponding successor state.

Since the number of actions in FDR tasks may be very
large, iterating over all of them to check whether they are ap-
plicable in s is inefficient. The Fast Downward Planning Sys-
tem uses a tree data-structure to efficiently retrieve the appli-
cable actions in a given state [Helmert, 2006b]. However, this
data-structure relies on actions being applicable either only
for one value of each variable if v ∈ V(prea) or in all values
of such variable otherwise. This is no longer true for labels
in the FTS representation. A label is applicable in a factored
state s if there exists an outgoing transition s[Θi]

l−→ ti for
each Θi ∈ ΠT . Since there may be any number of transitions
in each Θi from any number of source states, labels may be
applicable for arbitrary sets of states. We pre-compute for ev-
ery abstract state si ∈ Θi the set of labels with an outgoing
transition from si, denoted Lsi . Then, given a state s, the set
of applicable labels can be computed as

⋂
Θi
Ls[Θi].

Step (2) is simple in FDR since the new state is a copy of s,
overriding the value of variables in the effect. In the FTS rep-
resentation, however, there may be multiple successors from
s with label `. We enumerate all possible successors by con-
sidering all outgoing transitions from s[Θi] in every Θi. To do
this efficiently, for each label `we divide the set of TSs in ΠT

in three sets: the irrelevant TSs where ` only induces self-loop
transitions, deterministic TSs where for every si ∈ Θi there
is a single outgoing transition with `, and non-deterministic
TSs where there may be multiple transitions from the same
source state. Only the latter require to enumerate all possible
transitions, whereas irrelevant TSs are ignored and the effect
on deterministic TSs can be set as in FDR tasks.

We now discuss how to derive heuristic functions for the
FTS representation, which are essential to guide the search
and find solutions to large tasks. As most heuristic functions
have originally been defined for STRIPS or FDR, they need to
be adapted to use them in FTS tasks. This is similar to adding
support for a limited form of disjunctive preconditions and
conditional effects. In optimal planning, we use merge-and-
shrink heuristics since they are already based on FTS.

To apply our reformulation framework on satisficing plan-
ning, we adapt the FF heuristic [Hoffmann and Nebel, 2001].
FF is based on the delete-relaxation, ignoring the delete ef-
fects of STRIPS actions. In FDR, “ignoring deletes” is inter-
preted as ignoring the negative effect of the actions, so that
variables accumulate values instead of replacing them. This
is easily extrapolated to the FTS representation by consider-
ing that each TS may simultaneously be in multiple states.

To compute the heuristic, we compile our task into an FDR
task with one unary action asi,`,ti for each transition si

`−→ ti
in some Θi. This action has ti as effect, and si as precondition
plus additional preconditions for each other Θj where l is not
applicable in all states. If there is a single state sj ∈ Θj where
` is applicable, we add sj to the precondition of asi,`,ti . If
there are more than one, we add an auxiliary fact to our task
f`,j that represents the disjunction of those states, as well as
auxiliary unary actions from each of those states to f`,j .

Afterwards, we retrieve the relaxed plan as a set of transi-
tions si

`−→ ti, and add the cost of all their labels to obtain the
heuristic value. One difference to FF for FDR is that there,
FF counts each action only once because no action needs to
be applied more than once in delete-free tasks. We do not do
this to avoid underestimating the goal distance when the same
label may have different effects (e.g. label DR in Fig.1b).

The delete-relaxation is also useful to select preferred ac-
tions. In FDR, an action is preferred in state s if it belongs
to the relaxed plan of FF for s. In FTS, we consider s `−→ t
to be preferred if the relaxed plan from s contains a transition
labeled with ` and with target ti s.t. ∃Θit[Θi] = ti.

6 Experiments
We implemented the M&S reformulation framework in Fast
Downward (FD) [Helmert, 2006b], using its existing M&S
framework [Sievers, 2018] and extending it with weak bisim-
ulation as well as pruning transformations that remove dead
labels and irrelevant TSs and labels. We also modified the
layout of the algorithm: firstly, since our pruning transforma-
tions might trigger further pruning opportunities, we always
repeatedly apply them until a fixpoint is reached. Secondly,
we run label reduction and shrinking on the atomic FTS task
until no more simplifications are possible. Finally, we can-
not exactly control the amount of shrinking done because this
would result in non-refinable abstractions that do not admit
plan reconstruction. Instead, we restrict merging to satisfy
the size limit and only shrink after merging and pruning.

