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Abstract

The multiple sequence alignment problem is one of the im-
portant problems in Genome Informatics. The notable fea-
ture of this problem is that its state-space forms a lattice.
Researchers have applied search algorithms such as A* and
memory-bounded search algorithms including SNC to this
problem. Unfortunately, previous work could align only
seven sequences at most. Korf proposed DCBDS, which ex-
ploits the features of a grid, and suggested that DCBDS prob-
ably solved this problem, effectively. We found, however,
that DCBDS was not effective for aligning many sequences.
In this paper, we propose a simple and effective search algo-
rithm, A* with Partial Expansion, for state-spaces with large
branching factors. The aim of this algorithm is to store only
necessary nodes for finding an optimal solution. In node ex-
pansion, A* stores all child nodes, while our algorithm stores
only promising child nodes. This mechanism enables us to re-
duce the memory requirements during a search. We apply our
algorithm to the multiple sequence alignment problem. It can
align seven sequences with only 4.7% of the stored nodes re-
quired by A*.

Introduction
The multiple sequence alignment problem is to align several
biological sequences and to extract the common pattern. The
alignment is used in various ways for biological sequence
analysis in Genome Informatics. We can define the multi-
ple sequence alignment problem as the problem of finding
the shortest path in a lattice. The state-space is far different
from those of typical search problems such as the sliding-
tile puzzle and the maze. There are huge numbers of paths
through the same node, because the state-space forms a lat-
tice and the branching factor is �������
	 , when � is the number
of sequences to be aligned. The multiple sequence alignment
problem has notable features that have not been dealt with in
the AI search community.

Ikeda and Imai applied the A* algorithm to the multiple
sequence alignment problem (Ikeda & Imai 1994). A* must
store all child nodes and because of the large branching fac-
tors involved, the memory requirements of A* grow rapidly
with search progress. Due to memory constraints, A* can-
not align more than seven sequences. On the other hand,
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linear-space search algorithms such as IDA* (Korf 1985)
cannot align more four sequences because of the large num-
ber of revisits. We proposed SNC (Miura & Ishida 1998),
which can effectively reduce the number of revisits needed
by IDA*. SNC, however, cannot align more than seven se-
quences. Korf was inspired by our research and proposed
DCBDS (Korf 1999). This interesting algorithm exploits the
features of a grid, stores only the Open list, and performs a
series of bi-directional searches. Korf claimed that DCBDS
is most effective for a state-space that grows polynomially
with problem size, but contains large numbers of short cy-
cles. We applied DCBDS to the multiple sequence alignment
problem, which was mentioned as one of the important appli-
cations in his paper. We found that not storing the Closed list
did not effectively reduce the memory requirements, because
the Open list is much larger than the Closed list in the search-
space in this case. This weakness is due to the wide distri-
bution of edge costs and a relatively accurate heuristic func-
tion. What is worse, DCBDS cannot prevent the search from
leaking back into the closed region, when the state-space is
a directed graph.

We propose a simple and effective search algorithm, A*
with Partial Expansion; it exploits the features of a lattice
and effectively reduces the memory requirements. To eval-
uate the power of our algorithm, we apply it to the multiple
sequence alignment problem. We show that it effectively re-
duces the memory requirements compared to A* and discuss
the relation to other search algorithms.

The multiple sequence alignment problem
The alignment of many biological sequences is demanded
in various important fields in molecular biology. A biolog-
ical sequence is composed of alphabetic characters repre-
senting its constituents. For example, one protein sequence
consists of 20 amino acids. Figure 1 shows a part of the
aligned sequences. Hyphens, or gaps, are inserted into the
sequences so that the same, or similar, characters occupy the
same columns.

