From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

A* with Partial Expansion for large branching factor problems

Takayuki Yoshizumi, Teruhisa Miura and Toru Ishida

Department of Social Informatics, Kyoto University,
Kyoto 606-8501, Japan
{yosizumi, miura, ishida} @kuis.kyoto-u.ac.jp

Abstract

The multiple sequence alignment problem is one of the im-
portant problems in Genome Informatics. The notable fea-
ture of this problem is that its state-space forms a lattice.
Researchers have applied search agorithms such as A* and
memory-bounded search algorithms including SNC to this
problem. Unfortunately, previous work could align only
seven sequences at most. Korf proposed DCBDS, which ex-
ploitsthe features of a grid, and suggested that DCBDS prob-
ably solved this problem, effectively. We found, however,
that DCBDS was not effective for aligning many sequences.
In this paper, we propose a simple and effective search algo-
rithm, A* with Partial Expansion, for state-spaces with large
branching factors. The aim of this algorithm isto store only
necessary nodes for finding an optimal solution. In node ex-
pansion, A* storesall child nodes, while our algorithm stores
only promising child nodes. Thismechanism enablesustore-
duce the memory requirements during a search. We apply our
algorithm to the multiple sequence alignment problem. It can
align seven sequences with only 4.7% of the stored nodes re-
quired by A*.

I ntroduction

The multiple sequence alignment problem isto align several
biologica sequencesand to extract the common pattern. The
alignment is used in various ways for biological sequence
analysis in Genome Informatics. We can define the multi-
ple sequence alignment problem as the problem of finding
the shortest path in alattice. The state-spaceis far different
from those of typical search problems such as the dliding-
tile puzzle and the maze. There are huge numbers of paths
through the same node, because the state-space forms a lat-
tice and the branching factor is O(2%), when d is the number
of sequencesto bealigned. The multiple sequencealignment
problem has notabl e featuresthat have not been dealt with in
the Al search community.

Ikeda and Imai applied the A* algorithm to the multiple
seguence alignment problem (Ikeda & Imai 1994). A* must
store all child nodes and because of the large branching fac-
tors involved, the memory requirements of A* grow rapidly
with search progress. Due to memory constraints, A* can-
not align more than seven sequences. On the other hand,

Copyright © 2000, American Association for Artificia Intelli-
gence (www.aaai.org). All rights reserved.

linear-space search algorithms such as IDA* (Korf 1985)

cannot align more four sequences because of the large num-

ber of revisits. We proposed SNC (Miura & Ishida 1998),

which can effectively reduce the number of revisits needed
by IDA*. SNC, however, cannot align more than seven se-

guences. Korf was inspired by our research and proposed
DCBDS (Korf 1999). Thisinteresting algorithm exploitsthe
features of agrid, stores only the Open list, and performs a
series of bi-directional searches. Korf claimed that DCBDS
is most effective for a state-space that grows polynomially
with problem size, but contains large numbers of short cy-
cles. Weapplied DCBDS to the multiple sequencealignment
problem, which wasmentioned asone of theimportant appli-
cationsin his paper. Wefound that not storing the Closed list
did not effectively reducethe memory requirements, because
the Openlist ismuch larger than the Closed list in the search-
spacein this case. This weaknessis due to the wide distri-

bution of edge costs and arelatively accurate heuristic func-

tion. What isworse, DCBDS cannot prevent the search from
leaking back into the closed region, when the state-spaceis
adirected graph.

We propose a simple and effective search algorithm, A*
with Partial Expansion; it exploits the features of a lattice
and effectively reduces the memory requirements. To eval-
uate the power of our algorithm, we apply it to the multiple
sequence alignment problem. We show that it effectively re-
ducesthe memory requirements compared to A* and discuss
the relation to other search algorithms.

The multiple sequence alignment problem

The alignment of many biological sequences is demanded
in various important fields in molecular biology. A biolog-
ical sequence is composed of alphabetic characters repre-
senting its constituents. For example, one protein sequence
consists of 20 amino acids. Figure 1 shows a part of the
aligned sequences. Hyphens, or gaps, are inserted into the
seguences so that the same, or similar, charactersoccupy the
same columns.