To consider the effects of some of the M&S transforma-
tions on the task reformulation individually, we consider the
following configurations. As the simplest baseline, we only
transform the FDR task (FDR) into the atomic FTS task (a),
without any further transformations. This does not affect the
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Figure 2: Expansions until last f -layer of blind search on the FDR
task and different reformulated FTS tasks, using bisimulation (top)
and weak bisimulation (bottom) for shrinking.

state space at all, but serves for quantifying the overhead of
our implementation over FD, mainly due to using different
data structures to represent the task and perform successor
generation. Another variant of atomic adds exact label reduc-
tion and shrinking (a-ls), either based on bisimulation for op-
timal planning or weak bisimulation for satisficing planning.
Other configurations combine label reduction and shrinking
with a merge strategy. For the latter, we consider DFP (d-ls)
and sbMIASM (m-ls, called dyn-MIASM originally) [Sievers
et al., 2014], with a size limit of 1000 on the resulting prod-
uct. We did not find qualitative differences with size limits of
100 and 10000. We impose a time limit of 900s on the re-
formulation process. For the overall planning, we use a limit
of 3.5 GiB and 1800s. We use all STRIPS benchmarks from
the optimal/satisficing tracks of all IPCs, two sets consisting
of 1827/1816 tasks across 48 unique domains.1

6.1 Search Space Reduction
To assess the impact of our task reformulations on the reach-
able state space, we run uniform-cost search and evaluate the
number of expansions until the last f -layer. Fig. 2 compares
the FDR representation against a-ls and d-ls with bisimulation
(top) and weak bisimulation (bottom) shrinking. We observe
that even with only label reduction and bisimulation shrink-
ing (a-ls) there are state space reductions of up to one order
of magnitude in some cases. Most of these gains are due to
shrinking, given that label reduction does not change the state
space and pruning cannot be performed often in the atomic
representation due to the preprocessing of FD. When using
merge transformations (d-ls), state space reductions can often

1Implementation: https://doi.org/10.5281/zenodo.3232878,
dataset with benchmarks: https://doi.org/10.5281/zenodo.3232844.

be of up to several orders of magnitude. It is worth noting
that merging does not affect the state space, so this reduction
is due to the synergy with pruning and shrinking.

If optimality does not need to be preserved, larger reduc-
tions can be achieved with weak bisimulation shrinking. In
this case, 305 tasks (including entire domains like logistics,
miconic, movie, rovers, and zenotravel) can be solved during
the reformulation resulting in 0 expansions (points on the x-
axis). The reason is that weak bisimulation shrinks away en-
tire TSs (e.g., if they form a single connected component with
actions without side preconditions or effects, which translate
to τ -labels). An example is logistics: as trucks/airplanes can
always freely change their location with the drive/fly action,
weak bisimulation simplifies the TSs describing their posi-
tion, after which the TSs for packages can also be simplified.
Previous abstraction reformulation approaches solved many
of these domains too, with the exception of Rovers, where
they obtained reductions but without completely simplifying
the domain. With merge reformulations, 460 tasks are solved
with DFP (completely solving transport-opt), and 514 with
MIASM (solving all but two instances in parcprinter-opt).
This is remarkable given the low limit of 1000 abstract states.

6.2 Results with Informed Search
We evaluate the impact of our reformulations in terms of cov-
erage (see Table 1), expansions, and total time (see Fig. 3).
On the optimal benchmarks, we run A∗ with hmax and M&S
with DFP using a 50000 size limit and (approximate) bisimu-
lation shrinking. On the satisficing benchmarks, we run lazy
greedy search with hFF, with and without preferred operators.
The comparison of FDR and atomic (a) shows that our imple-
mentation has some overhead. Both configurations explore
the same state space with very similar heuristics. hmax and
hFF are computed in the same way with no big overhead and
the runtime of plan reconstruction is usually negligible. In
terms of heuristic value, hmax is identical and hFF only differs
due to tie-breaking and because some actions may be counted
twice. One of the main sources of overhead is the memory
used to represent FTS tasks. Our data structures use O(|L|)
memory on each TS, whereas in FDR no memory is wasted
for variables not mentioned in the preconditions or effects.