In the multiple sequence alignment problem, we want to
find the optimal alignment, which is associated with a mini-
mum cost. The cost of the alignment is given by the sum of
the costs of pairwise alignments. In a pairwise alignment, the
cost of each column is given by the modified PAM-250 ma-
trix in which each sign of score is reversed (Figure 2). The
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Hal GASQADNAVLVVAA-D---D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMD-L-VDYGESEYKQVVEEV-KDLLTQVRFDSENAK
Met GASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMD-T-VNFSEADYNELKKMIGDQLLKMIGFNPEQIN
Tha GTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSPPYSEKRYNEVKADA-EKLLRSIGFK-D-IS
Thc GASQADAAVLVVAV-T---D-GV-MP-QTKEHAFLARTLGINNILVAVNKMD-M-VNYDEKKFKAVAEQV-KKLLMMLGYK-N-FP
Sul GASQADAAILVVSAKKGEYEAGMSAEGQTREHIILSKTMGINQVIVAINKMDLADTPYDEKRFKEIVDTV-SKFMKSFGFDMNKVK
Ent GTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMD-A-IQYKQERYEEIKKEI-SAFLKKTGYNPDKIP
Pla GTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMD-T-VKYSEDRYEEIKKEV-KDYLKKVGYQADKVD
Sty GTSQADAAILIIASGQGEFEAGISKEGQTREHALLAFTMGVKQMIVAVNKMDDKSVNWDQGRFIEIKKEL-SDYLKKIWLQPRQDP

Figure 1: A part of the aligned eight sequences
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Figure 2: The modified PAM-250 matrix

PAM-250 matrix represents the mutation distance between
two amino acids or characters (Dayhoff et al. 1978).

Formulation as the shortest path problem
The multiple sequence alignment problem can be formu-
lated as the shortest path problem in the � -dimensional lattice
(Carrillo & Lipman 1988). Let � be the number of sequences
to be aligned and 
�� be the � -th sequence.� ��
����
������
 � 	 State-space which is a � -dimensional lat-

tice. � -th axis corresponds to 
�� .� The start node.�
The target node. Path from � to

�
in
� ��
!���
������
 � 	 .� The length of  ." � The � -th node of  ��#�$%�&$%�!	 .' �  	 Cost of  .( ��) Node in

� ��
!���
������
 � 	 .� ( �*)+	 Edge in
� ��
 � �
������
 � 	 ., � ( ��)�	 Cost of � ( ��)�	 .

The notations such as  �.- and ( �.- represent the projections of and ( onto the plane determined by 
 � and 
 - , respectively.
The path  also can be represented as a sequence of nodes� "0/ � " ���
�
���
� " � � , where "0/213� and " � 1 � .

For any given set of � sequences 
0�4���
�
����
 � , we can de-
fine the state-space of the multiple sequence alignment prob-
lem. This state-space can be obtained by making the Carte-
sian product of 5 sequences (see Figure 3). It forms a � -
dimensional lattice. The node that corresponds to the begin-
ning of all the sequences is the start node. The node that cor-
responds to the end of all the sequences is the target node.
The path  from the start node to the target node in this lat-
tice determines a unique alignment of � sequences. There is a
one-to-one relationship between the path and the alignment.
The � -th edge of the path corresponds to the � -th column of
the alignment. The pairwise alignment of � -th and 6 -th se-
quences corresponds to the path  � - , which is the projection
of  onto the plane determined by the sequences 
 � and 
 - .

Figure 3 depicts the state-space representation of the mul-
tiple sequence alignment problem of three sequences 
�� 17�8:9+;

, 
0< 1 8�=�9
and 
!> 1@? 7�8 . In this A -dimensional lat-

tice, the top left-hand corner is the start node and the bottom
right-hand corner is the target node. The path drawn with
bold line corresponds to the alignment at the lower right of
Figure 3. The first edge � "0/ � " �*	 of this path corresponds to
the first column of the alignment, �CBD�EBF� ? 	 .

In the � -dimensional lattice state-space, the cost of the
edge � ( �*):	 is defined as follows.