In the multiple sequence alignment problem, we want to
find the optimal alignment, which is associated with amini-
mum cost. The cost of the alignment is given by the sum of
the costs of pairwisealignments. Inapairwisealignment, the
cost of each column is given by the modified PAM-250 ma-
trix in which each sign of scoreis reversed (Figure 2). The

Hal GASQADNAVLWAA- D- - - D- GV- QP- QTQEHVFLARTLG CGELI VAVNKMD- L- VDYGESEYKQWBEV- KDLL TQVRFDSENAK
Met GASQADAAVL VWNVDDA- - KSG - QP- QTREHVFLI RTLGVRQLAVAVNKMD- T- VNFSEADYNELKWM GDQLLKM GFNPEQ N
Tha GI'SQADAAI LVI SARDG- - E- GV- ME- QTREHAFLARTLGVPQWVAI NKVDATSPPYSEKRYNEVADA- EKLLRSI GFK-D-1'S
The GASQADAAVLWAV- T- - - D- GV- MP- QTKEHAFLARTLG NNI LVAVNKMVD- M- VNYDEKKFKAEQV- KKLLMVLGYK- N- FP
Sul GASQADAAI LVWWSAKKGEYEAGVBAEGQTREH! | LSKTMAE NQVI VAI NKMDLADTPYDEKRFKEID V- SKFMKSFGFDMNKVK
Ent GI'SQADVAI LI VAAGTGEFEAG SKNGOQTREHI LLSYTLGVKQM VGVNKMD- A- | QYKQERYEEIKEI! - SAFLKKTGYNPDKI P
Pla GTI'SQADVAL L VWWPADVGG-DGAFSKEGQTKEHVL LAFTLGVKQ VWGVNKMD- T- VKYSEDRYEEIKEV- KDYLKKVGYQADKVD
Sty GI'SQADAAI LI | ASGQGEFEAG SKEGQTREHAL LAFTMGVKQM VAVNKVDDKSVNWDQGRFI EIKEL - SDYLKKI W.QPRQDP

Figure 1: A part of the aligned eight sequences

g 17
g of2
T 2FL [3
Pl 3f1| of6
NEFATTE
g 3fL| o] 1fLf5
N 4FT[o] [o] of2
D 5| of o] [ofL f2 4
B[5] 0] o] Z| 0| OFL[3[4
CEEEEEEREEE
H 3l 2] z[o| | 2f2FzF1F3F6
R 4] 0] 1] o] 2| 3| 0] L] LfLf2}6
K 5] 0] o] I] £| 2fL| 0| OfZ| OF3F5
51 2| 1| 2| 1| 3| 2| 3| 2| &| 2| O] Of6
121 [o] 2[2| 3] 2| 2| 2| 2[2| 2| 2F2 f5
Ll 6] 3] 2| 3] 2| 4| 3| 4| 3| 2| 2| 3| 3F4F2F6
2| 1| 0| L] 0| I| 2| 2| 2| 2| 2| 2| 2F2F4 2] -4
B[4] 3] 3] 5] 4] 5| 4] 6| 5| 5| 2| 4| 5| OFZF2| 1f9
Y 0| 3] 3| 5] 3| 5| 2| 4| 4| 4] o| 4| 4| 2| | | 2f7 10
W el 25| 6| 6| 7| 4] 7| 7| 5| 3F2] 3| 4| 5| 2| 6| 0| Of 174
QS TTARAGNDODEQHRKMI|L Fl Y W

Figure 2: The modified PAM-250 matrix

PAM-250 matrix represents the mutation distance between
two amino acids or characters (Dayhoff et al. 1978).

Formulation as the shortest path problem

The multiple sequence alignment problem can be formu-
lated asthe shortest path problemin the d-dimensional lattice
(Carrillo & Lipman 1988). Let d bethe number of sequences
to be aligned and .S;, be the k-th sequence.

L(S1,..,54) State-space which is a d-dimensional lat-
tice. i-th axis correspondsto S;.
s The start node.
t The target node.
0% Path fromstotin L(Sy, .., Sa).
k Thelength of 4.

n; Thei-th nodeof v (0 < i < k).
m(7y) Cost of 7.

U, v Nodein L(S, .., Sq).
(u,v) Edgein L(S1, .., Sa).
e(u, v) Cost of (u,v).