Label reduction and shrinking on the atomic FTS task (a-ls)
is useful in most cases, increasing total coverage in all config-
urations. This reformulation reduces the state space as well
as the task description size (i.e. reducing the TSs in the FTS
representation). Therefore, gains in expanded nodes usually
translate into lower search times, and it can pay off despite
the overhead of the precomputation phase on total time.

Merge reductions (d-ls), however, are oftentimes harmful
in combination with delete-relaxation heuristics (hmax and
hFF), due to the overhead caused by increasing the task size.
Nevertheless, they can be very useful in some domains, when-
ever there is enough synergy with pruning (e.g. woodwork-
ing, tpp) or shrinking (e.g. childsnack). Indeed, for all heuris-
tics we tried, merge reformulations are useful in at least a few
domains. This is also reflected in the orcl column that shows
how many instances are solved by any of our configurations.
This is often much larger than our atomic configuration, but
also than the FDR baseline, showing that if the right reformu-

https://doi.org/10.5281/zenodo.3232878
https://doi.org/10.5281/zenodo.3232844
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Figure 3: Expansions until last f -layer and total time of a vs. a-ls (left) and a-ls vs. d-ls (right) for A∗with M&S (left block) and lazy greedy
search with hFFand preferred operators (right block).
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a-ls 18 15 – 31 24 1368
d-ls 10 10 4 – 11 1208
m-ls 13 15 7 21 – 1224

FDR – 17 15 24 23 1502
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:1

58
9

a 8 – 11 25 24 1461
a-ls 13 8 – 26 26 1471
d-ls 9 6 2 – 15 1357
m-ls 9 7 3 16 – 1322

Table 1: Domain comparison of coverage for A∗(left) with hmax(top)
and M&S (bottom), and lazy greedy search (right) with hFF, without
(top) and with (bottom) preferred operators. A value in row x and
column y denotes the number of domains where x is better than y.
It is bold if this is higher than the value in y/x. Column “tot” shows
total coverage and “orcl” shows the oracle, i.e., per-task maximized,
coverage over our algorithms (thus excluding FDR).

lations are chosen for each domain, they can compensate for
the overhead of using an FTS representation.

The results of d-ls with M&S heuristics are different be-
cause there are more cases where the heuristic is less in-
formed after the d-ls reformulation, increasing the number
of expansions. There is also a large number of instances
where the heuristic value for the initial state is perfect for a-ls
whereas a large amount of search is needed with d-ls. The rea-
son is that the options available for the merge strategy during
the reformulation are reduced by the limit on abstract states,
leading to different merge decisions, and possibly degrading
the quality of the heuristic. However, with M&S heuristics
there is no overhead in runtime so d-ls pays off more often.

The rightmost two columns of Fig. 3 show results with
hFFand preferred operators for satisficing planning. The re-
ductions obtained by weak bisimulation shrinking are much
stronger than by optimality preserving strategies, improving
the performance of a-ls and d-ls in terms of expanded nodes.
In terms of runtime, a-ls is useful in many cases despite the
overhead caused by spending up to 900s in preprocessing.
Merge reformulations, however, increase the computational
cost of the heuristic, so they do not pay off over a-ls except in
a few cases where the reduction is huge.

7 Conclusion
In this work, we use the M&S framework for task reformula-
tion and analyze its advantages over reformulations in FDR.
Our results show a large potential of state space reductions,
that sometimes can solve entire domains without any search.

The framework has even more potential by integrating
new reformulation methods like subsumed transition prun-
ing [Torralba and Kissmann, 2015], or graph factoriza-
tion [Wehrle et al., 2016]. Our results also show that not
all reformulations are always helpful. Thus, to materialize
all this potential, methods to automatically select the best re-
formulation method for each domain are also of great inter-
est [Gerevini et al., 2009; Fuentetaja et al., 2018].
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[Dräger et al., 2006] Klaus Dräger, Bernd Finkbeiner, and Andreas
Podelski. Directed model checking with distance-preserving
abstractions. In Antti Valmari, editor, Proc. of SPIN’06, vol-
ume 3925 of Lecture Notes in Computer Science, pages 19–34.
Springer-Verlag, 2006.
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