, � ( ��)�	 1 G
�*H �JIK- H �

, � ( �.- �*) �.- 	
The edge � ( �.- �*) �.- 	 is the projection of � ( ��):	 onto the 
 � -
:- plane (See Figure 4). In the � -dimensional lattice, each
row and column corresponds to each character in the se-
quences 
 � and 
 - , respectively. The diagonal edge asso-
ciates 
 � and 
 - , while horizontal and vertical edges repre-
sent the insertions of gaps into the pairwise alignment. The
cost , � ( �.-:�*)
�.-4	 is given by the value of the modified PAM-
250 matrix, which corresponds to their characters. Figure
4 depicts the � -dimensional path which is the projection of
the A -dimensional path of Figure 3. In this figure, path �C< corresponds to the alignment of two sequences, 
L� and
0< . The second edge � " <NMPO4� " >
MQO�	 is the projection of the
3-dimensional edge � " <+� " >
	 onto the 
R� - 
0< plane. This
diagonal edge corresponds two characters, C,C. The cost, � " <EMQOS� " >
MPON	 is given by TR� 8 � 8 	 , which represents the value
of the PAM-250 matrix corresponding to charactersC and C.
On the other hand, the first horizontal edge � " � MPO4� " < MPO�	 is
the projection of � " �U� " <N	 and corresponds a character and a
gap, A,-. The cost of this edge is given by T0� 7 �EBV	 . TheB represents the gap and TR�XW0�EBY	 or T0�ZBD�CW�	 gives the gap
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Figure 3: State-space representation
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cost for any character [ . There is no corresponding edge
for , � "0/ � " ��	 , because the projection of 3-dimensional edge, � "0/ � " �*	 onto the 
0� - 
0< plane is a point. Thus, T0�CBD�EBV	
gives 0 cost, because the pair �ZBD�NBV	 makes no contribution
to the pairwise alignment.

Using this definition, we can calculate the cost of the � -
dimensional path that corresponds to the alignment of the �
sequences. The cost of the path is given by the sum of the
edge costs of the path.

' �  	 1
�4\ �G
�P] /

, � " � � " �P^ �*	N�
Finding the shortest path in � -dimensional lattice is to find
the optimal alignment of � -sequences. In Figure 3, , � " � � " < 	
represents the cost of the edge, which corresponds to column� 7 �EBD� 7 	 of the alignment, and equals TR� 7 �NBV	`_aTR� 7 � 7 	b_T0�ZBD� 7 	 .

Using this formulation and the gap cost of 8, Ikeda and
Imai (Ikeda & Imai 1994) successfully applied the A* algo-
rithm to the multiple sequence alignment problem. In Ikeda
and Imai’s experiment, the following heuristic function was
used. c ��)�	 1 G

��H �JI:- H �
ced
�.- ��) �.- 	

where
c d
�.- ��)
� -4	 represents the shortest path length from )Z� - to� �.- in the � -dimensional lattice for 
 � and 
 - . c d� - is computed

by the dynamic programming for each pair of 
 � and 
 - be-
fore the search algorithm is applied. In a high dimensional
problem such as aligning seven or eight sequences, the time
and space needed for the dynamic programming are negligi-
ble compared to those taken for solving the problem and do

not increase time and space complexity. This heuristic func-
tion is admissible and consistent (Ikeda & Imai 1994).

Problem features
The multiple sequence alignment problem has some remark-
able features compared to search problems common in the
AI search community, such as the sliding-tile puzzle and
the maze. Previous work has applied search algorithms to
this problem without taking these features into consideration.
The features of the multiple sequence alignment problem are
as follows.
State-space The state-space forms a lattice. Therefore,

there are a large number of distinct paths to the same node.

Branching factor The branching factor is very large. It be-
comes �f���:��	 , where � is the number of sequences to be
aligned. When � 1hg and � 1ji , for example, the maxi-
mum branching factor becomes 127 and 255, respectively.

Distribution of edge cost In the case of a high dimensional
lattice, the edge cost , � ( �Z)K	 can take on a large number of
distinct values.
These features are the reasons why IDA* and A* are not

effective against the multiple sequence alignment problem.
Linear-space search such as IDA* must generate every dis-
tinct path to a given node. In the lattice state-space, there are
a large number of distinct paths due to the very large branch-
ing factor, and the number of revisits becomes very large.
What is worse, each iteration relatively expand few nodes,
since most paths have different costs due to the wide distri-
bution of edge cost, and the number of iterations becomes
very large. Consequently, there is little or no hope of linear-
space search algorithms such as IDA* solving this problem
in practical time becauseof the large number of iterations and
revisits. On the other hand, best-first search algorithms such
as A* cannot solve high dimensional problems given their
large memory requirements. Since the branching factor is
very large, many child nodes are generated and stored when
a node is expanded. The Open list grows rapidly with search
progress and consists of those nodes that might be expanded
in the future. Among them, there are some nodes that will
never be expanded during a search. It is useless and waste-
ful to store such nodes. Consequently, A* searches often fail
because it stores such nodes.