Thenotations such as~;; and u;; represent the projections of
v and u onto the planedetermined by S; and S;, respectively.
The path + also can be represented as a sequence of nodes
{no,n1,...,n;},whereng = sand nj, = ¢.

For any given set of d sequences Sy, . . ., Sq, We can de-
finethe state-space of the multiple sequence alignment prob-
lem. This state-space can be obtained by making the Carte-
sian product of N sequences (see Figure 3). It forms a d-
dimensional lattice. The node that correspondsto the begin-
ning of all the sequencesis the start node. The node that cor-
responds to the end of all the sequencesis the target node.
The path 4 from the start node to the target node in this lat-
tice determinesaunique alignment of d sequences. Thereisa
one-to-one relationship between the path and the alignment.
The i-th edge of the path corresponds to the i-th column of
the alignment. The pairwise alignment of i-th and j-th se-
quences corresponds to the path +;;, which is the projection
of ~ onto the plane determined by the sequences .S; and S;.

Figure 3 depicts the state-space representation of the mul-
tiple sequence alignment problem of three sequences.S; =
ACGH, S; = CFG and S3 = EAC. Inthis 3-dimensional lat-
tice, the top left-hand corner isthe start node and the bottom
right-hand corner is the target node. The path drawn with
bold line corresponds to the alignment at the lower right of
Figure 3. Thefirst edge (ng, n1) of this path corresponds to
the first column of the alignment, (—, —, E).

In the d-dimensional lattice state-space, the cost of the
edge (u, v) is defined asfollows.

e(u,v) = Z e(uij, vij)

1<i<j<d

The edge (u;;,v;;) is the projection of (u,v) onto the S;-
S; plane (See Figure 4). In the 2-dimensiona lattice, each
row and column corresponds to each character in the se-
quences S; and S;, respectively. The diagona edge asso-
ciates S; and S;, while horizontal and vertical edges repre-
sent the insertions of gaps into the pairwise alignment. The
cost c(u;;, v;;) isgiven by the value of the modified PAM-
250 matrix, which corresponds to their characters. Figure
4 depicts the 2-dimensional path which is the projection of
the 3-dimensional path of Figure 3. In this figure, path
12 corresponds to the alignment of two sequences, S; and
S,. The second edge (ns,,, n3,,) is the projection of the
3-dimensional edge (n2, n3) onto the S;-S; plane. This
diagonal edge corresponds two characters, C, C. The cost
e(na,,, n3,,) isgiven by p(c, ¢), which representsthe value
of the PAM-250 matrix corresponding to charactersCand C.
On the other hand, the first horizontal edge (n1,,, n2,,) iS
the projection of (ny, n2) and corresponds a character and a
gap, A, -. The cost of this edge is given by p(a,—). The
— represents the gap and p(X, —) or p(—, X) gives the gap

<before alignnent >

A
QD
=
~—
o
=
=3

Q
2
j}
=4
Y%

Figure 3: State-space representation
sat A C G H

<before alignment>

C ACGH
CFG
F V%
G <after alignment>
AC- GH
Tar get
- CF G-

Figure 4: The projection of 3-dimensional path to the S -5,
plane

cost for any character X. Thereis no corresponding edge
for ¢(ng, n1), because the projection of 3-dimensional edge
¢(ng, ny) onto the S;-S, planeis apoint. Thus, p(—, —)
gives 0 cost, because the pair (—, —) makes no contribution
to the pairwise alignment.

Using this definition, we can calculate the cost of the d-
dimensional path that corresponds to the alignment of the d
sequences. The cost of the path is given by the sum of the
edge costs of the path.

E—1

m(y) =Y e(ni, nita).

=0
Finding the shortest path in d-dimensional lattice is to find
the optimal alignment of d-sequences. In Figure 3, ¢(ny, na)
representsthe cost of the edge, which correspondsto column
(&, —,4) of theaignment, and equals p(&, —) + p(4,4) +
p(—,4).