A* with Partial Expansion
It seems logical not to store unpromising nodes; this reduces
the space complexity at the cost of solution quality. Recently,
this was mentioned as domain-independent pruning rule for
beam search (Zhang 1998). Adopting this idea, we present a
new admissible algorithm, A* with Partial Expansion, which
reduces the memory requirements of A*. In Partial Expan-
sion, if a node has unpromising child nodes after expansion,
then the node is put back into the Open list and its priority is
lowered.

The algorithm
In addition to , � " � " � 	 and

c � " 	 described in the previous
section, we use the following notations. k�� " 	 is the short-
est path length from the start node � to the node " found so



far. l�� " 	 is the static value of node " , which is given bylR� " 	 1 k!� " 	`_ c � " 	 . m�� " 	 is the stored value of node " .m�� " 	 equals the lowest l -value among all unpromising child
nodes of " . n is a predefined and nonnegative cutoff value.

We want to store only those nodes that promise to reach
the target nodes. For this purpose, we introduce cutoff value
parameter n . The child node is regarded as promising and is
stored when the l -value of the child node is less than or equal
to n plus the m -value of its parent node. Otherwise, the
child node is regarded as unpromising, and is not stored. To
guarantee optimality, our algorithm uses an additional stored
value m�� " 	 . If node " has unpromising child nodes after ex-
pansion, then " is put back into the Open list with mo� " 	 . Ini-
tially, the m -value of a node equals its l -value. After ex-
pansion of node " , our algorithm sets the mo� " 	 to the low-
est l -value among its unpromising child nodes. A* expands
nodes in incremental order of l -value, while our algorithm
expands nodes in incremental order of m -value. If there are
no promising child nodes, then it does not store child nodes
at all and only revises the parent’s m -value to the lowest l -
value among unpromising child nodes. In this case, in other
words, it only lowers the priority of its parent node for ex-
pansion.

The pseudo-code of our algorithm is as follows. In this
code, p represents the set of target nodes, and ��(!,N, � " 	 rep-
resents the set of child nodes of a node " . The cutoff valuen is given in advance.
Algorithm A* with Partial Expansion
1 q+rXsNtvu.wyx
2 z{rXsNt&u w|q:rXsNt�}�~�rXsNt
3 OPEN ����s
�
4 CLOSED ���
5 while OPEN �w�� do
6 � := �E�����{���`z�rX�!�PtZ�C���R� OPEN
7 OPEN � OPEN �2�N�!�
8 if ���f� then return
9 SUCC ���������+�V�4�S�V��sN�: � NrX��tZ�¢¡LrX�
��t&£�z�rX��t�} C �
10 SUCC ¤ � ������¥��4�:¥{��sN�: � NrX��tZ�¢¡LrX�K¥
tv¦�zFrX��t�} C �
11 for each ��§L� SUCC ��� do
12 if � § �� OPEN ¨ CLOSED then
13 q:rX�:§Ptvu.w|q:rX��t�}| NrX�L�¢�:§�t
14 z�rX�:§�tvu.w|q:rX�K§�t!}©~�rX��§Pt
15 OPEN � OPEN ¨v�N�K§ª�
16 else if �:§!� OPEN andq+rX��te}« NrX�L�*� § tv¬©q:rX� § t then
17 q:rX�:§Ptvu.w|q:rX��t�}| NrX�L�¢�:§�t
18 z�rX� § tvu.w|q:rX� § t!}©~�rX� § t
19 else if � § � CLOSED andq+rX��te}« NrX�L�*�:§�t&¬©q:rX�:§Pt then
20 q:rX� § tvu.w|q:rX��t�}| NrX�L�¢� § t
21 z�rX�:§�tvu.w|q:rX�K§�t!}©~�rX��§Pt
22 CLOSED � CLOSED �2�N�K§ª�
23 OPEN � OPEN ¨­�N��§J�
24 end if
25 end for each
26 if SUCC ¤ � w�� then
27 CLOSED � CLOSED ¨®���!�
28 else
29 z{rX��tvu w¯�{���&¡LrX�K°2tZ�C��°±� SUCC ¤ �
30 OPEN � OPEN ¨®�N�!�
31 end if
32 end while

In this code, there are some additional operations beyond
those of A*. In order to selectively store child nodes, we
need the operations shown on line 9 and 10 in the pseudo-
code. Lines 2, 14, 18, 21 and 29 are needed to manage m -
value. The operation on line 30 puts an expanded node back
into the Open list.