(Usi r?g this formulation and the gap cost of 8, Ikeda and
Imai (Ikeda& Imai 1994) successfully applied the A* algo-
rithm to the multiple sequence alignment problem. In Ikeda
and Imai’s experiment, the following heuristic function was

used.
h(v)= Y hi(vij)
1<i<j<d

whereh;; (v;;) representsthe shortest path length from v;; to
t;; inthe2-dimensional latticefor S; and S;. h3; iscomputed
by the dynamic programming for each pair of .S; and S; be-
fore the search algorithm is applied. In a high dimensional
problem such as aligning seven or eight sequences, the time
and space needed for the dynamic programming are negligi-
ble compared to those taken for solving the problem and do

not increase time and space complexity. This heuristic func-
tion is admissible and consistent (lkeda & Imai 1994).

Problem features

The multiple sequence alignment problem has some remark-
able features compared to search problems common in the
Al search community, such as the dliding-tile puzzle and
the maze. Previous work has applied search algorithms to
this problem without taking thesefeaturesinto consideration.
Thefeatures of the multiple sequencealignment problem are
asfollows.

State-space The state-space forms a lattice. Therefore,
therearealarge number of distinct pathsto the samenode.

Branching factor The branching factor isvery large. It be-
comes O(2%), where d is the number of sequences to be
aligned. Whend = 7 and d = 8, for example, the maxi-
mum branching factor becomes 127 and 255, respectively.

Distribution of edgecost In the caseof ahigh dimensional
|attice, the edge cost ¢(u, v) cantake on alarge number of
distinct values.

These features are the reasons why IDA* and A* are not
effective against the multiple sequence alignment problem.
Linear-space search such as IDA* must generate every dis-
tinct path to agiven node. In the | attice state-space, there are
alarge number of distinct paths dueto the very large branch-
ing factor, and the number of revisits becomes very large.
What is worse, each iteration relatively expand few nodes,
since most paths have different costs due to the wide distri-
bution of edge cost, and the number of iterations becomes
very large. Consequently, thereislittle or no hope of linear-
space search algorithms such as IDA* solving this problem
in practical timebecauseof thelarge number of iterationsand
revisits. On the other hand, best-first search algorithms such
as A* cannot solve high dimensional problems given their
large memory requirements. Since the branching factor is
very large, many child nodes are generated and stored when
anodeis expanded. The Open list grows rapidly with search
progress and consists of those nodes that might be expanded
in the future. Among them, there are some nodes that will
never be expanded during a search. It is useless and waste-
ful to store such nodes. Consequently, A* searchesoften fail
becauseit stores such nodes.

A* with Partial Expansion

It seemslogical not to store unpromising nodes; this reduces
the spacecomplexity at the cost of solution quality. Recently,

this was mentioned as domain-independent pruning rule for
beam search (Zhang 1998). Adopting this idea, we present a
new admissiblealgorithm, A* with Partial Expansion, which
reduces the memory requirements of A*. In Partial Expan-

sion, if anode has unpromising child nodes after expansion,

then the node is put back into the Open list and its priority is
lowered.

Thealgorithm

In addition to ¢(n, n;) and h(n) described in the previous
section, we use the following notations. g(n) is the short-
est path length from the start node s to the node n found so

far. f(n) isthe static value of node n, which is given by
f(n) = g(n) + h(n). F(n) isthe stored value of node n.
F(n) equalsthelowest f-valueamongall unpromising child
nodes of n. C' isapredefined and nonnegative cutoff value.

We want to store only those nodes that promise to reach
thetarget nodes. For this purpose, we introduce cutoff value
parameter C. Thechild nodeisregarded aspromising and is
stored when the f-valueof the child nodeislessthan or equal
to C' plus the F-value of its parent node. Otherwise, the
child node is regarded as unpromising, and is not stored. To
guarantee optimality, our algorithm uses an additional stored
value F'(n). If noden hasunpromising child nodes after ex-
pansion, then n is put back into the Openlist with 7'(n). Ini-
tialy, the F'-value of a node equals its f-value. After ex-
pansion of node n, our algorithm sets the F'(n) to the low-
est f-value among its unpromising child nodes. A* expands
nodes in incremental order of f-value, while our algorithm
expands nodes in incremental order of F'-value. If there are
no promising child nodes, then it does not store child nodes
at all and only revises the parent’s F'-value to the lowest f-
value among unpromising child nodes. In this case, in other
words, it only lowers the priority of its parent node for ex-
pansion.