In extreme cases, when n 1�² , our algorithm is identi-
cal to A*. On the other hand, when n 1 # , it stores nodes in
best-first order, so those nodes whose l -value exceed the op-
timal cost will never be stored. This means that we can per-
form a search with the same size of memory as the Closed
list used by A*.

Thus, our algorithm is very effective for those problems
wherein the ratio of the Open list to the Closed list is large.
Suppose that we apply A* to the problems where the state-
space forms a tree and the branching factor is ³ . Then the
ratio of the Open list to the Closed list becomes ³{B3´ to ´ .
We can reduce the memory requirements by a factor of the
branching factor ³ , since our algorithm only needs the same
size of memory as the Closed list by A*. The branching fac-
tor of the multiple sequence alignment problem is very large
as described in the previous section. In this case, we can ef-
fectively reduce the memory requirements by a factor of a
few hundred in the best case. Thus, the effect of our algo-
rithm is non trivial for this application.

Search behavior of A* with Partial Expansion
Figure 5 shows the search behavior of our algorithm whenn 1 # . The solid circles represent stored nodes and the dot-
ted circles represent unstored nodes. The digits in the circles
represent the m -value, i.e. expansion priority. The digits on
the right side of the arrow represent revised m -value after ex-
pansion. The digits on the top left of the circles represent the
order of expansion.

Figure 5(a) shows the first expansion. The m -value of
node A is initialized to its l -value, 6. Only one child node
B is stored at this expansion, because the l -value of node B
equals the m -value of node A. We revise m -value of node µ
to the lowest l -value, 7, among all unpromising child nodes
and put node µ back into the Open list. Figure 5(b) shows
the second expansion. Node B with the lowest m -value is ex-
panded. There are no child nodes with the same l -value as
the m -value of B, so no child nodes are stored in this expan-
sion. We put node B back into the Open list after revising itsm -value to the lowest l -value, 8, among all child nodes. Fig-
ure 5(c) shows the third expansion. Node A with the lowestm -value is expanded again and child node C is stored. We setm -value of node A to 9 and puts node A back into the Open
list.

In the same search space, it is necessary for A* to store the
nodes represented by the dotted circles in addition to those
stored by our algorithm. That is to say, we can find the opti-
mal solution with fewer stored nodes than A*.

Evaluation
Experiment
In our experiments, we used the same conditions as in Ikeda
and Imai’s experiments, as mentioned before. We use 21 se-
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Figure 5: Search behavior of A* with Partial Expan-
sion(C=0)

quences from various species1 , which code for the elonga-
tion factor (EF-TU, EF- ´�¶ ). The average length of these se-
quences is 448. The first seven of the 21 sequences are the
same as those in their experiments. We applied our algorithm
and A* to ten instances of seven and eight sequence align-
ment problems, respectively. It is natural for the maximum
number of sequences, which are aligned by each search algo-
rithm, to depend on sequence length, cost function, heuris-
tic function and so on. We, however, can use their setting
as benchmark test, because previous work also uses this set-
ting to evaluate search algorithms. Each instance consists of
seven or eight sequences that were randomly selected from
21 sequences. The maximum number of nodes stored by
both algorithms is 2,000,000. This corresponds to about 160
megabytes of memory. For each instance, we assess perfor-
mance from the cumulative number of expanded nodes and
the maximum number of stored nodes with the cutoff values
( n ) of #��
´�#���·�# and ² . When n 1¸² , our algorithm is
identical to A*. The cumulative number of expanded nodes
corresponds to computational complexity and the number of

1These species are as follows. (0) haloacula marismortui, (1)
methanococcus vannielii, (2) thermoplasma acidophilum, (3) ther-
mococcus celer, (4) sulfolobus acidocaldarius, (5) entamoeba his-
tolytica, (6) plasmodium falciparum, (7) stylonychia lemnae, (8)
euglena gracilis,(9) dictyostelium dscoideum, (10) lycoperscon es-
culentum, (11) arabidopsis thaliana, (12) absidia glauca, (13) rhi-
zomucor racemosus, (14) candida albicans, (15) saccharomyces
cerevisiae, (16) onchocerca volvulus, (17) artemia salina, (18)
drosophila melanogaster, (19) xenopus laevis, (20) homo sapiens.
The figure in a parenthesis corresponds to sequence number in this
paper. These sequences are available in Genome database on the
WWW.
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stored nodes corresponds to space complexity.
Table 1 and 2 show the experimental results for the seven