The pseudo-code of our agorithm is as follows. In this
code, T" represents the set of target nodes, and succ(n) rep-
resents the set of child nodes of anode . The cutoff value
C'isgiven in advance.

Algorithm A* with Partial Expansion
g(s):=0

F(s) :=g(s) + h(s)

3 OPEN — {s}

4 CLOSED «— @

5 while OPEN # ¢ do

6 n:=arg min F'(n;),n; € OPEN

2

8

9

N =

OPEN — OPEN = {n}
if n € T thenreturn
SUCC<c — {n; | n; € succ(n), f(n;) < F(n)—l—C}

10 SUCCsc « {nk | nx € succ(n),f(k) > F(n)+C}
11 for each n; € SUCC«¢ do
12 if n; ¢ OPEN U CLOSED then
13 (m) =g(n)+ c(n, n;)
4 F(m) = g(m) + h(n)
15 OPEN — OPEN U{m;}
16 elseif n; € OPEN and
g(n) + ¢(n, n;) < g(n1) then
17 (m) =g(n) + c(n, n;)
18 F(m) :=g(m) + h(ni)
19 eseif n; € CLOSED and
g(n) + ¢(n, n;) < g(n;) then
20 (m) =g(n) + c(n, n;)
21 F(m) :=g(m) + h(ni)
22 CLOSED « CLOSED —{n:}
23 OPEN — OPEN U {n;}
24 end if

25 end for each
26 if SUCCsc = 0 then

27 CLOSED — CLOSED U {n}

28 ese

29 F(n) := min f(nm), nm € SUCCsc
30 OPEN — OPEN U {n}

31 endif

32 end while

In this code, there are some additional operations beyond
those of A*. In order to selectively store child nodes, we
need the operations shown on line 9 and 10 in the pseudo-
code. Lines 2, 14, 18, 21 and 29 are needed to manage F'-
value. The operation on line 30 puts an expanded node back
into the Open list.

In extreme cases, when C' = oo, our algorithm is identi-
cal to A*. On the other hand, when C' = 0, it stores nodesin
best-first order, so those nodeswhose f-val ue exceed the op-
timal cost will never be stored. This meansthat we can per-
form a search with the same size of memory as the Closed
list used by A*.

Thus, our algorithm is very effective for those problems
wherein the ratio of the Open list to the Closed list is large.
Suppose that we apply A* to the problems where the state-
space forms a tree and the branching factor is 5. Then the
ratio of the Open list to the Closed list becomess — 1 to 1.
We can reduce the memory requirements by a factor of the
branching factor b, since our algorithm only needs the same
size of memory asthe Closed list by A*. The branching fac-
tor of the multiple sequence alignment problemisvery large
as described in the previous section. In this case, we can ef-
fectively reduce the memory requirements by a factor of a
few hundred in the best case. Thus, the effect of our algo-
rithmis non trivial for this application.

Search behavior of A* with Partial Expansion

Figure 5 shows the search behavior of our agorithm when
C = 0. Thesolid circlesrepresent stored nodes and the dot-
ted circlesrepresent unstored nodes. Thedigitsin thecircles
represent the F'-value, i.e. expansion priority. The digits on
theright side of the arrow represent revised F'-value after ex-
pansion. Thedigits on thetop left of the circlesrepresent the
order of expansion.

Figure 5(a) shows the first expansion. The F'-value of
node A isinitialized to its f-value, 6. Only one child node
B is stored at this expansion, because the f-value of node B
equalsthe F-value of node A. We revise F'-value of node A
to the lowest f-value, 7, among all unpromising child nodes
and put node A back into the Open list. Figure 5(b) shows
the second expansion. Node B with thelowest F'-valueisex-
panded. There are no child nodes with the same f-value as
the F'-value of B, so no child nodes are stored in this expan-
sion. We put node B back into the Open list after revising its
F-valuetothelowest f-value, 8, amongall child nodes. Fig-
ure 5(c) shows the third expansion. Node A with the lowest
F-valueis expanded again and child node C is stored. We set
F-value of node A to 9 and puts node A back into the Open
list.

In the samesearch space, it isnecessary for A* to storethe
nodes represented by the dotted circlesin addition to those
stored by our algorithm. That is to say, we can find the opti-
mal solution with fewer stored nodesthan A*.