and the eight sequence alignment problems. The results are
very similar. Due to space limitations, we show only the
results of five instances. In the case of A*, the cumulative
number of expanded nodes equals the number of nodes in-
cluded in the Closed list, because the heuristic function we
used is consistent. This value is approximately equal to the
number of stored nodes in the case of n 1 # . This shows
that our algorithm can perform a search with just the same
size of memory as the Closed list used by A*. Averaging
the five instances, the cumulative number of nodes expanded
by our algorithm is about 5 times larger than that by A*,
due to re-expansion of the same node. On the other hand,
we can reduce the number of stored nodes to 4.7% of what
A* requires. In addition, our algorithm can align the eight
sequences, while A* cannot because it demands excessive
memory. This result shows the effectiveness of our algo-
rithm against the multiple sequence alignment problem.

Figure 6 shows the cumulative number of expanded nodes
and the number of stored nodes for various cutoff values in
the case of a first instance of the seven sequence alignment
problem. In this instance, the maximum difference in l -
values between a node and its child is 396. When nº¹»A�¼�½ ,
our algorithm is virtually identical to A* because it stores all
child nodes for each expansion. Figure 6 shows that we can
effectively reduce the number of stored nodes, while the cu-
mulative number of expanded nodes increases only a little if
the cutoff value is appropriate. In the case of n 1 ·�# , for ex-
ample, our algorithm reduces the memory requirements by
87%, while the computational complexity increases by only
20% compared to A*.

In Figure 6, it seems that the number of stored nodes is
proportional to the cutoff value, while the cumulative num-
ber of expanded nodes is inversely proportional to the cutoff
value. The intuitive explanation is as follows. As to the cu-
mulative number of expanded nodes, every node " , whosel -value is lower than the cost of an optimal solution path,



Table 1: Experimental results for the seven sequence alignment problem

instance sequence number cutoff 0 10 50 ² (A*)
1 0,1,2,3, Cumulative Expansion 344,640 129,986 59,592 48,575

4,5,6 Stored Nodes 48,882 53,948 107,157 839,150
2 0,1,2,8, Cumulative Expansion 234,582 101,211 53,504 44,405

10,14,17 Stored nodes 45,144 49,956 87,987 911,218
3 0,2,4,7, Cumulative Expansion 169,618 82,499 45,859 38,639

8,14,15 Stored Nodes 38,810 42,851 75,045 859,307
4 5,7,8,9, Cumulative Expansion 30,702 19,249 12,644 11,650

10,12,18 Stored Nodes 11,877 13,031 22,801 451,033
5 0,3,6,9, Cumulative Expansion 463,446 210,544 107,432 85,437

11,12,19 Stored Nodes 86,611 94,853 164,879 1,576,920

Table 2: Experimental results for the eight sequence alignment problem

instance sequence number cutoff 0 10 50 ² (A*)
1 0,1,2,3, Cumulative Expansion 6,945,069 1,956,430 804,602 unsolvable

4,5,6,7 Stored Nodes 545,114 596,782 931,689
2 0,3,4,10, Cumulative Expansion 6,090,700 2,123,360 935,680 unsolvable

14,16,17,18 Stored Nodes 648,240 702,099 1,133,568
3 0,2,5,9, Cumulative Expansion 1,162,528 525,715 265,425 unsolvable

11,12,16,19 Stored Nodes 213,999 238,323 461,453
4 1,4,9,10, Cumulative Expansion 6,321,726 2,095,884 899,443 unsolvable

12,15,16,20 Stored Nodes 635,294 697,740 1,165,797
5 0,1,3,4, Cumulative Expansion 13,938,989 3,953,400 1,580,348 unsolvable

6,11,14,17 Stored Nodes 1,016,453 1,098,194 1,639,663

has to be stored by our algorithm. If the cutoff value is large,
the cumulative number of expanded nodes is relatively small,
because the expansion of a node stores many child nodes.
On the other hand, with a low cutoff value, the cumulative
number of expanded nodes is relatively large because the ex-
pansion stores few child nodes. As to the number of stored
nodes, it is proportional to the cutoff value. This is because
the number of stored node, whose l -value is more than the
cost of an optimal solution path, increases as the cutoff value
increases.

The number of stored nodes for eight sequences is about
ten times larger than that for seven sequences in the case ofn 1 # in our experiments. This implies that the memory
requirements for the nine sequence alignment problem may
be ten times larger than that for the eight sequence alignment
problem. Accordingly, we cannot currently align more than
eight sequencesby algorithms based on A*, including our al-
gorithm, under the common memory capacity.

Related work
SMA* (Russel 1992) and RBFS (Korf 1993) were proposed
to avoid the memory problems of A*. In this section, we
compare our algorithm to these algorithms. All explore
nodes in best-first order, however, there are some differences
between them.

A* Our algorithm is identical to A*, when the cutoff valuen 1¾² . Thus, it includes A* as the special case. Our
algorithm stores nodes in best-first order and never stores
nodes whose evaluated costs are larger than the cost of an

optimal solution path when n 1 # . It reduces the space
complexity at the cost of node re-expansion overhead. As
the experimental results show, however, we can effec-
tively reduce the space complexity while only slightly in-
creasing the computational complexity by selecting the
appropriate cutoff value.

RBFS (Korf 1993) RBFS is a linear-space best-first search
algorithm. For each recursive call, RBFS uses a local cost
threshold, which enables it to explore nodes in best-first
order. The threshold value equals to the cost of its lowest-
cost brother. On the other hand, our algorithm memorizes
the cost of its lowest-cost unpromising child for each node
and reduces the space complexity without losing admissi-
bility. Unfortunately, RBFS cannot avoid revisits because
it stores only nodes along the current search path. Our al-
gorithm has advantages over RBFS when the state-space
forms a lattice, because there are no revisits in our algo-
rithm.

SMA* (Russel 1992) SMA* behaves like A* until SMA*
stores the maximum number of nodes. When the number
of stored nodes reaches the limit, SMA* prunes the node
with highest cost in the Open list and continues to search.
On the other hand, our algorithm stores only promising
nodes and never prunes them. Here is an essential differ-
ence between the algorithms. The algorithm of SMA* is
much more complicated than that of A*. In addition, we
have to use more complicated version of SMA* (Kaindl
& Khorsand 1994), when we apply SMA* to problems
whose state-space is a graph. Our algorithm is very simple



with little modification of the A* algorithm and is applica-
ble¿ to graph problems without any modification.

Conclusion
We have proposed a simple and effective search algorithm,
A* with Partial Expansion, to reduce the memory require-
ments of A* for problems wherein the branching factor is
large. It reduces the space complexity of A*, without losing
the merits of A*. It is admissible if a heuristic function is ad-
missible. Consequently, we can solve problems wherein the
branching factor is large, while A* cannot due to its exces-
sive memory requirements.

We applied our algorithm and A* to the multiple sequence
alignment problem. Experimental results show our algo-
rithm can, on average, align seven sequences with only 4.7%
of the amount of memory required by A*. We also applied it
to the eight sequence alignment problem, which has not been
solved up to now, and successfully aligned eight sequences.

In typical search problems such as the sliding-tile puzzle,
the branching factor is much smaller than it is in the multiple
sequence alignment problem. For such problems, our algo-
rithm may be less effective in reducing the amount of mem-
ory, compared to the case of the multiple sequence align-
ment problem. However, there are several important appli-
cations for which our algorithm will be effective. One such
application is the route finding problem in cities with mas-
sive and complicated road networks. Usually, the data of a
road network occupies a huge volume. It cannot be fitted
into main memory and is stored in a geographical database in
secondary memory or in distributed databases over the Inter-
net. Suppose that we want to find the shortest route from our
house to the nearest bookstore. In a complicated city, there
are countless routes because of the many intersections and
transportation methods; the branching factor of this problem
is very large. Most routes, such as a route to Paris by airplane
or to a station by taxi, are useless for finding the shortest
route. Thus, it is difficult to directly apply A* to this applica-
tion. In order to reduce the memory requirements, such use-
less choices are eliminated when an application is formalized
by the search problem. However, it is desirable for the search
algorithm to be capable of coping with such useless choices
instead of manually eliminating them from the model. The
importance of our algorithm lies in its applicability to real
world applications.
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