Evaluation
Experiment

In our experiments, we used the same conditions asin Ikeda
and Imai’s experiments, as mentioned before. We use 21 se-

(80910
(b) The second expansion

83910 819110 (7) 8 11}

(c) Thethird expansion (Ej) Theforth e>£pansion

Figure 5: Search behavior of A* with Partial Expan-
sion(C=0)

quences from various species', which code for the elonga-
tion factor (EF-TU, EF-1«). Theaverage length of these se-
guencesis 448. Thefirst seven of the 21 sequences are the
sameasthosein their experiments. Weapplied our algorithm
and A* to ten instances of seven and eight sequence align-
ment problems, respectively. It is natural for the maximum
number of sequences, which arealigned by each searchalgo-

rithm, to depend on sequence length, cost function, heuris-
tic function and so on. We, however, can use their setting
as benchmark test, because previous work also usesthis set-

ting to evaluate search algorithms. Each instance consists of
seven or eight sequencesthat were randomly selected from
21 sequences. The maximum number of nodes stored by

both algorithmsis 2,000,000. This correspondsto about 160
megabytes of memory. For each instance, we assess perfor-

mance from the cumulative number of expanded nodes and
the maximum number of stored nodeswith the cutoff values
(C) of 0,10,50 and co. When C' = oo, our algorithm is
identical to A*. The cumulative number of expanded nodes
corresponds to computational complexity and the number of

These species are as follows. (0) haloacula marismortui, (1)
methanococcus vannidlii, (2) thermoplasma acidophilum, (3) ther-
maococcus celer, (4) sulfolobus acidocaldarius, (5) entamoeba his-
tolytica, (6) plasmodium falciparum, (7) stylonychia lemnae, (8)
euglena gracilis,(9) dictyostelium dscoideum, (10) lycoperscon es-
culentum, (11) arabidopsis thaliana, (12) absidia glauca, (13) rhi-
zomucor racemosus, (14) candida albicans, (15) saccharomyces
cerevisiae, (16) onchocerca volvulus, (17) artemia salina, (18)
drosophila melanogaster, (19) xenopus laevis, (20) homo sapiens.
The figure in a parenthesis corresponds to sequence number in this
paper. These sequences are available in Genome database on the
WWW.

Stored nodes
900000 +

Cumulative expanded nodes -]

800000 |-
700000 |-
600000 |-
500000 |-
400000 |-
300000 |-|
200000 | |

Number of nodes

100000
O L L L L
0 100 200 300 400
cutoff(C)

Figure 6: Number of stored and cumulative expanded nodes
for each cutoff value(the seven sequence alignment)

stored nodes corresponds to space complexity.

Table 1 and 2 show the experimental results for the seven
and the eight sequence alignment problems. The results are
very similar. Due to space limitations, we show only the
results of five instances. In the case of A*, the cumulative
number of expanded nodes equals the number of nodes in-
cluded in the Closed list, because the heuristic function we
used is consistent. This valueis approximately equal to the
number of stored nodesin the case of C' = 0. This shows
that our algorithm can perform a search with just the same
size of memory as the Closed list used by A*. Averaging
thefiveinstances, the cumulative number of nodes expanded
by our algorithm is about 5 times larger than that by A*,
due to re-expansion of the same node. On the other hand,
we can reduce the number of stored nodes to 4.7% of what
A* requires. In addition, our algorithm can aign the eight
seguences, while A* cannot because it demands excessive
memory. This result shows the effectiveness of our algo-
rithm against the multiple sequence alignment problem.

Figure 6 showsthe cumulative number of expanded nodes
and the number of stored nodes for various cutoff valuesin
the case of afirst instance of the seven sequence alignment
problem. In this instance, the maximum difference in f-
values between anode and its child is 396. When C' > 396,
our algorithmisvirtually identical to A* becauseit storesall
child nodes for each expansion. Figure 6 showsthat we can
effectively reduce the number of stored nodes, while the cu-
mulative number of expanded nodesincreasesonly alittle if
the cutoff valueisappropriate. Inthecaseof C' = 50, for ex-
ample, our algorithm reduces the memory requirements by
87%, while the computational complexity increasesby only
20% compared to A*.

In Figure 6, it seems that the number of stored nodes is
proportional to the cutoff value, while the cumulative num-
ber of expanded nodesisinversely proportional to the cutoff
value. Theintuitive explanation is as follows. Asto the cu-
mulative number of expanded nodes, every node n, whose
f-vaue is lower than the cost of an optimal solution path,

Table 1: Experimental results for the seven sequence alignment problem

| instance | sequence number]| cutoff I 0 | 10 | 50 | oco(A*)]

1 0,123, Cumulative Expansion 344,640 129,986 59,592 48,575

45,6 Stored Nodes 48,882 53,948 107,157 839,150

2 0,1,2,8, Cumulative Expansion 234,582 101,211 53,504 44,405

10,14,17 Stored nodes 45,144 49,956 87,987 911,218

3 0,2,4,7, Cumulative Expansion 169,618 82,499 45,859 38,639

8,14,15 Stored Nodes 38,810 42,851 75,045 859,307

4 5,7,8,9, Cumulative Expansion 30,702 19,249 12,644 11,650

10,12,18 Stored Nodes 11,877 13,031 22,801 451,033

5 0,3,6,9, Cumulative Expansion 463,446 | 210,544 107,432 85,437

11,12,19 Stored Nodes 86,611 94,853 164,879 1,576,920

Table 2: Experimental results for the eight sequence alignment problem
| instance | sequence number]| cutoff I 0 | 10 | 50] ooA*)]

1 0,1,2,3, Cumulative Expansion 6,945,069 | 1,956,430 804,602 || unsolvable
4,5,6,7 Stored Nodes 545,114 596,782 931,689

2 0,3,4,10, Cumulative Expansion 6,090,700 | 2,123,360 935,680 || unsolvable
14,16,17,18 Stored Nodes 648,240 702,099 | 1,133,568

3 0,2,5,9, Cumulative Expansion 1,162,528 525,715 265,425 || unsolvable
11,12,16,19 Stored Nodes 213,999 238,323 461,453

4 1,4,9,10, Cumulative Expansion 6,321,726 | 2,095,884 899,443 || unsolvable
12,15,16,20 Stored Nodes 635,294 697,740 | 1,165,797

5 0,1,34, Cumulative Expansion || 13,938,989 | 3,953,400 | 1,580,348 || unsolvable
6,11,14,17 Stored Nodes 1,016,453 | 1,098,194 | 1,639,663

hasto be stored by our algorithm. If the cutoff valueislarge,
the cumulative number of expanded nodesisrelatively small,
because the expansion of a node stores many child nodes.
On the other hand, with alow cutoff value, the cumulative
number of expanded nodesisrelatively large becausethe ex-
pansion stores few child nodes. Asto the number of stored
nodes, it is proportional to the cutoff value. Thisis because
the number of stored node, whose f-value is more than the
cost of an optimal solution path, increases asthe cutoff value
increases.

The number of stored nodes for eight sequencesis about
ten times larger than that for seven sequencesin the case of
C' = 0 in our experiments. This implies that the memory
requirements for the nine sequence alignment problem may
beten timeslarger than that for the eight sequencealignment
problem. Accordingly, we cannot currently align more than
eight sequencesby algorithms based on A*, including our al-
gorithm, under the common memory capacity.

Related wor k

SMA* (Russel 1992) and RBFS (Korf 1993) were proposed
to avoid the memory problems of A*. In this section, we
compare our algorithm to these algorithms. All explore
nodesin best-first order, however, there are some differences
between them.

A* Our algorithm isidentical to A*, when the cutoff value
C = oo. Thus, it includes A* as the special case. Our
algorithm stores nodes in best-first order and never stores
nodes whose evaluated costs are larger than the cost of an

optimal solution path when C' = 0. It reduces the space
complexity at the cost of node re-expansion overhead. As
the experimental results show, however, we can effec-
tively reduce the space complexity while only dlightly in-
creasing the computational complexity by selecting the
appropriate cutoff value.

RBFS (Korf 1993) RBFSisalinear-space best-first search
algorithm. For each recursive call, RBFS usesalocal cost
threshold, which enables it to explore nodes in best-first
order. Thethreshold value equalsto the cost of its lowest-
cost brother. On the other hand, our algorithm memorizes
the cost of itslowest-cost unpromising child for each node
and reducesthe space complexity without losing admissi-
bility. Unfortunately, RBFS cannot avoid revisits because
it stores only nodes along the current search path. Our al-
gorithm has advantages over RBFS when the state-space
forms a lattice, because there are no revisits in our algo-
rithm.

SMA* (Russel 1992) SMA* behaves like A* until SMA*
stores the maximum number of nodes. When the number
of stored nodes reachesthe limit, SMA* prunes the node
with highest cost in the Open list and continues to search.
On the other hand, our agorithm stores only promising
nodes and never prunes them. Hereis an essential differ-
ence between the algorithms. The algorithm of SMA* is
much more complicated than that of A*. In addition, we
have to use more complicated version of SMA* (Kaindl
& Khorsand 1994), when we apply SMA* to problems
whose state-spaceisagraph. Our algorithmisvery smple

with little modification of the A* algorithm and is applica-
ble to graph problems without any modification.

Conclusion

We have proposed a simple and effective search algorithm,
A* with Partial Expansion, to reduce the memory require-
ments of A* for problems wherein the branching factor is
large. It reducesthe space complexity of A*, without losing
themeritsof A*. Itisadmissibleif aheuristic function isad-
missible. Consequently, we can solve problems wherein the
branching factor is large, while A* cannot due to its exces-
sive memory requirements.

We applied our algorithm and A* to the multiple sequence
alignment problem. Experimenta results show our algo-
rithm can, on average, align seven sequenceswith only 4.7%
of the amount of memory required by A*. Wealso applied it
to the eight sequencealignment problem, which hasnot been
solved up to now, and successfully aligned eight sequences.

In typical search problems such asthe dliding-tile puzzle,
the branching factor ismuch smaller than it isin themultiple
seguence alignment problem. For such problems, our algo-
rithm may be less effective in reducing the amount of mem-
ory, compared to the case of the multiple sequence align-
ment problem. However, there are several important appli-
cations for which our algorithm will be effective. One such
application is the route finding problem in cities with mas-
sive and complicated road networks. Usually, the data of a
road network occupies a huge volume. It cannot be fitted
into main memory andis stored in ageographical databasein
secondary memory or in distributed databasesover the I nter-
net. Suppose that we want to find the shortest route from our
house to the nearest bookstore. In a complicated city, there
are countless routes because of the many intersections and
transportation methods; the branching factor of this problem
isvery large. Most routes, such asarouteto Parisby airplane
or to a station by taxi, are useless for finding the shortest
route. Thus, it isdifficult to directly apply A* to thisapplica
tion. In order to reduce the memory requirements, such use-
lesschoicesareeliminated when an application isformalized
by the search problem. However, it isdesirablefor the search
algorithm to be capable of coping with such useless choices
instead of manually eliminating them from the model. The
importance of our algorithm lies in its applicability to real
world applications.

References

Carrillo, H., and Lipman, D. 1988. The multiple se-
guence alignment problem in biology. SAM Journal Ap-
plied Mathematics 48: 1073-1082.

Dayhoff, M. O.; Schwartz, R. M.; and Orcultt, B. C. 1978.
Atlasof protein sequenceand structure, volume5, 345-352.
National Biomedical Research Foundation.

Ikeda, T., and Imai, T. 1994. Fast A* algorithms for multi-
ple sequencealignment. Genome I nfor matics \Wor kshop 94,
90-99.

Kaindl, H., and Khorsand, A. 1994. Memory-bounded bidi-
rectional search. AAAI-94, 1359-1364.

Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search, Artificial Intelligence 27, 97-
109.

Korf, R. E., 1993. Linear-space best-first search, Artificial
Intelligence 27, 97-109.

Korf, R. E. 1999. Divide-and-conquer bidirectional search:
first results. Proc 1JCAI-99, 1184-1189.

Miura, T., and Ishida, T. 1998. Stochastic node caching for
memory-bounded search. AAAI-98, 450-456.

Russel, S., 1992. Efficient memory-bounded search meth-
ods. ECAI-92, 1-5.

Zhang, W., 1998. Complete anytime beam search. AAAI-98,
425-430.

